Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I....

29
Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiard s BEC 8 6 10 10 n 1 n I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A. Kaplan) Eitan Rowen, Tuesday
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    214
  • download

    0

Transcript of Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I....

Page 1: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Quantum dynamics with ultra cold atoms

Nir Davidson

Weizmann Institute of Science

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Billiards BEC86 1010 n 1 n

I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A. Kaplan)

Eitan Rowen, Tuesday

Page 2: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

R

E 1 nm

Dynamics inside a molecule:quantum dynamics on nm scale

Fsec laser pulse

Page 3: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Is there quantum chaos?

• Classical chaos: distances between close points grow exponentially

• Quantum chaos: distance between close states remains constant

1212 |expexp nnnH

iH

in

Asher Peres (1984): distance between same state evolved by close Hamiltonians grows faster for (underlying) classical chaotic dynamics ???

nnnH

iH

in |expexp 12

Answer: yes….but also depends on many other things !!!

One thing with many names: survival probability = fidelity = Loschmidt echo

R. Jalabert and H. Pastawski, PRL 86, 2490 (2001)

Page 4: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

PRL 86, 1518 (2001), PRL 87, 274101(2001), PRL 90 023001 (2003)

…and effects of soft walls, gravity, curved manifolds, collisions…..

Atom-optics billiards:decay of classical time-correlations

Page 5: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Wedge billiards: chaotic and mixed phase space

Page 6: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Criteria for “quantum” to “classical” transition

Old: large state number

'' nnnn 610/ nEE

Quantum dynamics with <n>~106: challenges and solutions:

• Very weak (and controlled) perturbation –optical traps + very strong selection rules

• No perturbation from environment - ultra cold atoms

• Measure mixing – microwave spectroscopy

• Pure state preparation? - echo

11010 66 n

1n

New: “mixing” to many states by small perturbation 1' nnn

But “no mixing” is hard to get

Page 7: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Pulsed microwave spectroscopy

Prepare Atomic Sample → MW-pulse Sequence → Detect Populations

Off

On

2

1

3

• cooling and trapping ~106 rubidium atoms• optical pumping to

π-pulse:

π/2-pulse: 22

12

11

i

21 i

1

optical transition

MW “clock” transition

)0,3,5( 2/1 FmFS

)0,2,5( 2/1 FmFS

Page 8: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Ramsey spectroscopy of free atoms

TΔcos121

P2

2/21 i

2/21 Tiie 1

H = Hint + Hext → Spectroscopy of two-level Atoms

π/2 π/2T

MW

Pow

er

Time

Page 9: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Ramsey spectroscopy of trapped atoms

22H11HH 21 extHH int

EHF

2

1

|1,Ψ>

|2,Ψ>

|1,Ψ>

H2

H1

e-iH2t|2,Ψ>

e-iH1t|1,Ψ>

<Ψ| eiH1

te-iH2

t|Ψ>…

Microwave pulse

Microwave pulse

General case: Nightmare Short strong pulses: OK (Projection)

)/( ALopt IV

Page 10: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Ramsey spectroscopy of single eigenstate

π/2 π/2M

W P

ower

Time

T

For small Perturbation:

Page 11: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Ramsey spectroscopy of thermal ensemble

π/2 π/2M

W P

ower

Time

T

Averaging over the thermal ensemble destroys the Ramsey fringes

For small Perturbation:

Page 12: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Echo spectroscopy (Han 1950)

π/2 π/2TM

W P

ower

Time

π T

t=T

t=2T

NOTE: classically echo should not always work for dynamical system !!!!

Page 13: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Echo spectroscopy

π/2 π/2TM

W P

ower

Time

π T

Coherence

De-Coherence Ramsey

Echo

BUT: it works here !!!!

Page 14: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

nH

iH

iH

iH

in

2121 expexpexpexp

nH

iH

in

21 expexp Ramsey

Echo

Echo vs. Ramsey spectroscopy

H2

H1

H2

H1

H1

H2

Page 15: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Quantum dynamics in Gaussian trap

Coherence

De-Coherence

Calculation for H.O.

'n,nδn'n

Tosc/2 Tosc

EHF

2

1

Page 16: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Long-time echo signal

nEEEnn nn /' '

4

2 nn'n121

P

Coherence

De-Coherence

610/ EE•2-D:

•1-D:310/ EE

nEEnn nn /1/' '

Page 17: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Observation of “sidebands”

Π-pulse

4π-pulse

Page 18: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Quantum stability in atom-optic billiards

<n>~104

Page 19: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Quantum stability in atom-optic billiards

<n>~104

D. Cohen, A. Barnett and E. J. Heller, PRE 63, 046207 (2001)

Page 20: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Avoid Avoided Crossings

Page 21: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Quantum dynamics in mixed and chaotic phase-space

Coherent

Incoherent

Perturbation strength

Perturbation-independent decay

Page 22: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Quantum dynamics in perturbation-independent regime

0,000 0,005 0,010

0,0

0,2

0,4

P2

Time between pulses (s)

Chaotic Mixed

Page 23: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Shape of perturbation is also important

Page 24: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

… and even it’s position

Page 25: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

No perturbation-independence

Page 26: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Finally: back to Ramsey (=Loschmidt)

Page 27: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

•Quantum dynamics of extremely high-lying states in billiards:survival probability = Loschmidt echo = fidelity=dephasing?

• Quantum stability depends on: classical dynamics, type and strength of perturbation, state considered and….

• “Applications”: precision spectroscopy (“clocks”) quantum information

Conclusions

Can many-body quantum dynamics be reversed as well?

(“Magic” echo, Pines 1970’s, “polarization” echo, Ernst 1992)

Page 28: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

•Control classical dynamics (regular, chaotic, mixed…)

•Quantum dynamics with <n>~106 ????

Tzahi Ariel Nir

Atom Optics Billiards

Page 29: Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.

Atom Optics Billiards

Positive (repulsive) laser potentials of various shapes.Standing Wave

Trap Beam

• Z direction frozen by a standing wave

• Low density collisions

• “Hole” in the wall probe time-correlation function