Quantum Harmonic Crystals.10_27

download Quantum Harmonic Crystals.10_27

of 30

Transcript of Quantum Harmonic Crystals.10_27

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    1/30

    Quantum Theory of Harmonic CrystalsIntroduction

    Complex interacting many-body problem reduced to a set of simple independentcollective excitations; results from periodic lattice and identical cells

    Classical situation we have shown that classical coordinates, us(R),and momenta,Ps(R), can be transformed to new set in which eqs. of motion are those of an

    assembly of independent Simple Harmonic Oscillators (SHOs) of frequencyfor each value of k.

    )(ks

    !

    !

    Quantum mechanically, allowed energies of a (1D) simple harmonic oscillator aregiven by , where !is the frequency of the oscillator (more later).!!)(

    21

    += nEn

    Nowwe use general QM result for energy density

    Here Eiis energy of ith stationary state of the crystal, is the statistical weight of state Ei

    at temperature T, and "is over all stationary states.

    BT

    i

    Ei

    E

    i

    ke

    eE

    V

    ui

    i

    1,

    1=

    !!

    !

    "

    #

    $$

    $

    %

    &=

    '

    '(

    (

    ))

    )

    iEe !"

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    2/30

    Quantum Theory of Harmonic CrystalsNormal Modes vs. Phonons

    We can describe energy of the system in terms of the excitation number nksof normal modesof wave vector kin branch s. (Classical Picture)

    An equivalent corpuscular picture is to designate the quanta of excitation (normal modes

    above) by the term PHONONS and to treat the phonons as indistinguishable quantum particles

    (bosons in this case).nksis the number of phonons of wave vector kand type s.

    (Quantum Mechanical Picture)

    To calculate u, introduce the Partition Function

    .)ln(1

    ! "=i

    EieV

    f #

    !"#$ &' #(') &("&

    !"

    "#=

    fu

    En!ks

    !" #$= (n!

    ks+

    12)"!

    s(!

    k)!

    ks

    % Is the energy of this configuration.

    Here represents a configuration, i.e., the excitation number of the normal modes at k.

    For each k

    For a particular k energy can only take on values

    n!ks

    !" #$

    !!s(!

    k)

    2,3!!

    s(!

    k)

    2,5!!

    s(!

    k)

    2,..........

    Evaluate f:

    Rewrite as

    f =1

    V ln exp !!En!

    ks"# $%

    "#

    $%

    n!ks

    "# $%&

    "

    #''

    $

    %((1

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    3/30

    Quantum Theory of Harmonic Crystals

    n!ks

    !" #$ n!ks

    1In Eq. specifies particular SETof allowed values of , e.g.,

    n!k1s

    =100,n!k2s

    = 75,n!k1s

    = 50,........... or n!k1s

    =10,n!k2s

    =1,n!k1s

    = 0,.......

    So we can write !in as,1

    exp !! n!ks+

    12( )!!s

    !

    k( )"# $%!

    ks

    &n!ks

    "# $%

    ' 2

    Can exchange order of !and ", provided !is over just allowed values of nks (0,1,2,3#..)

    exp !! n!ks+

    12( )!"s

    !

    k( )"# $%n!

    ks

    &!

    ks

    '2 3

    Students verify that every term occurring in also occurs below (exactly once)2

    exp !! 12( )!"s

    !

    k( )"# $%+ exp !! 32( )!"s!

    k( )"# $%+ exp !! 52( )!"s!

    k( )"# $%+........( )!

    ks

    &

    But the series in ( ) above is a convergent geometric series of ratio exp !!

    2!"

    s

    !

    k( )"

    #$%

    &'

    So

    3 =

    exp !!

    2!"

    s

    !

    k( )"

    #$%

    &'

    1! exp !!!"s

    !

    k( )"# %&!

    ks

    ( and thus f = 1V

    ln

    exp !!

    2!"

    s

    !

    k( )"

    #$%

    &'

    1! exp !!!"s

    !

    k( )"# %&!

    ks

    (

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    4/30

    Quantum Theory of Harmonic Crystals

    And "# *+, - .*+

    u = !"f"!

