Quantitative Photoacoustics Using the Transport...

67
Quantitative Photoacoustics Using the Transport Equation Simon Arridge 1 Joint work with: Ben Cox 3 Teedah Saratoon 3 Tanja Tarvainen 1,2 1 Department of Computer Science, University College London, UK 2 Department of Physics and Mathematics, University of Eastern Finland, Finland 3 Department of Medical Physics, University College London, UK Colóquio Brasileiro de Matemática, July 29-August 2, 2013 S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 1 / 54

Transcript of Quantitative Photoacoustics Using the Transport...

Page 1: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative Photoacoustics Using the TransportEquation

Simon Arridge1

Joint work with: Ben Cox3 Teedah Saratoon3

Tanja Tarvainen1,2

1Department of Computer Science, University College London, UK2Department of Physics and Mathematics, University of Eastern Finland, Finland

3Department of Medical Physics, University College London, UK

Colóquio Brasileiro de Matemática, July 29-August 2, 2013

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 1 / 54

Page 2: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Outline

1 Introduction

2 PhotoAcoustics

3 PhotoAcoustic Forward Model

4 Quantitative PhotoAcoustic Tomography

5 Summary

6 Acknowledgements

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 2 / 54

Page 3: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Outline

1 Introduction

2 PhotoAcoustics

3 PhotoAcoustic Forward Model

4 Quantitative PhotoAcoustic Tomography

5 Summary

6 Acknowledgements

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 3 / 54

Page 4: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

IntroductionOutline

Photoacoustic Imagingoutline of photoacoustic imagingPhotoacoustic image reconstructionSpectroscopic photoacoustic imagingArtefacts in photoacoustic imaging

Quantitative Photoacoustic ImagingModels of light transportMultispectral reconstructionsUnknown scattering: diffusion-based inversionsUnknown scattering: using radiative transfer equation

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 4 / 54

Page 5: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Outline

1 Introduction

2 PhotoAcoustics

3 PhotoAcoustic Forward Model

4 Quantitative PhotoAcoustic Tomography

5 Summary

6 Acknowledgements

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 5 / 54

Page 6: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyPhotoAcoustic Signal Generation

Spatially varying chromophoreconcentrations (naturally occuring orcontrast agents) give rise to opticalabsorption in the medium. Theabsorption and scatteringcoefficients µa and µ′s determine thefluence distribution Φ, and thencethe absorbed energy distribution H.This energy generates a pressuredistribution p0 via thermalisation,which because of the elastic natureof tissue, then propagates as anacoustic pulse. The pulse is detectedby a sensor resulting in themeasured PA time series p(t).

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 6 / 54

Page 7: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyPhotoAcoustic Imaging : 3 Modes

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 7 / 54

Page 8: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyPhotoAcoustic Signal Generation

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 8 / 54

Page 9: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyPhotoAcoustic Spherical BackProjection

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 9 / 54

Page 10: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyOptical part of the direct problem

Optical part of the direct problem

H(r) = µa(r)Φ(r)

absorbed absorption lightenergy density coefficient fluence

= heat perunit volume

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 10 / 54

Page 11: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyAcoustic part of the direct problem

Acoustic part of the direct problem

p(r)|t=0 = Γ(r)H(r)

= Γ(r)µa(r)Φ(r)

Grüneisenparameter(

c2∇2 − ∂2

∂t2

)p = 0

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 11 / 54

Page 12: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyFabrey-Perot Detector

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 12 / 54

Page 13: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic Tomography3D PhotoAcoustic Scanner

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 13 / 54

Page 14: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyPAT Acoustic Inversion (Image Reconstruction)

Initial value Problem(c2∇2 − ∂2

∂t2

)p = 0

p|t=0 = ΓµaΦ

∂p∂t

∣∣∣∣t=0

= 0

Boundary value Problem (trunning backwards from T to 0)(

c2∇2 − ∂2

∂t2

)p = 0

p(r , t)|t=T = 0p(r , t)|∂Ω = pobs(rs, t)

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 14 / 54

Page 15: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyPAT Acoustic Inversion (Image Reconstruction)

Initial value Problem(c2∇2 − ∂2

∂t2

)p = 0

p|t=0 = ΓµaΦ

∂p∂t

∣∣∣∣t=0

= 0

Boundary value Problem (trunning backwards from T to 0)(

c2∇2 − ∂2

∂t2

)p = 0

p(r , t)|t=T = 0p(r , t)|∂Ω = pobs(rs, t)

