QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A....

89
QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS ugene Demler Harvard University tudents: A. Imambekov (->Rice), Takuya Kitagawa cs: E. Altman (->Weizmann), A. Polkovnikov (->U. B ey (->U. Colorado), V. Gritsev (-> U. Fribourg), ker (-> Caltech), R. Sensarma (-> JQI Maryland) orations with experimental groups of I. Bloch (MPQ) linger (ETH), J.Schmiedmayer (Vienna) orted by NSF, DARPA OLE, AFOSR MURI, ARO MURI

Transcript of QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A....

Page 1: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMSEugene Demler Harvard University

Grad students: A. Imambekov (->Rice), Takuya KitagawaPostdocs: E. Altman (->Weizmann), A. Polkovnikov (->U. Boston)A.M. Rey (->U. Colorado), V. Gritsev (-> U. Fribourg), D. Pekker (-> Caltech), R. Sensarma (-> JQI Maryland)

Collaborations with experimental groups of I. Bloch (MPQ), T. Esslinger (ETH), J.Schmiedmayer (Vienna)

Supported by NSF, DARPA OLE, AFOSR MURI, ARO MURI

Page 2: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

keV MeV GeV TeVfeV peV µeV meV eV

pK nK µK mK K

neV

roomtemperature

LHC

He N

current experiments10-11 - 10-10 K

How cold are ultracold atoms?

first BECof alkali atoms

Page 3: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Bose-Einstein condensation of weakly interacting atoms

Scattering length is much smaller than characteristic interparticle distances. Interactions are weak

Density 1013 cm-1

Typical distance between atoms 300 nmTypical scattering length 10 nm

Page 4: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

New Era in Cold Atoms Research

Focus on Systems with Strong Interactions

• Atoms in optical lattices

• Feshbach resonances

• Low dimensional systems

• Systems with long range dipolar interactions

• Rotating systems

Page 5: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Feshbach resonance Greiner et al., Nature (2003); Ketterle et al., (2003)

Ketterle et al.,Nature 435, 1047-1051 (2005)

Page 6: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

One dimensional systems

Strongly interacting regime can be reached for low densities

One dimensional systems in microtraps.Thywissen et al., Eur. J. Phys. D. (99);Hansel et al., Nature (01);Folman et al., Adv. At. Mol. Opt. Phys. (02)

1D confinement in optical potentialWeiss et al., Science (05);Bloch et al., Esslinger et al.,

Page 7: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Atoms in optical lattices

Theory: Jaksch et al. PRL (1998)

Experiment: Kasevich et al., Science (2001); Greiner et al., Nature (2001); Phillips et al., J. Physics B (2002) Esslinger et al., PRL (2004); and many more …

Page 8: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Antiferromagnetic and superconducting Tc of the order of 100 K

Atoms in optical lattice

Antiferromagnetism and pairing at nano Kelvin temperatures

Same microscopic model

Quantum simulations with ultracold atoms

Page 9: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Strongly correated systemsAtoms in optical latticesElectrons in Solids

Simple metalsPerturbation theory in Coulomb interaction applies. Band structure methods work

Strongly Correlated Electron SystemsBand structure methods fail.

Novel phenomena in strongly correlated electron systems:

Quantum magnetism, phase separation, unconventional superconductivity,high temperature superconductivity, fractionalization of electrons …

Page 10: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Strongly correlated systems of ultracold atoms shouldalso be useful for applications in quantum information, high precision spectroscopy, metrology

By studying strongly interacting systems of cold atoms we expect to get insights into the mysterious properties of novel quantum materials: Quantum Simulators

BUT Strongly interacting systems of ultracold atoms : are NOT direct analogues of condensed matter systemsThese are independent physical systems with their own “personalities”, physical properties, and theoretical challenges

Page 11: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Cold atoms in optical lattices

Bose Hubbard model. Superfluid to Mott transitionLooking for Higgs particle in the Bose Hubbard modelQuantum magnetism with ultracold atoms in optical lattices

Low dimensional condensates

Observing quasi-long range order in interference experimentsObservation of prethermolization

First lecture:

experiments with ultracold bosons

Page 12: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Second lecture: Ultracold fermions