    = !1V

    "f"!

    ln

    exp !!

    2!!

    s

    !

    k

    ( )

    #

    $%

    &

    '(1! exp !!!!s

    !

    k( )#$ &'!

    ks

    )

    *

    +,,

    -,,

    .

    /,,

    0,,

    /01&2 '3& *+453'62+&7 "+8

    &"92 8201:"6:2u =

    1

    V!!

    s(!

    k) ns(!

    k)+ 12

    !"

    #$

    !

    ks

    %&'(

    )*+

    4

    Where is the Bose-Einstein distrib. function,the mean excitation number of mode ks,

    or the ave. # of phonons of type ks,at temp. T

    ns(!

    k)=1

    e!!!s

    !

    k( )!1

    5

    Therefore

    u = uequil. + 1V

    12!!s(

    !k)

    !ks! + 1V

    "!s(

    !

    k)e

    !!!s(!

    k) "1!ks!

    ;

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    5/30

    Quantum Theory of Harmonic Crystals

    General expression

    cV =

    1V

    !!T

    !!s(

    !

    k)

    e!!!s(

    !

    k) "1#$% &

    '(

    !

    ks

    ) 6 Depends ondetails of $s(k)

    Limiting cases

    High T: (arg. of exponent in is small --- expand in series, andthen use binomial expansion.) Take der. after doing this.

    1

    !>> !"

    s(!

    k)

    6

    cV =

    3N

    VkB = 3nk

    B

    Dulong and Petit

    (classical result); additional terms in series

    expansion give Quantum Corrections

    Low T: First convert !to integral (dense set of allowed k-values).kBT

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    6/30

    Quantum Theory of Harmonic Crystals

    Comments (low T):1) at low T phonons with kBT

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    7/30

    Quantum Theory of Harmonic Crystalslow T (cont.):

    ! "# #$

    $=

    s spacekallk

    sV

    se

    kkckd

    Tc

    1

    )(

    )2( )(3!

    "

    !"

    !

    %&'

    With previous simplifications at very low T:

    F'*18 "+E*2

    2*2G2+&

    Use spherical polar coord. dk k2dkd"; and let x = # cs(k)k!

    ( )( ) 330

    3

    23

    4

    )(

    1

    43

    11

    ,12

    3

    kc

    d

    cwheree

    dxx

    c

    Tk

    Tcss

    x

    B

    V !" !" #

    =

    $%

    &

    '(

    )

    *+,

    -./

    0

    1

    1=

    2

    33

    15

    4!

    34 15

    4$+6 7%,*+8&98 +$:;

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    8/30

    Quantum Theory of Harmonic Crystals - Debye

    Intermediate T - Debye Interpolation Scheme:1) Replace ALL branches of vibrational spectrum with three branches,

    each with same disp. rel.

    2) Replace Integral over 1stBZ with integral over sphereof radius kDchosen

    to contain exactly N allowed values of k(N= # of ions in xtal). Leads to

    ckk =)(!

    !

    H'*A 'B

    I#& JD

    H'*A 'B K2L$2

    #

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    9/30

    Quantum Theory of Harmonic Crystals - Debye

    !!"

    =

    ##$

    %

    &&'

    (

    ")

    )=

    D

    B

    B

    D k

    Tk

    ck

    B

    Tk

    ck

    B

    k

    ckV

    e

    dkkTk

    ce

    k

    e

    dkk

    T

    c

    c0 2

    42

    2

    0

    3

    2

    )1(

    )(

    2

    3

    12

    3!

    !

    !

    !

    !

    ** +

    2$A9B

    1#$ &C*D$ "&9 C$ >+7E$9

    c

    kkwithxdkkx

    Tk

    ckDB

    D

    B !

    ! !== ;oftermsinandwritingand,

    =H1+ &20G# 'B #1+E*2

    2G 1F

    !*

    15

    4,,

    4!

    ="#$

    $

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    10/30

    Quantum Theory of Harmonic Crystals - Debye

    High T: :expansionbinomialandexp.forexpansionser.--1)(xintegrand, DT

    B

    T

    D

    B

    T

    x

    x

    D

    BV nk

    xTnk

    e

    dxexk

    Tnkc

    DD

    33

    9)1(

    9

    /

    0

    33

    /

    0

    2

    43

    3

    =!"

