Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 ·...

41
Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental data Tarn Duong Molecular Mechanisms of Intracellular Transport Laboratory (Bruno Goud), Institut Curie, Paris 8 March 2010

Transcript of Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 ·...

Page 1: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Quantitative statistical analysis of bioloical experimental data

Tarn Duong

Molecular Mechanisms of Intracellular Transport Laboratory (Bruno Goud), Institut Curie, Paris

8 March 2010

Page 2: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Brief CV

1994–1998 BSc (Math & Comp Science), Perth, Univ. West. Australia (∼ Montpellier 2)1999–2000 Aust. Bureau of Statistics, Canberra & Sydney, Australia (∼ INSEE)2001–2004 Ph.D. (Statistics), Perth, Univ. West. Australia2005 Lecturer, Macquarie Univ., Sydney (∼ Paris 8)2005–2007 Post-doc, Univ. New South Wales, Sydney (∼ Paris 6/7)2007–2009 Post-doc, C. Zimmer Group, Institut Pasteur, Paris2010–present Post-doc, B. Goud Laboratory, Institut Curie, Paris

● Perth

1000 km

Page 3: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Brief CV

1994–1998 BSc (Math & Comp Science), Perth, Univ. West. Australia (∼ Montpellier 2)1999–2000 Aust. Bureau of Statistics, Canberra & Sydney, Australia (∼ INSEE)2001–2004 Ph.D. (Statistics), Perth, Univ. West. Australia2005 Lecturer, Macquarie Univ., Sydney (∼ Paris 8)2005–2007 Post-doc, Univ. New South Wales, Sydney (∼ Paris 6/7)2007–2009 Post-doc, C. Zimmer Group, Institut Pasteur, Paris2010–present Post-doc, B. Goud Laboratory, Institut Curie, Paris

CanberraPerth Sydney

1000 km

Page 4: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Brief CV

1994–1998 BSc (Math & Comp Science), Perth, Univ. West. Australia (∼ Montpellier 2)1999–2000 Aust. Bureau of Statistics, Canberra & Sydney, Australia (∼ INSEE)2001–2004 Ph.D. (Statistics), Perth, Univ. West. Australia2005 Lecturer, Macquarie Univ., Sydney (∼ Paris 8)2005–2007 Post-doc, Univ. New South Wales, Sydney (∼ Paris 6/7)2007–2009 Post-doc, C. Zimmer Group, Institut Pasteur, Paris2010–present Post-doc, B. Goud Laboratory, Institut Curie, Paris

CanberraPerth Sydney

1000 km

Page 5: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Brief CV

1994–1998 BSc (Math & Comp Science), Perth, Univ. West. Australia (∼ Montpellier 2)1999–2000 Aust. Bureau of Statistics, Canberra & Sydney, Australia (∼ INSEE)2001–2004 Ph.D. (Statistics), Perth, Univ. West. Australia2005 Lecturer, Macquarie Univ., Sydney (∼ Paris 8)2005–2007 Post-doc, Univ. New South Wales, Sydney (∼ Paris 6/7)2007–2009 Post-doc, C. Zimmer Group, Institut Pasteur, Paris2010–present Post-doc, B. Goud Laboratory, Institut Curie, Paris

AlgiersAnkara

Berlin

Lisbon

Moscow

Paris

CanberraPerth Sydney

1000 km

Page 6: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Spatial density (individual towns)

Australia Europe + Maghreb + Levant

Each dot = 10 000 people

Page 7: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Spatial density (overall population)

Australia Europe + Maghreb + Levant25%50%75%

1000 km

Each dot = city ≥ 1 000 000 people

Page 8: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Spatial density (overall population)

Australia Europe + Maghreb + Levant

Melbourne

Sydney

10%

1000 kmAlexandria

Amsterdam

Brussels

Cairo

Cologne

Istanbul

Jerusalem

LondonManchester Moscow

Paris

Page 9: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Some philosophy of mathematics

System descriptions fall into two main, complementary categories

Eulerian, particle following

Builds system behaviour fromaggregating individual particlebehaviour

Requires accurate information of allindividual particles

Lagrangian, population based

Focuses on aggregated systembehaviour

Gives less accurate knowledge ofindividual particles

Page 10: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Data smoothing

Converting point clouds to smooth density functions

n = 28 9432D co-ordinates Kernels

Qualitative QuantitativeX1,X2, . . .Xn KH(x− X1), . . . ,KH(x− Xn) fH(x) = 1

n

∑ni=1 KH(x− Xi)

