Quantitative EEG, Event-Related Potentials and Neurotherapy

16
Quantitative EEG, Event-Related Potentials and Neurotherapy Juri D. Kropotov -гй-чллл •IL -iSJIIbj. AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD Г1 cr7 . г г о т , PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO HLotiVlIiK . , . „ . cn\ • Academic Press is an imprint ot Elsevier

Transcript of Quantitative EEG, Event-Related Potentials and Neurotherapy

Page 1: Quantitative EEG, Event-Related Potentials and Neurotherapy

Quantitative EEG, Event-Related Potentials and Neurotherapy

Juri D. Kropotov

-гй-чллл

•IL - iSJIIbj. AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD

Г 1 c r 7 . г г о т , PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO H L o t i V l I i K . , . „ . cn\ •

Academic Press is an imprint ot Elsevier

Page 2: Quantitative EEG, Event-Related Potentials and Neurotherapy

Contents

Preface

Acknowledgmen t s

Introduction: Basic Concepts qfQEEG and Neurotherapy I. Glossary xxxii

II. The Place of EEG in Neuroscience and Medicine xxxiv A. Goals of Neuroscience xxxiv B. Goals of Psychiatry and Neurology xxxv C. Phenotype and Genotype xxxvi D. MEG as a Complementary Method to EEG xxxvii E. M R I xxxvii E PET xxxix

G. Functional MRI xxxix H. Polarographie Recording of Brain Oxygen xl

III. From Neuronal Spikes Through Local Field Potentials to Scalp EEG xli A. Impulse Activity of Neurons xli B. Profiles of Neuronal Reactions xliii C. Local Field Potentials xliii D. Association of Local Field Potentials with Scalp EEG xlv E. Modern Renaissance of EEG xlvii

IV. Endophenotypes and Individual Differences xlvii A. Biological Markers of Disease xlvii B. Association with Functioning of Brain Systems xlvii C. Inverted U-Law xlix D. Pavlov's, Eysenk's and Current Theories of Personality

Differentiation 1

V. Pharmaco-QEEG liii A. Goals liii B. Limitations liii С New Horizons liv

Page 3: Quantitative EEG, Event-Related Potentials and Neurotherapy

viii Contents

VI. Prerequisites for Neurotherapy liv A. Neurofeedback liv B. Brain—Computer interface lvii C. Transcranial Direct Current Stimulation lvii D. TMS, DBS, and Other Stimulation Procedures lviii

PART I

EEG Rhythms

1 Slow, Infra-Slow Potentials, and Delta Rhythms I. Origin of Scalp Potentials 11

A. Intracortical Organization 11 B. Membrane Potentials 14 C. Synaptic Transmission 16 D. Pyramidal Cells as Elemental Electrical Dipoles 17

II. Infra-Slow Oscillations 19 A. Spontaneous Activity 19 B. Preparatory Activities 21

III. Slow Waves of Deep Sleep 22 A. Up and Down States 22 B. Transcranial Induction of Slow Waves 23

IV. Delta Oscillations 23 A. Delta Rhythm of Sleep 25 B. Low Threshold Burst Mode of Thalamic Neurons 27 С Pathological Delta Rhythms 27

V Summary 28

2 Alpha Rhythms I. Types of Alpha Rhythms 29

A. Mu-Rhythms 30 B. Occipital Alpha Rhythms 32 С Parietal Alpha Rhythm 35

II. Neuronal Mechanisms 36 A. Association with Cortical Deactivation 36 B. Thalamo-Cortical Circuits 38 C. Sleep Spindles 40 D. Alpha Rhythms ofWakefulness 42 E. High Threshold Burst Mode of Thalamic Neurons 43

Page 4: Quantitative EEG, Event-Related Potentials and Neurotherapy

Contents ix

III. Responses to Tasks 46 A. Event-Related Desynchronization of Mu-Rhythms to Motor Actions 46

B. E R D of Occipital Rhythms to Visual Stimuli 49

IV. Functional Meaning 50 A. Alpha Rhythms as Idling EEG Activity 50

B. Lateral Inhibition in Activation of Alpha Rhythms 50

V. Abnormality of Alpha Rhythms 52 A. Complete Absence of Alpha Rhythms 52

B. Alpha Rhythms in Unusual Sites 52

C. Alpha Asymmetry 55

VI. Summary 57

Beta Rhythms

in.

