Quantifying Potential Fuel Burn Savings from Optimal...

22
Quantifying Potential Fuel Burn Savings Quantifying Potential Fuel Burn Savings from Optimal Cruise Speed and Altitude Jonathan Lovegren R. John Hansman Tom Reynolds Massachusetts Institute of Technology

Transcript of Quantifying Potential Fuel Burn Savings from Optimal...

Quantifying Potential Fuel Burn SavingsQuantifying Potential Fuel Burn Savingsfrom Optimal Cruise Speed and Altitude

Jonathan LovegrengR. John Hansman

Tom Reynolds Massachusetts Institute of Technology

Motivation

Strong interest in operational mitigations to reduce environmental impact of aviation

Joint effort between Purdue and MIT to systematically identify, l t d i iti t ti l t ti l hevaluate and prioritize potential near-term operational changes

Improving vertical and speed efficiency in cruise identified as promising areapromising area

Preliminary effort to identify potential benefits pool

This work was funded by the FAA under FAA Award Nos : 06 C NE MIT Amendment No 017

2

This work was funded by the FAA, under FAA Award Nos.: 06-C-NE-MIT, Amendment No. 01707-C-NE-PU, Amendment No. 024.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authorsand do not necessarily reflect the views of the FAA, NASA, or Transport Canada

Partial List of Selected Mitigations

Mitigation Fuel (F) Climate (C) Air Quality Noise Implementability Potential

ImpactSURFACE (S)S-1: Queue Management Systemsg yS-1.2: Advanced Systems (optimized strategies) S S P S Medium StrongS-2: Taxi Fuel MinimizationS-2.4: Improved surface situational awareness, harvesting ASDE-X data S S P S Easy Mod

S-5: Improved coordination toolsS 5 1 I d i f ti h i S S S S M di StS-5.1: Improved information sharing S S S S Medium StrongS-5.2: Flight plan change delivery over datalink S S S S Medium ModDEPARTURE (D)D-1: Departure proceduresD-1.10: Operating in best noise configuration 0/A 0/A 0/A P Easy StrongD-2: Increased flexibility in departure routesD 2: Increased flexibility in departure routesD-2.1: RNP/RNAV Enabled SIDs S S P S Medium ModCRUISE (C)C-1: Horizontal Route EfficiencyC-1.1: RHSM, multi-laning P P 0 0 Hard StrongC-1.2: Minimize lateral route inefficiency P P 0 0 Med StrongC-2: Vertical Routing EfficiencyC-2.2: Increased directional airways P P 0 0 Easy ModC-2.3: Cruise climb P P 0 0 Med StrongC-2.4: Step-climb P P 0 0 Easy ModC-2.5: Increase priority for giving requested/optimal altitudes P P 0 0 Easy ModC-3: Speed Efficiency

3

C 3: Speed EfficiencyC-3.1: Individual aircraft fuel-optimized cruise speeds P P 0 0 Hard StrongC-3.2: Cruise Mach reductions P P 0 0 Easy StrongC-3.3: More efficient passing options P P 0 0 Med Strong

C-2/3: Cruise Vertical/Speed Efficiency

Fuel Climate Air Quality Noise Implementability Pot. Impact

P P 0 0 Medium Moderate/Strong

Each aircraft has an ideal minimum fuel burn altitude and speed Air traffic control restrictions and airline

preferences often result in off-optimal operations Many mitigations may allow aircraft to fly

nearer their optimal altitude and speed, e.g.:

4 x RNP

nearer their optimal altitude and speed, e.g.:• Increased directional airways• Cruise climb• Increased priority for requested altitude/speed• Cruise Mach reductions• More efficient passing options

Speed and Altitude Analysis: Data Sources

ETMS Flight Data for 1 day• All domestic flights, 9/21/2009• Trajectory data in 1 min steps

NOAA Atmospheric Data• Temperature• Wind components

Altitude Latitude/Longitude Groundspeed

• Filed flight plan information

p• Vertically spaced at 30 different pressure levels• Laterally spaced at 32-by-32 km gridpoints

US Surface Temperature Profile

Sample lateral flight profiles

Altitude profiles

Piano-X Aircraft Performance

Primary focus on Standard Air Range (SAR): distance flown per kg of fuel SAR table of speed vs altitude mapped for

Utilized step climb profiles in Piano-X to match optimum altitude with weight

• Validated results by checking that weight p ppeach aircraft at one weight Fundamental correlation applied to include

SAR sensitivity to weight

changed approximately proportionally with air density

-10

-10

-5-5

-5

400

420

B737-700 SAR (% Below Max) B757-200 Altitude Sensitivity

370

380

FL)

5

-10

5

-5

tude

(10

0s f

t)