Fermions in optical lattices. Fermi Hubbard model.Current state of experiments

Lattice modulation experiments

Doublon lifetimes

Strongly interacting fermions in continuum. Stoner instability

Page 13: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Bose Hubbard model

Ultracold Bose atoms in optical lattices

Page 14: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Bose Hubbard model

tunneling of atoms between neighboring wells

repulsion of atoms sitting in the same well

U

t

In the presence of confining potential we also need to include

Typically

Page 15: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Bose Hubbard model. Phase diagram M.P.A. Fisher et al.,

PRB (1989)21n

U

1

0

Mottn=1

n=2

n=3

Superfluid

Mott

Mott

Weak lattice Superfluid phase

Strong lattice Mott insulator phase

Page 16: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Bose Hubbard model

Hamiltonian eigenstates are Fock states

U

0 1

Set .

Away from level crossings Mott states have a gap. Hence they should be stable to small tunneling.

Page 17: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Bose Hubbard Model. Phase diagram

Particle-hole excitation

Mott insulator phase

21n

U

1

0

Mottn=1

n=2

n=3

Superfluid

Mott

Mott

Tips of the Mott lobes

z- number of nearest neighbors, n – filling factor

Page 18: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Gutzwiller variational wavefunction

Normalization

Kinetic energy

z – number of nearest neighbors

Interaction energy favors a fixed number of atoms per well.Kinetic energy favors a superposition of the number states.

Page 19: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Bose Hubbard Model. Phase diagram

21n

U

1

0

Mottn=1

n=2

n=3

Superfluid

Mott

Mott

Note that the Mott state only exists for integer filling factors.For even when atoms are localized, make a superfluid state.

Page 20: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Nature 415:39 (2002)

Page 21: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Optical lattice and parabolic potential

Jaksch et al., PRL 81:3108 (1998)

Parabolic potential acts as a “cut” through the phase diagram. Hence in a parabolic potential we find a “wedding cake” structure.

21n

U

1

0

Mottn=1

n=2

n=3

Superfluid

Mott

Mott

Page 22: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Quantum gas microscopeBakr et al., Science 2010

xy

dens

ity

Page 23: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Nature 2010

Page 24: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

The Higgs (amplitude) mode in a trapped 2D superfluid on a lattice

Theory: David Pekker, Eugene DemlerExperiments: Manuel Endres, Takeshi Fukuhara, Marc Cheneau, Peter Schauss, Christian Gross, Immanuel Bloch, Stefan Kuhr

Sherson et. al. Nature 2010

Cold Atoms (Munich)Elementary Particles (CMS @ LHC)

Page 25: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Order parameter

Phase (Goldstone) mode = gapless Bogoliubov mode

Breaks U(1) symmetry

Gapped amplitude mode (Higgs mode)

Collective modes of strongly interactingsuperfluid bosons

Figure from Bissbort et al. (2010)

Page 26: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Excitations of the Bose Hubbard model

2

Mott Superfluid

21n

U

1

0

Mottn=1

n=2

n=3

Superfluid

Mott

Mott

Softening of the amplitude mode is the defining characteristicof the second order Quantum Phase Transition

Page 27: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Is there a Higgs mode in 2D ?

• Danger from scattering on phase modes

• In 2D: infrared divergence

• Different susceptibility has no divergence

Higgsf

f

S. Sachdev, Phys. Rev. B 59, 14054 (1999) W. Zwerger, Phys. Rev. Lett. 92, 027203 (2004) N. Lindner and A. Auerbach, Phys. Rev. B 81, 54512 (2010) Podolsky, Auerbach, Arovas, Phys. Rev. B 84, 174522 (2011)

Higgs

neutron scattering

lattice modulation spectroscopy

Page 28: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Why it is difficult to observe the amplitude mode

Stoferle et al., PRL(2004)

Peak at U dominates and does not change as the system goes through the SF/Mott transition

Bissbort et al., PRL(2010)

Page 29: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Exciting the amplitude mode

Absorbed energy

Page 30: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Mottn=1 Mottn=1 Mottn=1

Exciting the amplitude modeManuel Endres, Immanuel Bloch and MPQ team

Page 31: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Experiments: full spectrumManuel Endres, Immanuel Bloch and MPQ team