    #$%

    &''(

    )**+

    ,-

    ./'

    '(

    )**+

    ,-

    =

    --

    0 S*"##1="* U2#3*&

    Physical Interpretation and comments:1) kD measure of inverse interparticle spacing

    2) !D measure of maximum phonon frequency

    3) $D temperature abovewhich ALL modes begin to be excitedthermally, and below which all modes begin to be frozen out .A Temperature that

    VERY APPROXIMATELYseparates classical from quantum regimes.

    4) NOTE: $D%&D= ckD, where c is sound velocity, the slope of&(k) vs. k.

    As we have seen, in long wavelength limit &(k) = a[K/M]1/2. So $D %[K/M]1/2. This

    means that hard materials (large K) like diamond have high Debye temperatures

    (particularly if they have atoms with light masses like Carbon; while soft materials

    like Pb and In have low Debye temperatures (particularly if they are comprised of

    heavy mass atoms. This is directly reflected in the frequencies of optical modes.

    )(k!

    !

    !

    k/0

    Dk

    !

    !%&

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    11/30

    Quantum Theory of Harmonic Crystals - EinsteinEinstein Model:

    Previous discussion for monatomic crystals. In Debye model of polyatomic xtals, optical

    branches of the!

    (k) spectra represented by high k-values of the same linear expression!(k) = ck , whose low k-values give acoustic branch.More realistic to apply Debye model only to

    acoustic branches, and represent optical branches by single frequency (indep. of k). (Einstein )

    Pictorial comparison: (Debye vs. Einstein 2D sq. diatomic latt. primitive cellseparation = a)

    N%O& NP .%O&

    Q,'"&< 0+&9"#

    P$C6$ "7+"

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    12/30

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    13/30

    Quantum Theory of Harmonic Crystals Density of Normal Modes

    !! dg )(

    Often have to deal with lattice properties that depend on summing over all kand s. (Also

    in electronic properties), e.g.,

    Where is some function of frequency, which itself is a function of k. Convenient

    to transform to equivalent frequency interval and integrate over frequency.

    ( ) ( ) ( ),)(

    21)(1

    3

    ,!"! =s

    s

    sk

    s kQkdV

    kQV

    !

    !

    !

    !

    #

    $

    #

    )(kQs

    !

    !

    13

    Introduce density of normal modes - phonon density of states (DOS) g(!) defined such

    that is number of normal modes (phonons) in the infinitesimal range d&between

    &and &and &+ d&, divided by volume of crystal.

    Then integrals like can be written13

    .)()(!= """ dQgq 14?(1+9 'B X "# B3+=&A

    'B!'+*$ (202

    Comparing and we can show that13 14

    g(!)=

    d!

    k

    2!( )3 ! "!"s(

    !

    k)( )"s# . 15

    Y*3E 1+&' Z

    1+&20=("+E2 '0820 'B ""+8

    1+&2E0"*O "+8 3#2

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    14/30

    Quantum Theory of Harmonic Crystals Density of Normal Modes

    A&M provide another useful representation (for anisotropic mode dispersion);

    Use g(!)d!is just # of allowed modes (ks) in freq. range between !and !+ d!divided by vol.

    of xtal. But this is just vol. of k-space cell (axes along prim. BL axes) with &'&s(k) '&+d&divided by vol. of k-space per allowed k. Defines shell in k-space. Convert to surface

    integral and get

    ( ) )(

    1

    2)(

    3k

    dSg

    ss surface

    s!!

    !"

    !

    #=$ %

    @+&2E0"6'+ 1# ':20 &("&

    #30B"=2 1+ P0#& JD '+ )(1=(

    &s(k) = &

    Because &s(k)periodic there are values of k (typically at BZ boundaries) for which the

    denominator (group vel.) vanishes Van Hove Singularities in DOS. -- also

    happens in electronic case. Important in phonon and electronic properties (optical in

    particular).

    We can do everything weve done previously (total energy, specific heats, etc. in terms of

    level density (usually called the density of states (DOS), e.g., Debye approx.

