Quantum Dynamics of Josephson Junction Based Circuits

32
Quantum dynamics in nano Josephson junctions CNRS – Université Joseph Fourier Institut Néel- LP2MC GRENOBLE Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier PhD: Thomas Weissl Etienne Dumur Ioan Pop Florent Lecocq Aurélien Fay Rapaël Léone Nicolas Didier Julien Claudon Franck Balestro Post-doc: Alexey Feofanov Iulian Matei Zhihui Peng Emile Hoskinson H. Jirari Alex Zazunov Scientific collaborations: PTB Braunschweig ( Germany) LTL Helsinki (Finland) Rutgers (USA) Projects: ANR QUNATJO

Transcript of Quantum Dynamics of Josephson Junction Based Circuits

Page 1: Quantum Dynamics of Josephson Junction Based Circuits

Quantum dynamics in nano Josephson junctions

CNRS – Université Joseph Fourier Institut Néel- LP2MC

GRENOBLE

Permanent:Wiebke GuichardOlivier BuissonFrank HekkingLaurent LévyBernard Pannetier

PhD:Thomas WeisslEtienne DumurIoan PopFlorent LecocqAurélien FayRapaël LéoneNicolas DidierJulien ClaudonFranck Balestro

Post-doc:Alexey FeofanovIulian MateiZhihui Peng Emile HoskinsonH. JirariAlex Zazunov

Scientific collaborations: PTB Braunschweig ( Germany)LTL Helsinki (Finland)Rutgers (USA)

Projects: ANR QUNATJO

Page 2: Quantum Dynamics of Josephson Junction Based Circuits

Quantum Nano-Electronics

Quantum properties and phase coherence in

electronic nano-circuits

Model systemCoherent transportInterference effects

On chip quantum experimentsArtificial atoms and molecules

Single molecule

New technologiesNanofabrication

Lithography processBottom-upOptics

MicrowavesLow noise electronics

Low temperature…

New materialsNanotubes

Nanowires (Si,GaN…) Graphene

New nano-devices

New functionalitiesSET

Quantum bitHigh sensitive detectors

Current standardMicrorefrigerartion

Ultimately small circuits

Page 3: Quantum Dynamics of Josephson Junction Based Circuits

Quantum experiments

Realizing quantum experiments in solid state system

Building « artificial atoms » or probing a « single atom »

Strong coupling to environment(thermal noise, charge or magnetic fluctuations, microscopic defects,…)

Fast manipulations(strong coupling with external field)

Strong and very strong coupling between qubits

Original properties compared to atoms:

Long term: - quantum information processingShort term: - high sensitive detectors

- model system for quantum nano-electronics or nano-photonics- experimental quantum demonstrators

- Manipulate the quantum states- Measure the quantum states- Long coherence time

Objectives: physics of these original quantum systems

Superconducting quantum circuits

Page 4: Quantum Dynamics of Josephson Junction Based Circuits

Introduction to superconducting qubits

Multi-levels artificial atom- current-biased Josephson junction and dc SQUID- quantum measurements- quantum dynamics in a multilevel quantum system- quantum or classical description- optimal control- decoherence processes

Two-degrees of freedom artificial atom- inductive dc SQUID- spectroscopy measurements- strong non-linear coupling- coherent oscillations

Multi-degrees of freedom system- Josephson junction chains- quantum phase slip- charging effects

Outline

Page 5: Quantum Dynamics of Josephson Junction Based Circuits

Introduction of the superconducting state

In many metals, T smaller than a critical temperature :the conduction electrons condenses to electron pairs : Cooper pairs

All the pairs forms a Macroscopic Quantum State: |�G>

|�G> is a very stable ground statebecause no excitations below the gap

2e

e

|�G> is analog to the coherent state of a laser beamthe phase is very well defined

Persistent current without any decay!