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 14 / 54

Page 16: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyPAT Acoustic Inversion (Image Reconstruction)

Initial value Problem(c2∇2 − ∂2

∂t2

)p = 0

p|t=0 = ΓµaΦ

∂p∂t

∣∣∣∣t=0

= 0

Boundary value Problem (trunning backwards from T to 0)(

c2∇2 − ∂2

∂t2

)p = 0

p(r , t)|t=T = 0p(r , t)|∂Ω = pobs(rs, t)

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 14 / 54

Page 17: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyHeterogeneous Sound Speed

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 15 / 54

Page 18: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographySpectroscopic PAT

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 16 / 54

Page 19: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographySpectroscopic PAT

absorption at different wavelengths gives spectral images

but fluence is also different at different wavelengths

tumour type LS174T

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 17 / 54

Page 20: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographySpectroscopic PAT

absorption at different wavelengths gives spectral imagesbut fluence is also different at different wavelengths

tumour type LS174T

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 17 / 54

Page 21: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographySpectroscopic PAT

absorption at different wavelengths gives spectral imagesbut fluence is also different at different wavelengths

tumour type LS174T

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 17 / 54

Page 22: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographySpectral Distortion

Spectral Distortion

Spectrum corrupted by wavelength dependence of fluence

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 18 / 54

Page 23: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyStructural Distortion

Structural Distortion

Structural distortion due to non-uniform internal light fluenceStructural distortion at each wavelength = spectral distortion ateach point

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 19 / 54

Page 24: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Outline

1 Introduction

2 PhotoAcoustics

3 PhotoAcoustic Forward Model

4 Quantitative PhotoAcoustic Tomography

5 Summary

6 Acknowledgements

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 20 / 54

Page 25: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic Forward Model

Second order wave equation for homogeneous media(∇2 − 1

c20

∂2

∂t2

)p(r, t) = 0, p(r,0) = p0(r),

∂tp(r,0) = 0 (1)

p(r, t) =1c2

0

∫ (g(r, t |r0, t0)

∂p0(r)

∂t0− p0(r)

∂g(r, t |r0, t0)

∂t0

)dr0 (2)

g(r, t |r0, t0) =c2

0(2π)3

∫sin(c0kt)

cokeik·(r−r0)dk k = |k| (3)

p(r, t) =1

(2π)3

∫ ∫p0(r) cos(c0kt)eik·(r−r0)dkdr0 (4)

= F−1 F p0(r) cos(c0kt) (5)

Simple numerical algorithm using wave propagator cos(c0kt)(Cox and Beard 2005)

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 21 / 54

Page 26: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic Forward ModelLinear Lossless Acoustic Equations

p(r, t) = F−1 F p0(r) cos(c0kt) (6)

Cannot input a time-varying pressure, so no use for time-reversalimagingFFT⇒ periodic boundary conditions (wave wrapping)Instead: solve equivalent first-order system

∂u∂t

= − 1ρ0∇p linearised momentum conservation (7)

∂ρ

∂t= −ρ0∇ · u linearised mass conservation (8)

p = c2Pρ linearised equation of state (9)

p acoustic pressure, u particle velocity, ρ acoustic density

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 22 / 54

Page 27: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic Forward Modelk-Space Acoustic Propagation Model

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 23 / 54

Page 28: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic Forward ModelModelling Acoustic Absorption

Photoacoustic waves may contain frequencies much higher thanconventional ultrasound imaging (tens of MHz)Acoustic absorption in soft tissue over ranges of interest (1-50MHz or so) typically takes the form

α = α0ωy , 1 ≤ y ≤ 1.5

What wave equations account for absorption like this?Can they be time-reversed to correct for absorption during imagereconstruction?