IV

V

VI.

Types of Beta Rhythms A. Rolandic Beta Rhythms

B. Desynchronization/Synchronization Pattern to Motor Actions

C. Frontal Beta Rhythms

D. Desynchronization/Synchronization Pattern to

Cognitive Tasks

Neuronal Mechanisms A. Association with Cortical Activation

B. Sensitivity to GABA Agonists

C. Inhibition in Cortical Circuits

Gamma Activity A. Temporal Binding

Functional Meaning A. Beta Rhythms as Postactivation Traces

B. Reset of Information Processing

Abnormal Beta Rhythms A. Need for Normative Databases

B. Cortical Irritability

Summary

59 60

60

63

63

67 67

68

69

70 71

72 73

75

75 75

76

76

Frontal Midline Theta Rhythm

I. Characteristics 77 A. Spatial Distribution 77

B. Personality Traits of People Generating the Rhythm 79

II. Neuronal Mechanisms 81 A. Association with Cortical Activation 81

B. Association with Hippocampal Theta Rhythms 82

C. Limbic System of Hippocampal Theta Rhythms 82

D. Classic Model of Hippocampal Theta Rhythms Generation 83

E. Involvement in Memory Operations 84

F. Theta Quantum 85

G. Hippocampus as a Map of Episodes 86

H. Theta Rhythm and Memory Consolidation 86

Page 5: Quantitative EEG, Event-Related Potentials and Neurotherapy

x Contents

III. Responses to Tasks 88 A. Increasing with Memory Load 88

B. Two Types of Theta Responses 88

C. Appearance in Hypnosis 91

IV. Functional Meaning 91 A. Associating Two Types of Human Theta Responses with

Two Types of Theta in Animals 91

V. Abnormal Theta Rhythms 93 A. Frontal Midline Theta Subtype of A D H D 93

B. Theta Rhythms in Non-frontal Areas 93

VI. Summary 95

5 Paroxysmal Events

I. Spikes 96 A. Spatial-Temporal Characteristics 97

B. Automated Spike Detection 98

C. Intracranially Recorded Spikes 99

II. Neuronal Mechanisms 100 A. A Lack of Inhibition 100

B. Neurofeedback 101

C. Epileptology 102

III. Summary 102

6 QEEG Endophenotypes

I. Test-Retest Reliability 103 II. Reflection of Functioning Brain Systems 105

III. Heritability 105 IV Summary 108

7 QEEG During Sleep

I. Anatomical Basis 109 A. Sleep and Wakefulness Promoting Nuclei 109

II. EEG Correlates of Sleep 110 A. R E M and N R E M Sleep 110

B. Stages of N R E M Sleep 111

III. Functional Meaning of Sleep 112 A. Memory Consolidation 112

B. Immune System 112

C. Psychiatric Disorders 113

IV. Bispectral Index 113 A. Association with Anesthetic Depth 113

V Summary 115

Page 6: Quantitative EEG, Event-Related Potentials and Neurotherapy

Contents xi

8 Methods of Analysis of Background EEG I.

II. III. IV V

VI. VII.

VIII.

IX. X.

XI. XII.

XIII. XIV. XV.

XVI.

XVII.

XVIII. XIX.

XX.

XXI.

Anatomical Locations Brodmann's Areas 10—20 International System of Electrode Placement Electrodes Amplifiers EEG Digitizing Montages A. Linked Ears Reference B. Common Average Montage C. Local Average Montage

Fourier Analysis A. Spectra B. Spectra Dynamics and Averaged Spectra C. Relative Spectra

EEG Mapping Filtering A. Low and Highpass Filters B. FIR and IIR Filters

Bispectrum Coherence A. Physiological Meaning B. Representations of Deviations from Normality

Event-related Desynchronization Wavelet Transformation Blind Source Separation and ICA A. Mathematical Formulation B. Spatial Filters for Decomposing Independent Components С Independent Component Analysis Versus Principle

Component Analysis

Artifact Correction by Spatial Filtration A. Eye Movements B. Correcting Eye Movement Artifacts

Other Types of Artifacts A. Muscle Artifact B. ECG Artifact C. Cardio-Ballistic Artifact