    Take all three branches to have same dispersion,&s(k) = ck, and all wave vectors

    assumed to like within sphere of radius kD

    gD(!) = 3

    d!

    k

    2!( )3

    ! "! ck( )k

    "**')28 #&"&2# 1+

    I#&JD

    16

    17

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    15/30

    Quantum Theory of Harmonic Crystals Quantizing normal modes

    Now examine in more detail the concept of PHONONS (more than justEn= (n + ")#$).

    First examine the Hamiltonian for a 1D simple harmonic oscillator and consider

    the OPERATOR APPROACH and commutation relations for obtaining theallowed energies and eigenfunctions.

    Then generalize this to 3D and a periodic lattice to consider how to apply thesimple 1D results to phonons.

    This involves the CREATION and ANNIHILATION operators .a+

    and a

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    16/30

    Review: Simple Harmonic Oscillator

    H =p2

    2m +V(x) =p2

    2m +1

    2 m!2

    x2

    ,where!=K

    m ,

    with K the spring constant and ! the characteristic frequency.

    Schroedinger Eq.

    Hamiltonian

    p2

    2mu+

    1

    2m!

    2x

    2u =Eu

    Commutator Bracket [p,x]= (px!xp)=

    !i!

    Rewrite Hamiltonian

    !"

    #$%

    &+

    +

    '(

    =++(=2

    1

    2

    )(

    2

    )(

    2))((

    2

    1)

    )

    )

    )

    )

    )

    ))

    !!!

    !

    m

    pixm

    m

    pixmpixmpixm

    mH

    Define Annihilation and Creation Operators

    !

    !

    !

    !

    !! m

    pixma

    m

    pixma

    2

    )(;

    2

    )(

    "

    =

    +

    = +

    So

    !"

    #$%

    &+=

    +

    2

    1 aaH '! Very simple form

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    17/30

    Simple Harmonic Oscillator (Cont.)

    Properties of Creation and Annihilation Operators

    ],[0],[;1],[ aaaaaa === +++

    And, using commutator identity

    1

    23

    2

    ],[

    :3],[

    2],[

    ,],[],[],[

    !

    ++

    ++

    ++

    =

    =

    =

    +=

    nn

    naaa

    aaa

    aaa

    thatshowcanCBACABCBA

    From properties of operators, and can show that,nnn

    uEuH =

    H(a+

    un)= [ H,a

    +

    ]un+ a

    +

    ( Hun), and that [ H,a

    +

    ]= !!a+

    thus H(a+

    un)= (E

    n+!!)(a

    +

    un)

    ))(()( nnn uaEuaH !!"

    =

    similarlyShows that if unis e-f of with e-val En, (a

    +un)is also e-f of , but

    with e-val En+H H

    !!

    In General, (a+un)is e-f of with e-val En+ , and (aun)is e-f

    of with e-val En! .

    H !!n

    H !!n

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    18/30

    Now assume that system has ground state, u0, with energy E0, and consider

    ))(()( nnn uaEuaH !!"

    =

    Clearly .generatetothisusecanweand,0 00 uua =

    .,)2

    1exp()( 0

    2

    00 ionnormalizatisNwherexm

    Nxu!

    !

    "=

    Use to to generate u1, u2, etc.+

    a

    Can get e-values without knowledge of explicit e-fs.Hu0 = !!(a

    +a+1

    2)u0 =

    1

    2!!u0,!E0 =

    1

    2!! .

    Generate excitedstates with :

    nth excited state is

    so e-vals are:

    +

    a

    ).2

    1(, 0 nEanduau nn +=!

    +

    "!

    ).21( += nEn !!

    Can Generate thenormalized e-f

    s from

    )

    2

    1exp(where,

    !

    1get

    :1*and,

    2

    2/1

    00

    0

    xmm

    uuan

    u

    dxuuuacu

    n

    n

    nnnn

    !!

    !

    "

    !

    #$

    %

    &'

    (

    )==

    ==

    +

    +*

    *#

    +

    +

    Simple Harmonic Oscillator (Cont.)

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    19/30

    Simple Harmonic Oscillator and Phonons

    Summary

    [ ]

    ( )

    1

    !