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 24 / 54

Page 29: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic Forward ModelModelling Absorption & Dispersion

Using Kramers-Kronig relations to find a purely dispersive term.Incorporating these into the acoustic equation of state gives

p = c20

1︸︷︷︸adiabatic

+ τ∂

∂t(−∇2)y/2−1︸ ︷︷ ︸

absorption only

+ η(−∇2)(y+1)/2−1︸ ︷︷ ︸dispersion only

ρ

Separate dispersion and absorption terms: time reversal is thenpossible

p = c20

(1−τ ∂

∂t(−∇2)y/2−1 + η(−∇2)(y+1)/2−1

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 25 / 54

Page 30: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic Forward ModelAbsorption & Dispersion in Time Reversal Imaging

Absorbing wave equation: no time symmetryAbsorption→ amplification, dispersion unchanged

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 26 / 54

Page 31: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic Forward ModelTime Reversal PAT with Absorption Correction

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 27 / 54

Page 32: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Outline

1 Introduction

2 PhotoAcoustics

3 PhotoAcoustic Forward Model

4 Quantitative PhotoAcoustic Tomography

5 Summary

6 Acknowledgements

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 28 / 54

Page 33: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyQuantitative PhotoAcoustic Tomography

Aim: to extract distributions ofchromophores frommultiwavelength PAT imagesHow are chromophores and PATimages related?

[slide courtesy of Ben Cox]

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 29 / 54

Page 34: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

PhotoAcoustic TomographyQuantitative PhotoAcoustic Tomography

Aim: to extract distributions ofchromophores frommultiwavelength PAT imagesHow are chromophores and PATimages related?

[slide courtesy of Ben Cox]

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 29 / 54

Page 35: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyOutline

The Optical Inverse ProblemFluence ModelsParameter Estimation

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 30 / 54

Page 36: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyRadiative Transfer Equation (RTE)

The radiative transfer equation is an integro-differential equationexpressing the conservation of energy which takes the followingtime-independent form as required in PAT

(s · ∇+ µa(r) + µs(r))φ(r , s) = µs

∫Sn−1

Θ(s, s′)φ(r , s′)d s′ + q(r , s)

(10)where φ(r , s, t) is the radiance, Θ(s, s′) is the scattering phasefunction,Wave effects, polarisation, radiative processes, inelastic scattering,and reactions (such as ionisation) are all neglected in this model.By writing a variational form of equation(10) it can be discretised usingthe finite element method (Tarvainen2005). When the radiance φ,source q or phase function Θ depend strongly on the direction s it isnecessary to discretise finely in angle s, and the model can becomecomputationally intensive.S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 31 / 54

Page 37: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyPhysical Models of Light Propagation

The Radiative Transfer Equation (RTE) is a natural description oflight considered as photons. It represents a balance equation wherephotons in a constant refractive index medium, in the absence ofscattering, are propagated along rays l := r0 + l s

s · ∇U + µaU = 0 ≡ TµaU = 0 (11)

whose solution

U = U0 exp[−∫

lµa(r0 + l s)dl

](12)

is the basis for the definition of the Ray Transform

gs(p) := − ln[

UU0

]=

∫ ∞−∞

µa(ps⊥ + l s)dl ≡ gs = Rsµa (13)

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 32 / 54

Page 38: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyThe Radiative Transfer Equation

In the presence of scattering, and with source terms q, eq.(11)becomes

[Tµtr − µsS] U = q (14)

where µtr = µs + µa is the attenuation coefficent and S is the scatteringoperator, which is local (non propagating).A series solution for eq.(14) can be formally written as

U =

[T −1µtr

+ T −1µtr

µsST −1µtr

+ . . .(T −1µtr

µsS)kT −1µtr

. . .

]q (15)

This is the method of successive approximation (Sobolev 1963). Thefirst term may be found from the Ray Transform, giving an alternativeequation for the collided flux

[Tµtr − µsS] Ucollided = µsS T −1µtr

q︸ ︷︷ ︸uncollided

(16)

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 33 / 54

Page 39: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyRTE solutions

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 34 / 54

Page 40: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyRTE solutions

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 34 / 54

Page 41: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyRTE solutions

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 34 / 54

Page 42: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyRTE solutions

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 34 / 54

Page 43: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyRTE solutions

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 34 / 54

Page 44: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyRTE solutions

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 34 / 54

Page 45: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyRTE solutions

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 34 / 54

Page 46: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyRTE solutions

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 34 / 54

Page 47: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyRTE solutions

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 34 / 54

Page 48: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Modelling in Optical TomographyDiffusion Approximation