(Schauer, Duong, Bleakley, Bardin, Brito, Bornens & Goud, Nature Meth, revised)

Page 11: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Data smoothing

Converting point clouds to smooth density functions

n = 2002D co-ordinates Kernels

Qualitative QuantitativeX1,X2, . . .Xn KH(x− X1), . . . ,KH(x− Xn) fH(x) = 1

n

∑ni=1 KH(x− Xi)

(Schauer, Duong, Bleakley, Bardin, Brito, Bornens & Goud, Nature Meth, revised)

Page 12: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Data smoothing

Converting point clouds to smooth density functions

n = 2002D co-ordinates Kernels

Qualitative QuantitativeX1,X2, . . .Xn KH(x− X1), . . . ,KH(x− Xn) fH(x) = 1

n

∑ni=1 KH(x− Xi)

(Schauer, Duong, Bleakley, Bardin, Brito, Bornens & Goud, Nature Meth, revised)

Page 13: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Data smoothing

Converting point clouds to smooth density functions

n = 2002D co-ordinates Kernels Kernel density estimate

10%20%30%40%50%60%70%80%90%

Qualitative QuantitativeX1,X2, . . .Xn KH(x− X1), . . . ,KH(x− Xn) fH(x) = 1

n

∑ni=1 KH(x− Xi)

(Schauer, Duong, Bleakley, Bardin, Brito, Bornens & Goud, Nature Meth, revised)

Page 14: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Data smoothing

Converting point clouds to smooth density functions

n = 28 9432D co-ordinates Kernels Kernel density estimate

10%20%30%40%50%60%70%80%90%

Qualitative QuantitativeX1,X2, . . .Xn KH(x− X1), . . . ,KH(x− Xn) fH(x) = 1

n

∑ni=1 KH(x− Xi)

(Schauer, Duong, Bleakley, Bardin, Brito, Bornens & Goud, Nature Meth, revised)

Page 15: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Smoothing parameter estimation

Estimating smoothing parameter matrix H is most important factor

Target (unknown) optimal smoothing parameter: H def= argminHOPT(H)

Estimate: H = argminHOPT(H)

Convergence: H→ H? at relative rate nα if we can show that

MSE(H)def= E[vec(H− H) vec(H− H)T ]

= E[(∂/∂ vec H)(OPT− OPT)(H)]E[(∂/∂ vec H)(OPT− OPT)(H)]T

+ Var[(∂/∂ vec H)(OPT− OPT)(H)]

= O(n2α)(vec H)(vecT H).

(Duong & Hazelton, J. Nonparametric Stat., 2003; Duong & Hazelton, J. Multivariate Analysis, 2005 ;Duong & Hazelton, Scandinavian J. Stat., 2005)

Page 16: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Smoothing parameter estimation

Estimating smoothing parameter matrix H is most important factor

Target (unknown) optimal smoothing parameter: H def= argminHOPT(H)

Estimate: H = argminHOPT(H)

Convergence: H→ H at relative rate nα if we can show that

MSE(H)def= E[vec(H− H) vec(H− H)T ]

= E[(∂/∂ vec H)(OPT− OPT)(H)]E[(∂/∂ vec H)(OPT− OPT)(H)]T

+ Var[(∂/∂ vec H)(OPT− OPT)(H)]

= O(n2α)(vec H)(vecT H).

(Duong & Hazelton, J. Nonparametric Stat., 2003; Duong & Hazelton, J. Multivariate Analysis, 2005 ;Duong & Hazelton, Scandinavian J. Stat., 2005)

Page 17: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Automatic gating for flow cytometry (FACS) data

How to choose sub-populations of interest for further analysis from ∼ 100 000 cells?

n = 146 740 (CD3, CD4)

cells

laserlaser

frequencyhistograms

filtersFSC

SSCCD3

CD4

Schematic for flow cytometer machine 2D fluoresence hisotgrams

Manual gates: rectangular gates chosen subjectively by eye, informed by experience

Not reproducible (even by same person)