Forward Solution and Dipole Approximation LOPvETA A. Ambiguity of Inverse Problem B. Matrix for Solution of the Inverse Problem C. Minimizing the Functional D. s-LORETA — Zero Localization Error

Bold fMRI A. Transform Model of fMRI response

Cordance

116 116 118 118 121 121 122 122 123 123

125 125 127 128

129 129 129 130

131 131 131 132

133 135 136 136 137

139

142 142 143

143 143 143 145

146 148 148 149 149 151

152 153

154

Page 7: Quantitative EEG, Event-Related Potentials and Neurotherapy

xii Contents

XXII. Normal Distributions and Deviation from Normality 154 A. Normative Database 154 B. Normal and Log-Normal Distributions 155

C. Z-Scores 155

XXIII. Currently Available Databases 156 A. NxLink 156 B. Neuroguide 157 С SKIL 157 D Neurorep 158 E. Novatech LORETA Database 158 F. B R C Database 159 G. HBI Database 159

9 Practice

in.

Introduction A. Categories of EEG Processing B. EEG Data Formats C. Data Management

D. Editing and Compiling QEEG Reports

Ed-EEG Software A. Installation B. Folders for Data Processing

Exercises

161 162 162 164 164

165 165 165

178

PART I I

Event-Related Potentials

1 0 Sensory Systems Anatomy A. Brodmann Areas and Thalamic Nuclei B. Topographical Organization C. Parallel Pathways D. Pulvinar Nucleus as Coordinator of Information Flow

Visual Information Flow A. O N and OFF Receptive Fields B. Spatial Filtration at Thalamic and Cortical Levels C. Ventral and Dorsal Streams D. Hierarchical Organization E. Computational Maps

192 192 192 192 195

195 195 196 198 199 199

Page 8: Quantitative EEG, Event-Related Potentials and Neurotherapy

Contents xiii

F. Schemata 200 G. Face Recognition 200 H. Multiple ERPs Components 201

I. Cortical Topography 201 J. Enhancement of N170 ERPs Component in Response to Faces 202

III. Decomposition of Single Trial Evoked Potentials into Independent Components 203

IV. Decomposition of Averaged ERPS into Single Components 205 A. E R P Component as a Sequence of Excitatory—Inhibitory

Events (Model) 207

V. Auditory Information Flow 210 A. "What" and "Where" Streams 210 B. Cortical Tonotopy 211 C. Speech Processing 211

D. ICA of ERPs (HBI Database) 212

VI. Somato-Sensory Modality 214 A. Somato-Sensory and Insular Cortical Areas 214

VII. Change Detection 214 A. Functions of Change Detection 214 B. Mechanisms of Change Detection (Model) 215 С M M N in Oddball Paradigm 217 D. Intracranial Correlates of M M N 218 E. Change Detection in Two Stimulus Discrimination Tasks 221 F. Modality Specificity 222 G. Physical and Semantic Change Detection 224 H. Change Detection and Motor Suppression 224

VIII. Types of Sensory Systems 225 A. U-Shape Curve of the System Reactivity 225 B. Augmenting and Reducing Sensory Systems 227 C. Auditory P2 in Augmenters and Reducers 228

IX. Diagnostic Values of Sensory-related ERPS Components 228 A. M M N 228 B. Comparison Component 229

X. Summary 230

1 1 Attention Networks I. Psychology 221

A. Attention as Selection Operation 231 B. Sensory Selection Versus Motor Selection 232 C. Preparatory Sets 232 D. Processing Multiple Objects 233 E. Engagement, Disengagement and Shift Operations 235