    1

    )(1,

    )(

    2

    *

    0

    21

    21

    =

    =

    =

    +=

    =

    +=

    !

    +

    +

    +

    n

    nmmn

    n

    n

    nn

    u

    dxuu

    uan

    u

    unuH

    aa

    aaH

    #

    $

    $

    !

    !

    SHO energy levels

    !!

    + - >

    + - N

    + - V

    + - I!!

    How do we apply this to phonons?

    Normal modes

    !!"

    ""#+=RRR

    RuRRDRuRPM

    H!!!

    !!!!

    )()()()(2

    1212

    $$

    ?"92 &""# "+8 (""#&'

    L2 "+E3*"0 B025A "+8

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    20/30

    Commutation Relations

    Simple Harmonic Oscillator and Phonons

    [ ] [ ])(),(0)(),(

    )(),(

    RPRPRuRu

    iRPRu RR

    !==!

    =!!

    !!!!!!

    "

    !!!!!

    ""

    "" ##

    Can show that

    RLVkN

    RLVke

    R

    Rki

    is,

    not,0=!

    !

    !!

    Leads to

    [ ] [ ]+!

    +

    !

    !

    +

    !

    ==

    =

    kkk

    kkkk

    aaaa

    aa

    k

    !!!

    !!!!

    !

    ,0,

    , "

    ExpressPanduin terms of aand a+

    ( )! +"+=k

    Rki

    kk ekaa

    kMNRu

    !

    !!

    !

    !!!

    "

    "!!)(

    )(2

    1)( #

    $

    ( )! +"""

    =

    k

    Rki

    kk ekaa

    kM

    N

    iRP

    !

    !!

    !

    !!!

    "!!)(

    2

    )()( #

    $

    19

    M#2

    0=! R

    Rkie

    !

    !!

    !! "## =)()( kk!!

    )()( kk!!

    != ""

    )()( kk!!

    != ""

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    21/30

    Simple Harmonic Oscillator and Phonons

    Substitute Eqs. for Panduin terms of aand a+into Hamiltonian19 18

    Kinetic Energy ( )( )kk kkR aaaakRPM k!

    !!!

    ! !

    !

    "

    !

    !

    ++

    ! !!= "" )(41

    )(2

    1 2#

    Potential Energy ( )( )++! !+ !" kk

    kk aaaak

    k

    !

    !

    !!!

    !" )(

    4

    1#

    Add these to get H (use )kk

    aaaa

    k

    k

    k

    k !!

    !

    !

    !

    ! !! ++" ="

    ( )! ++

    +=

    k

    kkk kaaaakH

    !

    !!!!

    !

    " )(21 "

    Nowuse , and include branches (s)1, =+

    kk aa !!

    ! "#

    $%&

    '+=

    +

    sk

    sks skaakH

    !

    !!

    !"

    2

    1)( ( 20

    Sum of 3N indep. Harmonic osc. (N values of k and 3 branches)Eigenvalues are sum of individual eigenvals. and e-functions are products. Therefore

    specify eigenstates of system by set of 3N quantum numbers, nks, one for each of 3N

    independent harmonic osc. Hamiltonians

    ! "#

    $%&

    '+=

    sk

    sks nkE

    !

    "

    !#

    2

    1)((

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    22/30

    QuantumHarmonic Crystals Measuring Phonon Frequencies andDispersion

    Two primary Probes used: 1) neutrons; 2) photons (inelastic scattering processes)]'&2^ 'Cc=G - >AV +G7

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    23/30

    QuantumHarmonic Crystals Measuring Phonon Frequencies andDispersion

    $%&'() ") *+ ,-.'#

    $%&'(/ "/ *+ 01#

    > V d e c I>CIc

    CIe

    CId

    CIV

    CI>C c

    C e

    C d

    C V

    >

    V

    d

    e

    ?$

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    24/30

    QuantumHarmonic Crystals Crystal momentum

    S"+ #(') $S,

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    25/30

    QuantumHarmonic Crystals Measuring Phonon Frequencies andDispersion

    Fundamental physics -- symmetries of Hamiltonian imply conservation laws

    (this symmetry (invariance of Ham under translations by BL vector --- k + K is

    conserved. Write as

    Knkppsk

    sk

    !"