To perform quantum experiments, we need excited levels

Page 6: Quantum Dynamics of Josephson Junction Based Circuits

Basic building blocks: Josephson junction

� � ieQ 2, ���

Josephson relations:

Small Josephson junction: two energy scales

�cos)/ˆ(ˆ 2JC EeQEH �

eQ 2���

CIc

Electrical scheme

CeE

eIE

C

cJ

2

)2/(2

� �

Page 7: Quantum Dynamics of Josephson Junction Based Circuits

Scientific context

Macroscopic quantum effects…

… and quantized energy levels(microwave frequency regime)

Voss et al, PRL (1981)

Devoret et al, PRL (1985)

Martinis et al, PRL (1985)

- Superconducting qubit

Nakamura et al, Nature (1999)

�MQT

An artificial atom controlled by electronics signals

Page 8: Quantum Dynamics of Josephson Junction Based Circuits

Defense1th 2011

Engineering quantum mechanics

Vion et al, Science (2002) Wallraff et al, Nature (2004)Pashkin et al, Nature (2003)

- Coherence- Optimal point

- Readout- Memory- Bus

- Coupling- Gates- Algorithm

Neelley et al, Nature (2010)Sillanpaa et al, Nature (2007)DiCarlo et al, Nature (2010)

Scientific context

Page 9: Quantum Dynamics of Josephson Junction Based Circuits

Motivations

qubit 1 qubit 2

- artificial atom with two energy level(only one degree of freedom!)

- two coupled qubits

- two level system coupled to high Q cavity

qubit 1cavity

Is it possible to build and control artificial atom: - with multi-energy levels?- with two degree of freedom?

Up to now in superconducting systems:

Page 10: Quantum Dynamics of Josephson Junction Based Circuits

Motivations

10µm

Ib

I� 10µm

Multi-level quantum system

Two-degrees offreedom

Multi-degrees offreedom

New physics…

Page 11: Quantum Dynamics of Josephson Junction Based Circuits

Introduction to superconducting qubits

Multi-levels artificial atom- current-biased Josephson junction and dc SQUID- quantum measurements- quantum dynamics in a multilevel quantum system- quantum or classical description- optimal control- decoherence processes

Two-degrees of freedom artificial atom- inductive dc SQUID- spectroscopy measurements- strong non-linear coupling- coherent oscillations

Multi-degrees of freedom system- Josephson junction chains- quantum phase slip- charging effects

Outline

Page 12: Quantum Dynamics of Josephson Junction Based Circuits

Driven anharmonic oscillator

H(t) � P 2

2m 12 m p

2 X 2 fext cos(2��t)XHarmonic oscillator:

�aX 3 � bX 4By adding anharmonic terms

New physics appear which was extensively studied

Classical mechanics: - Landau&Lifchitz- modification of the reonance peak- bi stability (used as amplifier Siddiqqi 04, Ithier 05)- parametric amplifiers

Quantum mechanics: many theoretical studies (Dykman88, Milburn86, Enzer97, Katz07, etc..)

Quantum dynamics in an anharmonic quantum oscillator

The quantum particle follows a motion very close to theclassical one

Page 13: Quantum Dynamics of Josephson Junction Based Circuits

Current-biased Josephson junction

���

����

����

��

����

��

��� �

���

���

�� sin

22200

2

20

c

pc

III

dtd

RdtdC

��

ddU )(

�« mass » m

Current conservation:

�sincb IIRV

dtdVC ��

V

Ib

CId Is

U

�)cos()( ��� Cb IIU ���

Ic Josephson relations:R

Page 14: Quantum Dynamics of Josephson Junction Based Circuits

In the quantum limit…

� � ieQ 2, ���

p (Ib)

�U (Ib)

U(�)

�quantum tunneling

level quantization

Quantum anharmonic oscillator!

EJ>>EC

Josephson potentialCharging energy

)ˆ)/(ˆ(cos)/ˆ(ˆ 2 �� cbJC IIEeQEH ��

Page 15: Quantum Dynamics of Josephson Junction Based Circuits

Quantum experiments with a dc-SQUID(J. Claudon et al PRB07)

|0>|1>

|2>

�b(t)

Ib

Imeasure (t)

dc-SQUID: Ic(�b)

Deep well with quantized states

Page 16: Quantum Dynamics of Josephson Junction Based Circuits

(J. Claudon et al PRB07)

|0>|1>

|2>

�b(t)

Ib

Imeasure (t)

dc-SQUID: Ic(�b)

Deep well with quantized states

Microwave flux: �(t)excitation

An external driving force!