F. Bot tom-Up and Top—Down Factors 235

II. Anatomy 236 A. Sensory Systems 236 B. Executive System 236

Page 9: Quantitative EEG, Event-Related Potentials and Neurotherapy

C o n t e n t s

III. Modulation of Sensory Information Flow 237 A. Mutual Inhibition in Animal Experiments 237

B. Involvement of Subcortical Structures 239

C. Attention-Related Negativities in Human ERPs 239

D. Parietal-Frontal Network in PET and M R I Studies 240

IV. Neuropsychology 241 A. Sensory Neglect and Right Parietal Lesions 241

B. Balint's Syndrome 241

V. Neuronal Networks 242 A. Recurrent Depolarization of Apical Dendrites 242

B. Attention and Arousal 243

C. Tonic and Phasic Reactions of Locus Coeruleus 244

D. Norepinephrine as Modulator of Attention 245

VI. Late Positive Components in ERPS 245 A. P3b Component 247

B. P3a Component 249

C. Diagnostic Values of P3a and P3b Components 252

VII. Summary 252

Executive System

I. Psychology 253 A. Need for Executive Control 253

B. Types of Executive Operations 253

C. Association with Selection of Actions 254

II. Basal Ganglia as Dark Basements of the Brain 255 A. Anatomy 255

B. Direct Pathway 256

C. Intracranial Recordings in Patients 257

D. The Model of Action Selection 258

E. Dopamine as Modulator in the Basal Ganglia 260

F. Dysinhibition of Thalamic Neurons 261

G. Indirect and Hyperdirect Pathways 262

H. Output to the Brain Stem 262

I. Parallel Circuits 263

J. EEG in Basal Ganglia Dysfunction 266

III. Prefrontal Cortex and Executive Control 267 A. Anatomy 267

B. Complexity ofWiring 268

C. Representation of Complex Actions 269

D. Hyperfrontality 269

E. EEG Peculiarity 270

IV Engagement/Disengagement Operations 270 A. P3b Component as Index of Engagement Operation 270

B. Sensory Comparison 270

C. Motor Inhibition 271

D. Action Suppression 272

E. Intracranial Recordings 273

F. N200 Motor Inhibition Component 275

Page 10: Quantitative EEG, Event-Related Potentials and Neurotherapy

Contents xv

V. M o n i t o r i n g Opera t ion 276 A. P400 Monitoring Component in G O / N O G O Paradigm 276 B. Function of ACC 278 C. Akinetic Mutism 279 D. Concept of Monitoring 280

E. Error-Related Negativities 281

VI. Working Memory 283 A. Active Manipulation on Memory Trace 283 B. Reciprocal Anatomical Pathways 284 С Three "working Memory Systems 284 D. C N V as Correlate of Working Memory 284

VII. Dopamine as a Mediator of the Executive System 287 A. Cortical and Subcortical Distribution 287 B. Dopaminergic Systems 287 C. D l and D2 Dopamine Receptors 288 D. Functions of Dopaminergic Systems 288

VIII. Summary 290

Affective System I. Psychology 292

A. Emotions Versus Reasoning 292 B. Punishers and Rewards 293 C. Drives and Motivations 293

II. Anatomy 294 A. Limbic System 294 B. Papez Circuit 295 О Cortical and Subcortical Elements 295

III. Physiology 297 A. Orbito-frontal Cortex as a Map of Rewards and Punishers 297 B. Positive Affect, Negative Affect, and Monitoring 299 C. Asymmetry in Maps of Emotions? 301 D Amygdala 302 E. Medial and Anterior Nuclei of the Thalamus 303 F. Hypothalamus 303 G. Ventral Part of the Anterior Cingulate Cortex 304 H. Neuroimaging Patterns of Emotions 304

I. Frontal Midline Theta Rhythm and Emotions 305

IV Stages of Reactions of Affective System 305 A. Sensation 306 B. Emotional Reaction 307 C. Feeling Stage 307 D. Monitoring Stage 307

V Serotonin as Mediator of Affective System 307 A. Functioning and Dysfunctioning of

Serotoninergic System 308

VI. Summary 309

Page 11: Quantitative EEG, Event-Related Potentials and Neurotherapy

Contents

Memory Systems I. Psychology 310

A. Types of Memory 310

II. Declarative Memory 312 A. Anatomy 312 B. Encoding and Retrieval Operations 314 С Neuronal Model 315

III. Acetylcholine as Mediator of Declarative Memory 315 A. Septum as an Extension of Cholinergic Ascending System 315 B. Hippocampal Theta Rhythm and Long-Term Potentiation 317

IV. ERP Indexes of Episodic Memory 317 A. " O l d - N e w " Effect in Recalling Stage 317 B. "Remembered-Forgotten" Effect in Encoding Stage 318

V. Procedural Memory System 318 A. Action-Related Memory Versus Sensory-Related Memory 318 B. Anatomy of Procedural Memory 319 C. Basal Ganglia and Language 321 D. Gradual Memorization 321 E. E R P Correlates of Recalling from Procedural Memory 322