360

380

350

360

370

Optimal Altitude

 (F

-2520-15

-15

-15

-10-10

-10-5-5Alti

t

300

320

340

330

340

85000 90000 95000 100000 105000 110000 115000

O

Aircraft Weight (kg)

6

-20

Mach

0.7 0.72 0.74 0.76 0.78 0.8

Standard Air Range Comparison

-10

-10

-5-5

400

420

B737-700 SAR (% below max)-20-15 -15-10

-10-5

-5 -5400

A320-200 SAR (% below max)-5 -5440

CRJ-200 SAR (% below max)

-15

0

-10-1

0

-5

-5

-5-5

Alti

tude

(10

0s f

t)

340

360

380

400

5

0

-10

-5

-5-5

-5

Alti

tude

(10

0s f

t)

340

360

380

105 -5-5

-5

Alti

tude

(10

0s f

t)

360

380

400

420

-25-20-15

-15-10-10

Mach

A

0.7 0.72 0.74 0.76 0.78 0.8

300

320

-20

-15

-15

-10-10-10

Mach

A

0.7 0.72 0.74 0.76 0.78 0.8

300

320

-15

-15-10-10

-10-5

Mach

A

0.7 0.72 0.74 0.76 0.78 0.8

320

340

-20 -20-15 -15

-15-10

-10 -10

-10

-5-5

-5

s ft

)

380

400

B757-200 SAR (% below max)-20

-20-15 -15

-15

-10

-10-10

-10-5 -5

-5

s ft

)

360

380

400

MD82 SAR (% below max)

SAR contours represent performance sensitivity to speed and altitude, at a single

-10

0

-5

-5-5

-5

Alti

tude

(10

0s

320

340

360

1510

-10

0

-5

-5-5

Alti

tude

(10

0s

300

320

340

360 speed and altitude, at a single weight

SAR increases approximately linearly as weight decreases

7

-10

Mach0.72 0.74 0.76 0.78 0.8 0.82

300 -15

-10-10

Mach0.7 0.72 0.74 0.76 0.78 0.8

280

Flight Path Detailed Breakdown

0 100 200 300 400 500 600 700

Distance(nm)

400

Single Segment

200

300

400

de (

100s

ft)

γ

Al i d

Cruise ClimbAngle

0 20 40 60 80 100 1200

100Alti

tu

Minutes

DistanceAltitude

0 100 200 300 400 500 600 700

Distance (nm)

0.8

1 Actual speed calculationnoisy due to limited ETMS position

0.2

0.4

0.6

Mac

h

Speed

accuracy

Moving average smoothes data for

8

0 20 40 60 80 100 1200

Minutes

smoothes data for processing

Analyzing the Actual Flight Path

Performance Calculations

Determine

Estimate InitialAircraft Weight

Segment Info:• Location

• Uses initial filed altitude as surrogate for weight estimateA t t f i Determine

Winds

LookupSAR

• Altitude• Speed• Climb Angle

• Assumes start of cruise occurs at optimum altitude

• May underestimate weight

0 100 200 300 400 500 600 700

Distance(nm)

400

LoopOver Flight

CalculateFuel Burn

Over Segment

RecalculateAircraftWeight0 20 40 60 80 100 120

0

100

200

300

Alti

tude

(10

0s f

t)

Minutes

TotalFuel Burn

9

Developing The Ideal Flight Path

Estimate InitialAircraft Weight

Performance CalculationsCruise ClimbAngle

Determination

DetermineWinds

Segment Info:• Location• Altitude• Speed• Climb Angle

Determination

•Uses same weight determined in “actual” fuel burn calculation

Select SpeedThat MinimizesWind-Adjusted

SAR

Climb Angle

LoopOver Flight

DetermineIdeal Alt

CalculateFuel Burn

Over Segment

RecalculateAircraftWeight

Minimum Cruise Climb 390

400

410

e (F

L)

Actual

Ideal

10

Fuel Burn Path

Best Case 0 500 1000 1500 2000360

370

380

Alti

tud

Sample Flight: B757-200 from BOS to SFO

0.9Speed Profile

Fuel Burn Savings

2 88% Total

Altitude Profile

390

400 Actual

Ideal (pres)Ideal (dens)

0.7

0.8

Mac

h

2.88% Total 0.57% from

altitude-only improvement

2.16% from speed-only

Headwind increases ideal airspeed

360

370

380

Alti

tude

(F

L)

Ideal (dens)

0 500 1000 1500 2000 25000.5

0.6

Dist (nm)

yimprovement

0 500 1000 1500 2000 2500340

350

360

Dist (nm)

A

20

40

s) 0.16

0.18

Persisting

Tailwind Profile Instantaneous Standard Air Range (SAR, nm/kg)