In the Diffusion pproximation (DA), the radiance is approximated byfirst order spherical harmonics only (s ≡ [Y1,−1,Y1,0,Y1,1]), giving

φ(r , s) ≈ 14π

Φ(r) +3

4πs · J(r) (17)

where Φ(r) and J(r) are the photon density and current defined as

Φ(r) =∫

Sn−1 φ(r , s)ds (18)J(r) =

∫Sn−1 sφ(r , s)ds. (19)

Inserting the approximation (17) into equation (10) results in a secondorder PDE in the photon density

−∇ · D∇Φ(r) + µaΦ(r) = q0(r) ≡ DΦ = q0 , (20)

with D = 1µa+(1−g)µs)

. Equation(20) and its associated frequency andtime domain versions, including the Telegraph Equation, are the mostcommonly used in DOI.S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 35 / 54

Page 49: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyOverview

The inverse problems in QPAT. Solidlines indicate linear operators anddot-dash lines those that areinherently nonlinear. The acousticpressure time series p(t) are themeasured data and the chromophoreconcentrations Ck are the unknowns.The concentrations may be obtainedstep by step : linear acousticinversion A−1, thermoelastic scalingΓ−1 nonlinear optical inversion for theoptical coefficients T−1 and finallyL−1λ a linear spectroscopic inversion

of the absorption spectra to recoverthe chromophore concentrations.

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 36 / 54

Page 50: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyPAT images and chromophores

PAT images ∝ absorbed energy distribution h(r , λ)

p0(r , λ) is related to absorption coefficient µa(r , λ)via the fluence, Φ(r , λ) and the Grüneisen parameter:

po(r , λ) = ΓH(r , λ) = Γµa(r , λ)Φ(r , λ)

µa is related to chromphores concentrations C(k)

via specific absorption coefficients εk :

µa(r , λ) =K∑

k=1

εk (λ)C(k)(r)

Inverse problem is non-linear but well-posed. Solve using diffusion ortransport methods

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 37 / 54

Page 51: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyMultiSpectral QPAT

chromophore concentration C(x) scattering parameter a(x)

C range: 5-15 g/l HbO2

µ′s = aa0λ(nm)−b mm−1, a0 = 500, b = 1.3, a range: 5-10Wavelength Dependence

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 38 / 54

Page 52: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyMultiSpectral QPAT reconstructions

ReconstructedConcentration

ReconstructedScattering ’a’

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 39 / 54

Page 53: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyInverse Problem

Find the absorption and scattering coefficients µa, µs given theabsorbed energy density image

h(r) =p0(r)

Γ= µa(r)Φ(µa(r), µs(r))

when the fluence Φ is unknown.Strategy used here : fit a model of light transport to the reconstructeddata

µa, µs = arg minµa,µs

[E := ||hobs − F (µa, µs)||2 + R(µa, µs)

]where F (µa, µ

′s) = µaΦ((µa, µ

′s) is the forward model of optical energy

absorption, and R is a regularisation term.In this talk, the regularisation term is Total Variation.

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 40 / 54

Page 54: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyLinearisation

Discretise parameters into a suitable basis

µa(r) =∑

j

µajuj(r), µs(r) =∑

j

µsjuj(r)

The functional gradient vectors are given by

ga =∂E∂µaj

= −∑m,k

(hmk − µak Φm

k )JAmkj +

∂R∂µaj

gs =∂E∂µsj

= −∑m,k

(hmk − µak Φm

k )JSmkj +

∂R∂µsj

with the absorption and scattering Jacobians respectively

JAmkj = Φm

k δkj + µak∂Φm

k∂µaj

, JSmkj = µak

∂Φmk

∂µsj. (21)

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 41 / 54

Page 55: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyGauss-Newton Approach

By combining the absorption and scattering Jacobians for everyillumination into a single Jacobian matrix, J ∈ RMK×2K

J =

JA1 JS1

...JAM JSM

,the Hessian, H ∈ R2K×2K , may be approximated by H ≈ JT J. Theupdate to the absorption and scattering coefficients, [δµak , δµsk ]T , canthen be calculated by a Newton step according to[

δµakδµsk

]= −H−1

[gags

].