Quantum state manipulation

MW

�,�1

Page 17: Quantum Dynamics of Josephson Junction Based Circuits

p (Ib,�b )

�U (Ib,�b)

-3.0

-1.5

0

1.5

3.0

-500 -250 0 250 500

Ic

I b(�

A)

Vs (�V)

A nano-second flux pulse reduces the barrier

Hysteretic junction: escape leads to voltage

�0

J. Claudon, et al, PRL04, PRB2007

�b(t)

Ib

Imeasure (t)

dc-SQUID: Ic(�b)

Quantum measurements with a dc-SQUID

Pro

babi

lity

ofes

cape

Nanosecond flux pulse amplitude (�0)

Page 18: Quantum Dynamics of Josephson Junction Based Circuits

Quantum measurements

p (Ib,�b )

�U (Ib,�b)

-3.0

-1.5

0

1.5

3.0

-500 -250 0 250 500

Ic

I b(�

A)

Vs (�V)

A nano-second flux pulse reduces the barrier

Hysteretic junction: escape leads to voltage

�0

�1

�2

Pro

babi

lity

ofes

cape

Nanosecond flux pulse amplitude (�0)

�b(t)

Ib

Imeasure (t)

J. Claudon, et al, PRL04, PRB2007

Page 19: Quantum Dynamics of Josephson Junction Based Circuits

Experimental set-up

• MW manipulation• fast measurements

• courant bias• voltage state of SQUID

Vout

IbI

Le

Filtered linesDC-200kHzbas bruit

(on-chip)

VMW

�(t)

�bCe

25 mK

Broadband lineDC-20 GHz

Ze( )

50 �

15μm

Aluminium circuitNanoFab

Page 20: Quantum Dynamics of Josephson Junction Based Circuits

Introduction to superconducting qubits

Multi-levels artificial atom- current-biased Josephson junction and dc SQUID- quantum measurements- quantum dynamics in a multilevel quantum system- quantum or classical description- optimal control- decoherence processes

Two-degrees of freedom artificial atom- inductive dc SQUID- spectroscopy measurements- strong non-linear coupling- coherent oscillations

Multi-degrees of freedom system- Josephson junction chains- quantum phase slip- charging effects

Outline

Page 21: Quantum Dynamics of Josephson Junction Based Circuits

Ib = 2.222 �A, �b = -0.117 �0

J. Claudon, A. Fay, L.P. Lévy, and O. Buisson (PRB2008)Spectroscopy measurements

� 01

(GH

z)

7

8

9

10

11

12�b� -0.117 �0

�b� -0.368 �0

0.5 1 1.5 2 2.5Ib (�A)

|0�

|1�

SQUID parametersI0 =1.242 �AC0= 560 fFLS= 280 pH

8 8.1 8.2 8.3 8.4 8.52

4

6

8

Pes

c(%

)

�01

� (GHz)

Page 22: Quantum Dynamics of Josephson Junction Based Circuits

measurement�MW=�01

• Flux-pulse sequence:

Coherent oscillations in a dc SQUID(J. Claudon F. Balestro, F. Hekking, and O. Buisson, PRL 2004)

P = +6 dBm����� = 260 MHz

�RLO = 208 MHz

Tmw (ns)

Pes

c

�RLO = 66 MHz

�RLO = 122 MHz

P = 0 dBm����� = 130 MHz

P = -6 dBm����� = 65 MHz

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0 20 40 60 800.2

0.4

0.6

0.8

Pes

cP

esc

E/h (GHz)

0204060

0

5

12

7 levels

�01

• Anharmonic oscillator:

TMW: tunable

Anharmonicity:�01��12 = 160 MHz

Are Rabi oscillations?

Page 23: Quantum Dynamics of Josephson Junction Based Circuits

« Rotating wave » approximation

H* : Time independent Hamiltonian eigenvector eigenvalues

Rabi oscillations (I)

XZ thtH ����� )2cos(221)(ˆ

101 ��� �

Two level system:

�|0>

|1>?

2/)10(

2/)10(

1121*

1

1021*

0

����

����

e

e

0)0(

)()(ˆ)(

�� ttHtdtdi�

���

����

�� �

00ˆ2

2*1

1

H

temporal evolution ?)(t�

0)0(

)(ˆ)(

*

***

�� tHtdtdi�

Rotating referential

Page 24: Quantum Dynamics of Josephson Junction Based Circuits

Rabi oscillations (II)

Two level system:

�01|0>

|1>?