    !"

    !!

    !

    ! +!"="# $

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    26/30

    QuantumHarmonic Crystals Measuring Phonon Frequencies andDispersion

    -./012 34145

    Crystal in some state with set of phonon occ. #s.[nks]; neutron with initial mom.p, energy E = p

    2/2Mn.

    6/.12 34145

    Crystal in state characterized by [n*ks]; neutron withp(and energy E*= p*2/2Mn.

    Conservation of Energy Assume harmonic approx. for xtal

    skxksk

    sk

    sks

    sk

    sks

    sk

    sks

    nnnnkEEor

    nkEEnk

    !!!

    !

    !

    !

    !

    !

    !

    !"

    !"

    !"

    !"=##!=!"

    "+"=+

    $

    $$

    ;)(

    )()(

    %

    %%

    Conservation of Crystal Momentum

    Knkppor

    Knkpnkp

    sksk

    sksk

    sksk

    !"

    !"

    !!

    !"

    !"

    !!"

    !

    !

    !

    !

    !

    !

    !

    +!"="#

    #+#=+

    $

    $$

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    27/30

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    28/30

    QuantumHarmonic Crystals Measuring Phonon Frequencies andDispersion

    =*8$:F

    !

    When we subst. for kin energy expression, we can ignore K, because &s(k)is periodic

    function in reciprocal space, with period = shortest RLV (K) in direction of interest.

    So, procedure is to solve momentum eqs. For k K (equiv. to k), and subst. in energy eq.

    for &s(k) gives &s((pp)/ )) single eq. for abs. and single eq. for emission.

    !"

    #$%

    & '('=

    (

    !"

    #$%

    & '(+=

    (

    !

    ""

    !

    !

    ""

    !

    pp

    M

    p

    M

    p

    pp

    M

    p

    M

    p

    s

    nn

    s

    nn

    )

    )

    22

    22

    22

    22

    Absorption

    Emission

    We knowpandp2/2Mn; measure 3 components of final neutron momentum and final

    neutron energy. In general, three components and energy define 3D surface, and by

    specifying a direction (detector angle) determine point on this surface. See neutrons

    scattered by one-phonon processes at a few discrete energies, E(. Use spectrometer to

    measure as function of neutron wavelength (+*= 2,/q*); Determines |p*|; knowing direction,

    can construct E*- E, andp

    - p = k . ((= (p

    2 - p2)/2Mn -- plot this vs. k = (p - p)/ .

    (homework problems on graphical solutions for simple cases). Determine kand &s(k) from

    whole series of angles, orientation of crystal and neutron energies.

    ! !

    !

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    29/30

    QuantumHarmonic Crystals Phonon Frequencies from InelasticLight Scattering

    Photon Scattering: (Inelastic Light Scattering)

    Usually Visible Light. 1) Raman Scattering (Optical Phonons); 2) BrillouinScattering

    (acoustic phonons). Can only measure phonons at very small wave vectors (near k = 0)

    What is k for a visible photon (wavelength 500 nm)? Wave vectors for photons inside media

    (solids) differ from those in vacuum (index of refraction, n; qin= nqout ).

    !!+ !!s(!k)= " !!

    !n"q +!

    "k+ !

    "K= !n

    "!q

    ! !! = !!" !!s(!k)

    "n!!q = "n

    !q ""

    !k+"

    !K

    7 823%4%+ 5670 70,4%8 *+ 76,99-

    " 823%+%+ 5670 70,4%8 *+ 76,99-

    XC:*+,'*9 *) *9$ ,#*9*9

    +7

    +79

    "[

    H%7::7*9 *) *9$ ,#*9*9

    +7

    +79

    "

    [

    k"RA 2+20E$ 'B `Y? > G2HZ Y('&'+ 2+20E$ "L'3&

    V 2HO 4o\ n o\pZ q5qn q5pq7 Z#'

    &01"+E*2 1# "

  • 8/10/2019 Quantum Harmonic Crystals.10_27

    30/30