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 42 / 54

Page 56: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyConstruction of Jacobians

For the Radiative Transfer Equation the following equations were usedto directly calculate the Jacobians JA and JS column by column

(s · ∇+ µak + µsk )∂φm

k (s)

∂µaj− µsk

∫Sn−1

Θ(s, s′)∂φm

k (s′)∂µaj

d s′ = −δkjφmk (s)

(s · ∇+ µak + µsk )∂φm

k (s)

∂µsj− µsk

∫Sn−1

Θ(s, s′)∂φm

k (s′)∂µsj

d s′ =

δkj

∫Sn−1

Θ(s, s′)φmk (s′)d s′ − δkjφ

mk (s)

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 43 / 54

Page 57: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyConstruction of Jacobians

For the diffusion approximation

(µak −∇ · Dk∇)∂Φm

k∂µaj

= −δkjΦmk

(µak −∇ · Dk∇)∂Φm

k∂Dj

= ∇ ·(δkj∇Φm

k)

∂Φmk /∂µsj is then obtained from ∂Φm

k /∂Dj using the relation∂D/∂µs = −3D2(1− g).

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 44 / 54

Page 58: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyRTE-based Inversions

Fixed-point iteration, known scattering (Yao, Sun, Jiang 2009)Use separated unscattered, singly-scattered and multiplyscattered components (Bal, Jollivet, Jugnon 2010): can’t do inpractice.Gauss-Newton inversions with TV regularization (C., Tarvainen,Arridge, 2011; Tarvainen, Cox, Kaipio, A. 2012)Gradient-based inversions with Tikhonov reg. (Saratoon,Tarvainen, Cox, A., submitted)

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 45 / 54

Page 59: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyRTE-based Inversions (Gauss-Newton)

Using 4 images from4 illuminationdirections(Tarvainen, Cox.,Kaipio, A. 2012)

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 46 / 54

Page 60: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographySVD comparison

SVD of Hessian reveals different information content

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 47 / 54

Page 61: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyMatrix Free method

Explicit construction of Jacobians is too expensive⇒ use matrix freemethod based on adjoint fieldsLimited memory BFGS optimisation

Using 4 images from 4 illumination directions, Tikhonov regularisation(Saratoon, Tarvainen, Cox, A., submitted)S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 48 / 54

Page 62: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyGauss-Newton vs. Gradient-Based

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 49 / 54

Page 63: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Outline

1 Introduction

2 PhotoAcoustics

3 PhotoAcoustic Forward Model

4 Quantitative PhotoAcoustic Tomography

5 Summary

6 Acknowledgements

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 50 / 54

Page 64: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Summary

Photoacoustic imaging: great potential as biomedical imagingmethodImportance of spectroscopic aspect of photoacoustics sometimesoverlooked (as it is not present in thermoacoustics?)Much progress made in quantitative photoacoustics recentlyLinearized approaches probably not sufficient in practiceComplete 3D problem is of large scaleAccuracy of light models in ballistic regime (close to surface)Questions about Grüneisen parameter remain. (Under DA notpossible to recover all of Γ, µa,D with one wavelength, but withmultiple wavelengths it could be (Bal, Ren 2011, Ren, Bal 2011).)

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 51 / 54

Page 65: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Quantitative PhotoAcoustic TomographyDiscussion

Multi-Wavelength vs Single Wavelength InversionsNonlinearityPA Generation Efficiency

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 52 / 54

Page 66: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Outline

1 Introduction

2 PhotoAcoustics

3 PhotoAcoustic Forward Model

4 Quantitative PhotoAcoustic Tomography

5 Summary

6 Acknowledgements

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 53 / 54

Page 67: Quantitative Photoacoustics Using the Transport Equationmtm.ufsc.br/~aleitao/public/slides-cbm29/slides-arridge.pdf · The Radiative Transfer Equation (RTE) is a natural description

Acknowledgements

Collaborators :UCL: P.Beard, M.Betcke, T.Betcke, Y.Kurylev, B.Cox, J.Laufer,T.Saratoon, B.Treeby,Kuopio: J. Kaipio, V. Kolehmainan, T. Tarvainen, M. Vaukhonen,

FundingThis work was supported by EPSRC grant EP/E034950/1 and bythe Academy of Finland (projects 122499, 119270 and 213476)Other funding : MRC, Wellcome Trust, CEC Framework, RoyalSociety

S.Arridge (University College London) QPAT using RTE IMPA, Rio de Janiero 27-07-13 54 / 54