Page 32: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Similar to Landau-Lifshitz equations in magnetism

Time dependent mean-field: Gutzwiller

Threshold for absorption is captured very well

Keep twostates per siteonly

Page 33: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Plaquette Mean Field “Better Gutzwiller”

• Variational wave functions better captures local physics– better describes interactions between quasi-particles

• Equivalent to MFT on plaquettes

Page 34: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Time dependent cluster mean-field

2x2 captures width of spectral feature

breathing mode

single amplitude mode excited multiple modes

excited?

breathing mode

single amplitude mode excited

Lattice height 9.5 Er: (1x1 vs 2x2)

Page 35: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Comparison of experiments and Gutzwiller theories

Experiment 2x2 ClustersKey experimental facts:

• “gap” disappears at QCP• wide band• band spreads out deep in SF

Single site Gutzwiller

Captures gapDoes not capture width

Plaquette Gutzwiller

Captures gapCaptures most of the width

Page 36: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Beyond Gutzwiller: Scaling at low frequenciessignature of Higgs/Goldstone mode coupling

External drive couples vacuum to HiggsHiggs can be excited only virtuallyHiggs decays into a pair of Goldstone modes with conservation of energy Matrix element w2/w=wDensity of states wFermi’s golden rule: w2xw = w3

vacuum

2 Goldstones

Higgs

w

Page 37: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Open question: observing discreet modes

Breathing mode

disappearing amplitude mode

details at the QCP

spectrum remains gapped due to trap

Page 38: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Higgs Drum Modes1x1 calculation, 20 oscillationsEabs rescaled so peak heights coincide

Page 39: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Quantum magnetism with ultracold atoms in optical lattices

Page 40: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

tt

Two component Bose mixture in optical lattice

Two component Bose Hubbard model

Example: . Mandel et al., Nature (2003)

We consider two component Bose mixture in the n=1 Mott state with equal number of and atoms. We need to find spin arrangement in the ground state.

Page 41: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Quantum magnetism of bosons in optical latticesDuan et al., PRL (2003)

• Ferromagnetic• Antiferromagnetic

Page 42: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

In the regime of deep optical lattice we can treat tunnelingas perturbation. We consider processes of the second order in t

We can combine these processes into anisotropic Heisenberg model

Two component Bose Hubbard model

Page 43: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Two component Bose mixture in optical lattice.Mean field theory + Quantum fluctuations

2 nd order line

Hysteresis

1st order

Altman et al., NJP (2003)

Page 44: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Two component Bose Hubbard model

+ infinitely large Uaa and Ubb

New feature:coexistence ofcheckerboard phaseand superfluidity

Page 45: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Exchange Interactions in Solids

antibonding

bonding

Kinetic energy dominates: antiferromagnetic state

Coulomb energy dominates: ferromagnetic state

Page 46: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Questions:Detection of topological orderCreation and manipulation of spin liquid statesDetection of fractionalization, Abelian and non-Abelian anyonsMelting spin liquids. Nature of the superfluid state

Realization of spin liquid using cold atoms in an optical lattice Theory: Duan, Demler, Lukin PRL (03)

H = - Jx S six sj

x - Jy S siy sj

y - Jz S siz sj

z

Kitaev model Annals of Physics (2006)

Page 47: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Superexchange interaction in experiments with double wells

Theory: A.M. Rey et al., PRL 2008Experiments: S. Trotzky et al., Science 2008

Page 48: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

J

J

Use magnetic field gradient to prepare a state

Observe oscillations between and states

Observation of superexchange in a double well potentialTheory: A.M. Rey et al., PRL 2008

Experiments:S. Trotzky et al.Science 2008

Page 49: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Reversing the sign of exchange interaction

Preparation and detection of Mott statesof atoms in a double well potential

Page 50: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Comparison to the Hubbard model

Page 51: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Basic Hubbard model includesonly local interaction

Extended Hubbard modeltakes into account non-localinteraction

Beyond the basic Hubbard model

Page 52: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Beyond the basic Hubbard model

Page 53: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Probing low dimensional condensates with interference

experiments

Quasi long range order

Prethermalization

Page 54: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Interference of independent condensates