))cos(1()())cos(1()(

121

1

121

0

ttpttp

���

��

))exp(()(

)()0(*11

*02

1*

*1

*02

1*

etiet

ee

���

0 2���1t

1

0

|0> |1> |0>

)10(2

1 i

The duration of the microwave controls the state

�1

E*

�1

�0

�1

Page 25: Quantum Dynamics of Josephson Junction Based Circuits

Rabi oscillations of a two level system

� �1

0

50

100

150

200

250

0 50 100 150 200 250 300

MW amplitude : �1/2� (MHz)

�R

LO(M

Hz)

�01��12 = 160 MHz

Rabi

Strong deviation compare to Rabi prediction!

We must take into account the multi-level dynamics

Page 26: Quantum Dynamics of Josephson Junction Based Circuits

Multilevel dynamics in an harmonic oscillator

��H(t) � 1

2 � p (P 2 X 2) ��� P X 3 � 2��1 cos(2��t)X

From a coherent source ( � p),the quantum state is descibed by the coherent states

Its energy grows as : ))2/(( 212

1 tE p �!�" �

Continuous growth! No oscillations!!

Harmonic oscillator with equidistant energy levels

When its energy is very large,its dynamics describe very well the classical motion

No way to build arbitrary states and explainsoscillations

Page 27: Quantum Dynamics of Josephson Junction Based Circuits

0

200

400

600

800

0 100 200 300

« Rotating wave » approximation

Eigenvalues

Time independent Hamiltonian

#�$!

#�%!

#��!

#��!

#�&!

�����'(MHz)�

(MH

z)

Multilevel dynamics

|0(t=0+)>=a0#�$!a�'#��!a�#��!a%#�%!

low amplitude: large amplitude:

��H(t) � 1

2 � p (P 2 X 2) ��� P X 3 � 2��1 cos(2��t)X

0(t � 0) � ( �0 �1 ) / 2

Rabi oscillations

Initial state:

Multi-level dynamics

�R�R,1

�R,2

�R,3

�R,4

� 01�

� 12

Time independent Hamiltonian

Page 28: Quantum Dynamics of Josephson Junction Based Circuits

quantum theorywith ���01

• Low excitation power :two level description

Cross-over between two and multi-level

• Intermediate power :multi- level description

�01��12 �1

Cross- over condition:

Anharmonicity MW amplitude

� �1

0

50

100

150

200

250

0 50 100 150 200 250 300

MW amplitude : �1/2� (MHz)

2 3 4

�R

LO(M

Hz)

# involved levels

�01��12 = 160 MHz

Rabi

p2<12%

(J. Claudon,A. Zazunov, F. Hekking, and O. Buisson, arXiv:0709.3787)

RabiT ,2

1

coherent superpositionof excited states

Page 29: Quantum Dynamics of Josephson Junction Based Circuits

Classical description?

Integrate equations of motion

(J. Claudon A. Zazunov, FH, and O. Buisson, PRB 2008)

(A. Ratchov, PhD-thesis 2005Gronbech-Jensen 2006)

p (Ib)�)

fmw (u.a.)

*'fmw2/3

Transient regime

Page 30: Quantum Dynamics of Josephson Junction Based Circuits

Classical or quantum description?

Classical model Quantum model

(J. Claudon A. Zazunov, F. Hekking, and O. Buisson, PRB 2008)

Page 31: Quantum Dynamics of Josephson Junction Based Circuits

(J. Claudon A. Zazunov, F. Hekking, and O. Buisson, PRB 2008)

������+$'MHz �������+$'MHz ������,�$'MHz

Page 32: Quantum Dynamics of Josephson Junction Based Circuits

Introduction to superconducting qubits

Multi-levels artificial atom- current-biased Josephson junction and dc SQUID- quantum measurements- quantum dynamics in a multilevel quantum system- quantum or classical description- optimal control- decoherence processes

Two-degrees of freedom artificial atom- inductive dc SQUID- spectroscopy measurements- strong non-linear coupling- coherent oscillations

Multi-degrees of freedom system- Josephson junction chains- quantum phase slip- charging effects

Outline