VI. Mediators of Procedural Memory 322 VII. Summary 322

Methods: Neuronal Networks and Event-Related Potentials

I. Information Processing in Neuronal Networks 325 A. Analytic Approach 325 B. Networks with Lateral Inhibition 326 C. Spatial Filtration in Neuronal Networks 327 D. Enhancing Higher Spatial Frequencies in Visual System 328 E. Canonical Cortical Circuit 330 F. Inhibition as Cause of High Frequency Oscillations 331 G. Synaptic Depression as Source of Low Frequency Oscillations 331 H. Canonical Cortical Module 332

I. Gabor Filtration in the Canonical Cortical Model 335 J. Texture Encoding by the Canonical Cortical Module 337

K. Hierarchical Organization 337 L. Feedforward and Feedback Connections 338 M. Reflection of Recurrent Connections in ERPs 339

II. Neurotransmitters and Neuromodulators 341 A. Fast Transmitters 341 B. Slow Modulators 342 C. Modulator Systems 343

III. Methods of Analyzing ERPS 345 A. Averaging Technique 345 B. Number ofTrials 347 C. Single Trial Representations of Independent Components 349

Page 12: Quantitative EEG, Event-Related Potentials and Neurotherapy

Contents xvii

D. Alpha Ringing 351

E. ICA Decomposition of Grand Average ERPs 351

IV. Pharmaco-ERP 356 V. Behavioral Paradigms 357

A. Classification of Paradigms 357

B. Sensory and Attention Systems 357

C. Executive Functions 362

D. Affective System 364

E. Episodic Memory 365

1 6 Practice: ERP analysis

I. Introduction 366 II. Designing Task 367

III. EdEEG Software 372 IV. Exercises 381

PART I I I

Disorders of the Brain Systems

17 Attention Deficit Hyperactivity Disorder

I. Description of Behavior 393 A. Executive Operations and E R P Components 393

B. Symptoms of A D H D in DSM-IV and ICD-10 393

II. Genetic and Environmental Factors 395 A. Complex Genetic Disorder 395

B. Environmental Risk Factors 396

C. Co-morbidity 396

III. Imaging Correlates 396 A. PET and M R I 396

B. QEEG 398

C. Theta Beta Ratio as Inattention Index 399

IV. ERP Correlates 400 A. Selective Attention 400

B. Working Memory 401

C. Engagement Operation 404

D. Response Inhibition 404

E. Monitoring Operation 406

Page 13: Quantitative EEG, Event-Related Potentials and Neurotherapy

Contents

V. Dopamine Hypothesis of ADHD 406 A. Increased Level of DAT 407

B. Noradrenalin Transporter 408

VI. Treatment 408 A. Psychostimulants 408

B. Neurofeedback 409

C. Beta Enhancement/Theta Suppression Protocol 411

D. Relative Beta Training Protocol 411

E. Normalization of Executive E R P Components 412

F. Transcranial Direct Current Stimulation 415

VII. Summary 418

Schizophrenia I. Description of Behavior 420

A. Involvement of Three Brain Systems 420

B. Dysfunction of Executive System 421

II. Genetics and Environmental Factors 421 A. Multiple Genes are Involved 421

B. Environmental Risk Factors 422

III. Imaging Correlates 422 A. Magnetic Resonance Imaging 422

B. Quantitative Electroencephalogram 423

C. Mismatch Negativity 423

D. Contingent Negative Variation 423

E. Engagement Operation 424

F. Monitoring Operation 425

IV Dopamine Hypothesis of Schizophrenia 426 A. Excess of Striatal Dopamine Receptors 426

B. Neural Net Model 426

V Treatment 428 A. Antipsychotic Agents 428

B. Electroconvulsive Therapy 428

C. Psychosurgery 429

D. Neurofeedback 430

VI. Summary 431

Addiction I. Description of Behavior 431

A. Symptoms 432

B. Substances of Abuse 433

C. Tolerance, Dependence, and Withdrawal 433

II. Imaging Correlates 434 A. PET and M R I 434

B. Increased Level of Dopamine in Nucleus Accumbens 434

Page 14: Quantitative EEG, Event-Related Potentials and Neurotherapy

Contents xix

III. Stages of Addiction 435 A. Expectation Stage 435 B. Consolidation Stage 436 C. Habituation/Sensitization Stage 436 D. Neural Net Model 437