Rectangular gates do not correspond naturally to sub-populations

Automatic, data-shaped shaped gates

Page 18: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Automatic gating for flow cytometry (FACS) data

How to choose sub-populations of interest for further analysis from ∼ 100 000 cells?

n = 146 740 (CD3, CD4)

cells

laserlaser

frequencyhistograms

filtersFSC

SSCCD3

CD4

Schematic for flow cytometer machine 2D fluoresence hisotgrams

Manual gates: rectangular gates chosen subjectively by eye, informed by experience

Not reproducible (even by same person)

Rectangular gates do not correspond naturally to sub-populations

Automatic, data-shaped shaped gates

Page 19: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Automatic gating for flow cytometry (FACS) data

How to choose sub-populations of interest for further analysis from ∼ 100 000 cells?

n = 146 740 (CD3, CD4)

cells

laserlaser

frequencyhistograms

filtersFSC

SSCCD3

CD4

Schematic for flow cytometer machine 2D fluoresence hisotgrams

Manual gates: rectangular gates chosen subjectively by eye, informed by experience

Not reproducible (even by same person)

Rectangular gates do not correspond naturally to sub-populations

Automatic, data-shaped shaped gates

Page 20: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Significant curvature regions

Sub-population def= region with high local density f def

= modal region

Modal region def= {x : D2f (x) is negative definite} where D2f is the Hessian matrix of second

order partial derivatives of f

Convert data point cloud to kernel density estimate fHModal region estimate = significant curvature region = {x : reject H0 : ‖D2 fH(x)‖2= 0 andD2 fH(x) is positive definite}Null distribution of ‖ΣH(x)−1/2 vec D2 fH(x)‖2 is approx χ2(4) (chi-squared distn with 4 d.f.)(Cowling, Duong, Koch & Wand, 2008, Comp. Stat. Data Analysis)

Page 21: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Significant curvature regions

Sub-population def= region with high local density f def

= modal region

Modal region def= {x : D2f (x) is negative definite} where D2f is the Hessian matrix of second

order partial derivatives of f

Convert data point cloud to kernel density estimate fHModal region estimate = significant curvature region = {x : reject H0 : ‖D2 fH(x)‖2= 0 andD2 fH(x) is positive definite}Null distribution of ‖ΣH(x)−1/2 vec D2 fH(x)‖2 is approx χ2(4) (chi-squared distn with 4 d.f.)(Cowling, Duong, Koch & Wand, 2008, Comp. Stat. Data Analysis)

Page 22: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Significant curvature regions

Sub-population def= region with high local density f def

= modal region

Modal region def= {x : D2f (x) is negative definite} where D2f is the Hessian matrix of second

order partial derivatives of f

Convert data point cloud to kernel density estimate fHModal region estimate = significant curvature region = {x : reject H0 : ‖D2 fH(x)‖2= 0 andD2 fH(x) is positive definite}Null distribution of ‖ΣH(x)−1/2 vec D2 fH(x)‖2 is approx χ2(4) (chi-squared distn with 4 d.f.)(Cowling, Duong, Koch & Wand, 2008, Comp. Stat. Data Analysis)

Page 23: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Significant curvature regions

Sub-population def= region with high local density f def

= modal region

Modal region def= {x : D2f (x) is negative definite} where D2f is the Hessian matrix of second

order partial derivatives of f

Convert data point cloud to kernel density estimate fHModal region estimate = significant curvature region = {x : reject H0 : ‖D2 fH(x)‖2= 0 andD2 fH(x) is positive definite}Null distribution of ‖ΣH(x)−1/2 vec D2 fH(x)‖2 is approx χ2(4) (chi-squared distn with 4 d.f.)(Cowling, Duong, Koch & Wand, 2008, Comp. Stat. Data Analysis)

Page 24: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Spatial organisation of genomic DNA inside cell nuclei

What is the relationship between spatial location of genomic loci and their function?