Experiments: Andrews et al., Science 275:637 (1997)

Theory: Javanainen, Yoo, PRL 76:161 (1996)Cirac, Zoller, et al. PRA 54:R3714 (1996)Castin, Dalibard, PRA 55:4330 (1997)and many more

Page 55: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

x

z

Time of

flight

Experiments with 2D Bose gasHadzibabic, Dalibard et al., Nature 2006

Experiments with 1D Bose gas Hofferberth et al. Nat. Physics 2008

Page 56: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Interference of two independent condensates

1

2

r

r+d

d

r’

Phase difference between clouds 1 and 2is not well defined

Assuming ballistic expansion

Individual measurements show interference patternsThey disappear after averaging over many shots

Page 57: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

x1

d

Amplitude of interference fringes,

Interference of fluctuating condensates

For identical condensates

Instantaneous correlation function

For independent condensates Afr is finite but Df is random

x2

Polkovnikov et al., PNAS (2006); Gritsev et al., Nature Physics (2006)

Page 58: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

• Matter-wave interferometry

phase, contrast

FDF of phase and contrast

Page 59: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

• Matter-wave interferometry

contrast

phase, contrast

FDF of phase and contrast

phase

• Plot as circular statistics

Page 60: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

• Matter-wave interferometry: repeat many times

• Plot

i>100

contrasti

phase

phase, contrast

FDF of phase and contrast

accumulate statistics

Calculate average contrast

Page 61: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Fluctuations in 1d BEC

Thermal fluctuations

Thermally energy of the superflow velocity

Quantum fluctuations

Page 62: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

For impenetrable bosons and

Interference between Luttinger liquids

Luttinger liquid at T=0

K – Luttinger parameter

Finite temperature

Experiments: Hofferberth,Schumm, Schmiedmayer

For non-interacting bosons and

Page 63: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Distribution function of fringe amplitudes for interference of fluctuating condensates

L

is a quantum operator. The measured value of will fluctuate from shot to shot.

Higher moments reflect higher order correlation functions

Gritsev, Altman, Demler, Polkovnikov, Nature Physics 2006Imambekov, Gritsev, Demler, PRA (2007)

We need the full distribution function of

Page 64: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Distribution function of interference fringe contrastHofferberth et al., Nature Physics 2009

Comparison of theory and experiments: no free parametersHigher order correlation functions can be obtained

Quantum fluctuations dominate:asymetric Gumbel distribution(low temp. T or short length L)

Thermal fluctuations dominate:broad Poissonian distribution(high temp. T or long length L)

Intermediate regime:double peak structure

Page 65: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Quantum impurity problem: interacting one dimensionalelectrons scattered on an impurity

Conformal field theories with negative central charges: 2D quantum gravity, non-intersecting loop model, growth of random fractal stochastic interface, high energy limit of multicolor QCD, …

Interference between interacting 1d Bose liquids.Distribution function of the interference amplitude

Distribution function of

Yang-Lee singularity

2D quantum gravity,non-intersecting loops

Page 66: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Fringe visibility and statistics of random surfaces

Mapping between fringe visibility and the problem of surface roughness for fluctuating random surfaces. Relation to 1/f Noise and Extreme Value Statistics

)(h

Roughness dh2

)(

Distribution function of

Page 67: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Interference of two dimensional condensates

Ly

Lx

Lx

Experiments: Hadzibabic et al. Nature (2006)

Probe beam parallel to the plane of the condensates

Gati et al., PRL (2006)

Page 68: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Interference of two dimensional condensates.Quasi long range order and the BKT transition

Ly

Lx

Below BKT transitionAbove BKT transition

Page 69: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

x

z

Time of

flight

low temperature higher temperature

Typical interference patterns

Experiments with 2D Bose gasHadzibabic, Dalibard et al., Nature 441:1118 (2006)

Page 70: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

integration

over x axis

Dx

z

z

integration

over x axisz

x

integration distance Dx

(pixels)

Contrast afterintegration

0.4

0.2

00 10 20 30

middle Tlow T

high T

integration

over x axis z

Experiments with 2D Bose gasHadzibabic et al., Nature 441:1118 (2006)

Page 71: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

fit by:

integration distance Dx

Inte

grat

ed c

ontr

ast 0.4

0.2

00 10 20 30

low Tmiddle T

high T

if g1(r) decays exponentially with :

if g1(r) decays algebraically or exponentially with a large :

Exponent a

central contrast

0.5

0 0.1 0.2 0.3

0.4

0.3high T low T

2

21

2 1~),0(

1~

x

D

x Ddxxg

DC

x

“Sudden” jump!?