IV. Treatment 438 A. Stereotactic Anterior Cinguiotomy in Heroin Addicts 438 B. Neurofeedback 439

V. Summary 440

Obsessive-Compulsive Disorder I. Description of Behavior 442

A. Symptoms 442

II. Genetics and Co-morbidity 443 A. Poor Heritability 443 B. Co-morbid Disorders 443

III. Imaging Correlates 443 A. PET.MRI 443 B. QEEG 445 С Monitoring Component of ERPs 445

IV. Mediators 446 V Treatment 446

A. Stereotactic Anterior Cinguiotomy 446 B. QEEG/ERPs Assessment in an O C D Patient 446 C. Neurofeedback 448

VI. Summary 449

Depression I. Description of Behavior 450

A. History 450 B. Symptoms 450 С Subtyping Depression 451 D. Heritability 451 E. Need for Objective Diagnostic System 452

II. Imaging Correlates 452 A. PET, M R I 452 B. QEEG Asymmetry 453 С ERP Asymmetry 454 D QEEG/ERPs Assessment in a Depressed Patient 454 E. QEEG Predictors of Response to Antidepressants 456

III. Neuronal Model 456 A. Monoamine Hypothesis of Depression 456 B. Brain Circuitry of Depressed Mood 457

IV Treatment 459 A. Cognitive Behavioral Therapy 459 B. ЕСТ and Psychosurgery 459

Page 15: Quantitative EEG, Event-Related Potentials and Neurotherapy

xx Contents

C. Antidepressants 460 D. TMS 461 E. Neurofeedback 461

V. Summary 462

2 2 Alzheimer's Disease I. Description of Behavior 463

A. Symptoms 463

II. Mediators 463 A. Association with Cholinergic/GABA Septal-Hippocampal Circuits 463 B. Cholinergic Hypothesis of Alzheimer's Disease 464

III. Neural Net Model 464 A. Theta Bursts in Healthy Brain 464 B. Increase of Spontaneous Theta Activity in Diseased Brain 464

IV. Imaging Correlates 465 A. QEEG 465 B. ERPs 466 С Principle Component Analysis of ERPs 466

V. Treatment 467 A. Acetylcholinesterase Inhibitors 467 B. Neurofeedback 467

VI. Summary 467

2 3 Methods of Neurotherapy Placebo 469 A. Placebo as Expectation of Results 469 B. Neuronal Basis of Placebo 470 C. Need for Double-Blind Placebo-Controlled Studies 471

Neurofeedback 472 A. History 472 B. Bulldozer Principle of Neurofeedback 475 C. Comparison with the Database 476 D. Defining Electrodes' Position 476 E. Defining Neurofeedback Parameter 478 F. Training Procedure 478

G. Computing Neurofeedback Parameters 480 H. Training Curve 482 I. Learning Curve 482 J. Techniques for Computing Neurofeedback Parameter 483

K. Types of Neurofeedback Protocols 485 L. Neurofeedback and Neurotherapy 487

M. Eastern Self-Regulation Techniques 487 N. Sham Effect 488 O. Minimizing Side Effects 488 P. Stability of Effect 489 Q. Limitations of Neurofeedback 489 R. Medical Versus Non-medical Application 490

Page 16: Quantitative EEG, Event-Related Potentials and Neurotherapy

Contents xxi

III.

IV.

V.

S. Types of Neurofeedback Т. BCI

Deep Brain Stimulation A. Psychosurgery B. Stereotactic Neurosurgery C. Deep Brain Stimulation as Reversible Destruction

Transcranial Magnetic Stimulation A. Physics ofTMS B. Diagnostic and Therapeutic Applications

Transcranial Direct Current Stimulation A. History B. Procedure C. Neurophysiological Mechanisms of Membrane Polarization D. Physiological Evidence E. Behavioral Effects F. Clinical Applications

491 494

495 495 495 496

496 496 498

498 498 499 500 501 503 503

Conclusion I. General Principles of EEG Assessment and Neurotherapy 506

II. Topics of Further Research 512

References 517

Index 531