( )

40

-20

0

Gsp

d-A

spd

(kts

0.12

0.14

SA

R (

nm/k

g) operations below the “ideal” SAR line indicate improvement potential

Headwind

0 500 1000 1500 2000 2500-60

-40

Dist (nm)0 500 1000 1500 2000 2500

0.1

Dist (nm)

Spikes correlate with climbs and descents

Selection of Cases for Analysis

The relative improvement from actual is calculated for several

Commonly used aircraft spanning a variety of payload and range classes were chosen

Routes were selected based on range diversity profiles:

Case Speed Altitude

1 Best Best

Aircraft Route* (and back) Distance (nm) # Flights

B737/A320 LA X– SFO 290 29/34

Routes were selected based on range diversity, frequency, and applicability to the aircraft type

2 Best Actual

3 Best Step 1000 ft

4 Best Step 2000 ft

5 Actual Best

JFK – ORD 640 14/30

LA X – ORD 1510 12/11

JFK – LAX 2150 6/26

B757 ATL MIA 520 225 Actual Best

6 LRC Best

B757 ATL – MIA 520 22

LAX – ORD 1510 18

BOS – SFO 2340 12

MD82 JFK – ORD 640 33

DCA – DFW 1030 25

CRJ 200 JFK – DCA 190 16

LAX – SFO 290 17

Dash 8 Q400 JFK – DCA 190 8

12

Dash 8 Q400 JFK DCA 190 8

JFK – PIT 270 15

*Airport codes are representative of the city; other major airports in each metro area are included

Secondary Effects

Temperate deviations from ISA can be significant

• ISA + 10C at FL390 increases density altitude

Extra fuel is burned in the cruise climb This is mostly recovered in descent, but ISA + 10C at FL390 increases density altitude

by 1000 ft• Cruise climbs are on the order of 1000s feet

Optimal altitude is a function of density altitude, but aircraft fly pressure altitude

must be included A cruise climb, excluding the benefit of

descent, can appear worse than level flight

Maintaining correct density altitude can mean unusual profiles

B737-700Los Angeles to Chicago

398

400

402

404)

Actual

Ideal (dens)

Ideal (pres)-50

-48

C)

Actual

ISA

Descent must be included to make up for climb energy

392

394

396

398

Alti

tude

(F

L)

56

-54

-52

Tem

pera

ture

(C

Non standard temperatures can lead to unusual altitude profiles

13

0 200 400 600 800 1000 1200 1400388

390

Dist (nm)

0 500 1000 1500

-58

-56

Distance (nm)

Long Range Example: B757-200

Boston – San Francisco (2,340 nm) B757-200 Headwind Case 4

5

6

men

t

Speed

Altitude

Avg Improvement: 3.73%• Altitude Alone: 1.36%• Speed Alone: 2.52%

1

2

3

% I

mpr

ovem

370

380

390

400

e (F

L)

Actual

Ideal(d)

360

370

380

390

e (F

L) 360

370

380

e (F

L) 360

370

380

e (F

L)

1 2 3 40

0 500 1000 1500 2000 2500340

350

360

370

Dist (nm)

Alti

tud

0 500 1000 1500 2000 2500

320

330

340

350

Dist (nm)

Alti

tude

0 500 1000 1500 2000 2500330

340

350

Dist (nm)A

ltitu

de0 500 1000 1500 2000 2500

330

340

350

Dist (nm)

Alti

tud

2

0.7

0.8

0.9

Mac

h

0.7

0.8

0.9

Mac

h

0.7

0.8

0.9

Mac

h

0 7

0.8

0.9

1

Mac

h

1 2 3 4

0 500 1000 1500 2000 25000.5

0.6

Dist (nm)0 500 1000 1500 2000 2500

0.5

0.6

Dist (nm)0 500 1000 1500 2000 2500

0.5

0.6

Dist (nm)0 500 1000 1500 2000 2500

0.5

0.6

0.7

Dist (nm)

14

Medium Range Example: B737-700

Los Angeles – Chicago (1,510 nm) B737-700 Tailwind Case

2 5

3

3.5

4

ent

Speed

Altitude

Avg Improvement: 1.53%• Altitude Alone: 0.69%• Speed Alone: 1.29%

0.5

1

1.5

2

2.5

% I

mpr

ovem

e

370

380

390

400

e (F

L)

360

370

380

390

e (F

L)

390

400

e (F

L)

400

405

e (F

L)

1 2 3 40

0 500 1000 1500340

350

360

370

Dist (nm)

Alti

tude

0 200 400 600 800 1000 1200330

340

350

360

Dist (nm)