For Saccaromyces cerevisiae yeast

Polarity axis: Spindle Pole Body (SPB) (MTOC) - Nuclearcentre - Nucleolar centre

Single nucleolus mostly excludes genomic DNA

SPB embedded in nuclear envelope

Chromosome attached at centromere, centromereattached to SPB via microtubule

Telomeres (chromosome extremities) preferentially localiseat nuclear envelope

GAL1 gene moves to nuclear periphery duringtranscription (Cabal et al, Nature, 2006)

Genes genomically close to telomeres when localised atnuclear periphery tend to be silenced (Hediger et al, CurrentBiol, 2002)

and have highest DNA repair efficiency (Thérizols et al, JCB,2005)

Schematic for singlechromosome inside yeastnucleus

Page 25: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Spatial organisation of genomic DNA inside cell nuclei

What is the relationship between spatial location of genomic loci and their function?

For Saccaromyces cerevisiae yeast

Polarity axis: Spindle Pole Body (SPB) (MTOC) - Nuclearcentre - Nucleolar centre

Single nucleolus mostly excludes genomic DNA

SPB embedded in nuclear envelope

Chromosome attached at centromere, centromereattached to SPB via microtubule

Telomeres (chromosome extremities) preferentially localiseat nuclear envelope

GAL1 gene moves to nuclear periphery duringtranscription (Cabal et al, Nature, 2006)

Genes genomically close to telomeres when localised atnuclear periphery tend to be silenced (Hediger et al, CurrentBiol, 2002)

and have highest DNA repair efficiency (Thérizols et al, JCB,2005)

Schematic for singlechromosome inside yeastnucleus

Page 26: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Sub-telomeric foci in yeast

Rap1 staining of 32 telomeres show approx 2 to 8 dots in vitro

Spatial proximity of sub-telomeres implies sub-telomeres form foci/clusters

fixation shrinks cells thus reducing spatial distances

Rap1 binds to sites other than telomeres

Not all Rap1 is bound to chromosome

Not all Rap1 foci are detected

Not all telomeres are bound to Rap1

(Gotta et al, JCB, 1996, Fig. 7)

Ideal: in vivo analysis of 32 telomeres each simultaneously stained in a different colour

In vivo tagging limited to 2 simultaneous colours (red, green)→ pairwise distances

Page 27: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Sub-telomeric foci in yeast

Rap1 staining of 32 telomeres show approx 2 to 8 dots in vitro

Spatial proximity of sub-telomeres implies sub-telomeres form foci/clusters

fixation shrinks cells thus reducing spatial distances

Rap1 binds to sites other than telomeres

Not all Rap1 is bound to chromosome

Not all Rap1 foci are detected

Not all telomeres are bound to Rap1

(Gotta et al, JCB, 1996, Fig. 7)

Ideal: in vivo analysis of 32 telomeres each simultaneously stained in a different colour

In vivo tagging limited to 2 simultaneous colours (red, green)→ pairwise distances

Page 28: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Re-sampling analysis for sub-telomeric foci

Pairwise distance data for Tel6R and 20 other telomeres

Probabilistic composition of sub-telomeric foci

Data

6R2L 6R2R . . . 6R16L

0.718 1.348 1.780

1.870 1.479 1.480

1.400 1.266 0.709

0.851 1.372 . . . 1.490

1.220 1.852 1.520

0.274 0.620 1.460...

Re-sampled theoretical cell

6R2L 6R2R . . . 6R16L1.400 1.372 . . . 1.5200.274 1.348 . . . 1.7801.220 1.266 . . . 0.709

Sub-telomeric foci are transient and dynamic (space and time)(Thérizols, Duong, Dujon, Zimmer & Fabre, PNAS, 2010)

Page 29: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Re-sampling analysis for sub-telomeric foci

Pairwise distance data for Tel6R and 20 other telomeres

Probabilistic composition of sub-telomeric foci

Data

6R2L 6R2R . . . 6R16L

0.718 1.348 1.780

1.870 1.479 1.480

1.400 1.266 0.709

0.851 1.372 . . . 1.490

1.220 1.852 1.520

0.274 0.620 1.460...

Re-sampled theoretical cell

6R2L 6R2R . . . 6R16L1.400 1.372 . . . 1.5200.274 1.348 . . . 1.7801.220 1.266 . . . 0.709

Sub-telomeric foci are transient and dynamic (space and time)(Thérizols, Duong, Dujon, Zimmer & Fabre, PNAS, 2010)

Page 30: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Re-sampling analysis for sub-telomeric foci

Pairwise distance data for Tel6R and 20 other telomeres

Probabilistic composition of sub-telomeric foci

Data

6R2L 6R2R . . . 6R16L

0.718 1.348 1.780

1.870 1.479 1.480

1.400 1.266 0.709

0.851 1.372 . . . 1.490

1.220 1.852 1.520

0.274 0.620 1.460...