Experiments with 2D Bose gasHadzibabic et al., Nature 441:1118 (2006)

Page 72: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Experiments with 2D Bose gas. Proliferation of thermal vortices Hadzibabic et al., Nature (2006)

Fraction of images showing at least one dislocation

Exponent a

0.5

0 0.1 0.2 0.3

0.4

0.3

central contrast

The onset of proliferation coincides with a shifting to 0.5!

0

10%

20%

30%

central contrast

0 0.1 0.2 0.3 0.4

high T low T

Page 73: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Quantum dynamics of split one dimensional condensatesPrethermalization

Theory: Takuya Kitagawa et al., PRL (2010)

Experiments: D. Smith, J. Schmiedmayer, et al.

New J. Phys. (2011)

arXiv:1112.0013

Page 74: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Relaxation to equilibrium

Bolzmann equation

Thermalization: an isolated interacting systems approaches thermal equilibrium at long times (typically at microscopic timescales). All memory about the initial conditions except energy is lost.

U. Schneider et al., arXiv:1005.3545

Page 75: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Prethermalization

We observe irreversibility and approximate thermalization. At large time the system approaches stationary solution in the vicinity of, but not identical to, thermal equilibrium. The ensemble therefore retains some memory beyond the conserved total energy…This holds for interacting systems and in the large volume limit.

Prethermalization in ultracold atoms, theory: Eckstein et al. (2009); Moeckel et al. (2010), L. Mathey et al. (2010), R. Barnett et al.(2010)

Heavy ions collisionsQCD

Page 76: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Measurements of dynamics of split condensate

Page 77: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Theoretical analysis of dephasingLuttinger liquid model

Page 78: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Luttinger liquid model of phase dynamics

Page 79: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Luttinger liquid model of phase dynamics

For each k-mode we have simple harmonic oscillators

Page 80: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Segment size is smaller than the fluctuation lengthscale

At long times the difference between the two regime occurs for

Phase diffusion vs Contrast Decay

Segment size is longer than the fluctuation lengthscale

Page 81: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Length dependent phase dynamics

“Short segments” = phase diffusion

“Long segments” = contrast decay

110

µm

61µ

m

41

µm

30 µ

m

20µ

m

10µ

m

15 ms 15.5 16 16.5 17 19 21 24 27 32 37 47 62 77 107 137 167 197

Page 82: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Energy distribution

Energy stored in each mode initially

Equipartition of energy For 2d also pointed out by Mathey, Polkovnikov in PRA (2010)

At t=0 system is in a squeezed state with large number fluctuations

The system should look thermal like after different modes dephase.Effective temperature is not related to the physical temperature

Page 83: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Do we have thermal-like distributions at longer times?

Comparison of experiments and LL analysis

Page 84: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Prethermalization

Interference contrast is described by thermal distributions but at temperature much lower than the initial temperature

Page 85: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Testing Prethermalization

Page 86: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Cold atoms in optical lattices

Bose Hubbard model. Superfluid to Mott transitionLooking for Higgs particle in the Bose Hubbard modelQuantum magnetism with ultracold atoms in optical lattices

Low dimensional condensates

Observing quasi-long range order in interference experimentsObservation of prethermolization

First lecture:

experiments with ultracold bosons

Page 87: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.
Page 88: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.

Beyond Gutzwiller: Scaling at low frequencies

signature of Higgs/Goldstone mode coupling

Excite virtual Higgs excitationVirtual Higgs decays into a pair of Goldstone excitations Matrix element of Higgs to Goldstone coupling scales as w2

Phase space scales as 1/wFermi’s golden rule: (w2)2x(1/w) = w3

Page 89: QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.