Re-sampled theoretical cell

6R2L 6R2R . . . 6R16L1.400 1.372 . . . 1.5200.274 1.348 . . . 1.7801.220 1.266 . . . 0.709

14L

7R 12L

15L

4R 10L 3L 13L 6L

10R

15R 7L

11R

14R

13R

16L

9R 2L 2R 12R

6R14L12L

7R6L10R

13L

3L15L 4R

10L

7L

11R

12R2R

2L

9R

16L13R

14R

15R

Sub-telomeric foci are transient and dynamic (space and time)(Thérizols, Duong, Dujon, Zimmer & Fabre, PNAS, 2010)

Page 31: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Re-sampling analysis for sub-telomeric foci

Pairwise distance data for Tel6R and 20 other telomeres

Probabilistic composition of sub-telomeric foci

Data

6R2L 6R2R . . . 6R16L

0.718 1.348 1.780

1.870 1.479 1.480

1.400 1.266 0.709

0.851 1.372 . . . 1.490

1.220 1.852 1.520

0.274 0.620 1.460...

Re-sampled theoretical cell

6R2L 6R2R . . . 6R16L1.400 1.372 . . . 1.5200.274 1.348 . . . 1.7801.220 1.266 . . . 0.709

15R

16L

14R 9R 13R

10R 7L 12L

2R 15L 2L 14L

7R 10L

12R

11R

13L

4R 3L 6L

6R2L

14L7R12R

10L

13L

11R4R 6L

3L

10R

7L12L

2R

15L

9R

13R14R

16L

15R

Sub-telomeric foci are transient and dynamic (space and time)(Thérizols, Duong, Dujon, Zimmer & Fabre, PNAS, 2010)

Page 32: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Re-sampling analysis for sub-telomeric foci

Pairwise distance data for Tel6R and 20 other telomeres

Probabilistic composition of sub-telomeric foci

Data

6R2L 6R2R . . . 6R16L

0.718 1.348 1.780

1.870 1.479 1.480

1.400 1.266 0.709

0.851 1.372 . . . 1.490

1.220 1.852 1.520

0.274 0.620 1.460...

Re-sampled theoretical cell

6R2L 6R2R . . . 6R16L1.400 1.372 . . . 1.5200.274 1.348 . . . 1.7801.220 1.266 . . . 0.709

10R10L

14L

12R

15L

4R 12L 3L 7L 13L

13R

15R 9R 16L 2L 2R 11R

14R 6L 7R

6R10L14L

10R15L

12R

3L

7L12L 4R

7R

6L

14R2L

11R

2R

15R

9R16L 13R

13L

Sub-telomeric foci are transient and dynamic (space and time)(Thérizols, Duong, Dujon, Zimmer & Fabre, PNAS, 2010)

Page 33: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Locus density maps

Nuclear landmarks (SPB, nuclear centre, nucleolar centre) lie on polarity axis→ unable touniquely specify 3D location of locus

2D cylindrical projection: radius R and polar angle α known, but azimuthal angle (angle ofrotation about polarity axis) unknown(Berger, Cabal, Fabre, Duong, Buc, Nehrbass, Olivo-Marin, Gadal & Zimmer, Nature Meth, 2008)

Page 34: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Locus density maps

Nuclear landmarks (SPB, nuclear centre, nucleolar centre) lie on polarity axis→ unable touniquely specify 3D location of locus

2D cylindrical projection: radius R and polar angle α known, but azimuthal angle (angle ofrotation about polarity axis) unknown(Berger, Cabal, Fabre, Duong, Buc, Nehrbass, Olivo-Marin, Gadal & Zimmer, Nature Meth, 2008)

Page 35: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Locus density maps

Nuclear landmarks (SPB, nuclear centre, nucleolar centre) lie on polarity axis→ unable touniquely specify 3D location of locus

2D cylindrical projection: radius R and polar angle α known, but azimuthal angle (angle ofrotation about polarity axis) unknown(Berger, Cabal, Fabre, Duong, Buc, Nehrbass, Olivo-Marin, Gadal & Zimmer, Nature Meth, 2008)

Page 36: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

Locus density maps

Nuclear landmarks (SPB, nuclear centre, nucleolar centre) lie on polarity axis→ unable touniquely specify 3D location of locus

2D cylindrical projection: radius R and polar angle α known, but azimuthal angle (angle ofrotation about polarity axis) unknown(Berger, Cabal, Fabre, Duong, Buc, Nehrbass, Olivo-Marin, Gadal & Zimmer, Nature Meth, 2008)

Page 37: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

3D telomere reconstruction (work in progress) (1)

Due to lack of identifiable rotation angle θ, overlapping locus maps do not imply co-localisation

●●

Tel6R

●●

Tel4R

●●

Tel10R

Use pairwise distance data from telomeric foci experiments

Page 38: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

3D telomere reconstruction (work in progress) (1)

Due to lack of identifiable rotation angle θ, overlapping locus maps do not imply co-localisation

●●

Tel6R

●●

Tel4R

●●

Tel10R

Use pairwise distance data from telomeric foci experiments

0.0 0.5 1.0 1.5 2.0 2.5

Tel 6R4R

0.0 0.5 1.0 1.5 2.0 2.5

Tel 6R10R

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Tel 4R10R

Page 39: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

3D telomere reconstruction (work in progress) (1)

Due to lack of identifiable rotation angle θ, overlapping locus maps do not imply co-localisation

●●

Tel6R

●●

Tel4R

●●

Tel10R

Use pairwise distance data from telomeric foci experiments

0.0 0.5 1.0 1.5 2.0 2.5

Tel 6R4R

0.0 0.5 1.0 1.5 2.0 2.5

Tel 6R10R

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Tel 4R10R

Nuclearcentre

,

D6R,4R

D10R,4R

D10R,6R

R4R

R6R

R10R

Tel10R =(R10R , α10R ?),

Tel6R=(R6R, α6R ? ),

Tel4R=(R4R, α4R ?),

Page 40: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

3D telomere reconstruction (work in progress) (2)

Solve for unkownn angles θ6R, θ4R and θ10R

R6RR4R sinα6R sinα4Rcos θ6Rcos θ4R + R6RR4R sinα6R sinα4Rsin θ6Rsin θ4R

= 12 (R

26R + R2

4R − D26R,4R − 2R6RR4R sinα6R sinα4R)

R6RR10R sinα6R sinα10Rcos θ6Rcos θ10R + R6RR10R sinα6R sinα10Rsin θ6Rsin θ10R

= 12 (R

26R + R2

10R − D26R,10R − 2R6RR10R sinα6R sinα10R)

R4RR10R sinα4R sinα10Rcos θ4Rcos θ10R + R4RR10R sinα4R sinα10Rsin θ4Rsin θ10R

= 12 (R

24R + R2

10R − D24R,10R − 2R4RR10R sinα4R sinα10R)

Result

(Duong & Zimmer, in preparation)

Page 41: Quantitative statistical analysis of bioloical experimental data - … · 2010-06-11 · Introduction PhD Post-doc 1 Post-doc 2 Quantitative statistical analysis of bioloical experimental

Introduction PhD Post-doc 1 Post-doc 2

3D telomere reconstruction (work in progress) (2)

Solve for unkownn angles θ6R, θ4R and θ10R

R6RR4R sinα6R sinα4Rcos θ6Rcos θ4R + R6RR4R sinα6R sinα4Rsin θ6Rsin θ4R

= 12 (R

26R + R2

4R − D26R,4R − 2R6RR4R sinα6R sinα4R)

R6RR10R sinα6R sinα10Rcos θ6Rcos θ10R + R6RR10R sinα6R sinα10Rsin θ6Rsin θ10R

= 12 (R

26R + R2

10R − D26R,10R − 2R6RR10R sinα6R sinα10R)

R4RR10R sinα4R sinα10Rcos θ4Rcos θ10R + R4RR10R sinα4R sinα10Rsin θ4Rsin θ10R

= 12 (R

24R + R2

10R − D24R,10R − 2R4RR10R sinα4R sinα10R)

Result

(Duong & Zimmer, in preparation)