Alti

tud

0 200 400 600 800 1000 1200360

370

380

Dist (nm)A

ltitu

de0 500 1000 1500

385

390

395

Dist (nm)

Alti

tude

2

0.7

0.8

0.9

Mac

h

0.7

0.8

0.9

Mac

h

0.7

0.8

0.9

Mac

h

0.7

0.8

0.9

Mac

h

1 2 3 4

0 500 1000 15000.5

0.6

Dist (nm)0 200 400 600 800 1000 1200

0.5

0.6

Dist (nm)0 200 400 600 800 1000 1200

0.5

0.6

Dist (nm)0 500 1000 1500

0.5

0.6

Dist (nm)

M15

Short Range Example: MD82

New York – Chicago (640 nm) MD82 Avg Improvement: 1.81% 2.5

3

3.5

nt

Speed

Altitude

g p• Altitude Alone: 0.35%• Speed Alone: 1.68%

0 5

1

1.5

2

% I

mpr

ovem

en

310

315

320

L) 340

350

360

L) 310

315

320

L)

320

330

L)

1 2 3 4 5 6 7 8 9 10 110

0.5

0 50 100 150 200 250 300 350290

295

300

305

Dist (nm)

Alti

tude

(F

L

0 100 200 300 400310

320

330

340

Dist (nm)

Alti

tude

(F

0 100 200 300 400290

295

300

305

Dist (nm)

Alti

tude

(F

L

0 100 200 300 400290

300

310

Dist (nm)

Alti

tude

(F

L

Dist (nm)

0.7

0.75

0.8

Mac

h

( )

0.7

0.8

0.9

Mac

h

Dist (nm)

0.7

0.8

0.9

Mac

h

Dist (nm)

0.7

0.8

0.9

Mac

h

1 2 3 6

0 50 100 150 200 250 300 3500.55

0.6

0.65

Dist (nm)

M

0 100 200 300 4000.5

0.6

Dist (nm)

M

0 100 200 300 4000.5

0.6

Dist (nm)

M

0 100 200 300 4000.5

0.6

Dist (nm)

M16

Short Range Example: B737

2 5%

3.0%

3.5%

4.0%

ent

Altitude

Speed

5 0%

6.0%

7.0%

8.0%

ent

Altitude

Speed B737, New York –

Chicago (640 nm) Eastbound Avg : 1.37%

Eastbound Westbound

0.5%

1.0%

1.5%

2.0%

2.5%

% Im

prov

eme

1.0%

2.0%

3.0%

4.0%

5.0%

% Im

prov

emeg

• Altitude Alone: 1.10%• Speed Alone: 0.83%

Westbound Avg: 3.31%• Altitude Alone: 1.71%• Speed Alone: 2 25%

400

L)

400

L)

380

400

L) 390

400

L)

0.0%1 2 3 4 5 6 7

0.0%1 2 3 4 5 6 7

• Speed Alone: 2.25%

0 200 400 600300

350

Alti

tud

e (

FL

0 100 200 300 400300

350

Di t ( )

Alti

tud

e (

F

0 0 200 400 600340

360

380

Alti

tud

e (

FL

0 100 200 300 400360

370

380

Alti

tud

e (

FL

Earlier step-downsEarlier step-downs

Dist (nm)

0.7

0.8

Ma

ch

Dist (nm)

0.7

0.8

Ma

ch

Dist (nm)

0.7

0.8

Ma

ch

Dist (nm)

0.7

0.8

Mac

h

2 5 2 6

0 200 400 6000.5

0.6

Dist (nm)

M

0 100 200 300 4000.5

0.6

Dist (nm)

M

0 0 200 400 6000.5

0.6

Dist (nm)

M

0 100 200 300 4000.5

0.6

Dist (nm)

M

17

Altitude Sensitivity Example

Washington – Dallas (1,030 nm) MD82 Avg Improvement: 2.30% 3

3.5

4

4.5

ent

Speed

Altitude

g p• Altitude Alone: 1.40%*• Speed Alone: 1.35%

*Results possibly skewed by weight estimate Sensitivity to weight estimate for #3, 5, and 1

1.5

2

2.5

% I

mpr

ovem

e

340

350

)

Actual

Ideal

330

340

350

)

320

330

)

340

350

)

9 examined1 2 3 4 5 6 7 8 9 10 11 12 13

0

0.5

0 200 400 600 800310

320

330

Di t ( )

Alti

tude

(F

L)

0 200 400 600 800

290

300

310

320

330

Dist (nm)

Alti

tude

(F

L)

0 200 400 600 800290

300

310

Dist (nm)

Alti

tude

(F

L)

0 200 400 600 800310

320

330

Di t ( )

Alti

tude

(F

L)

Dist (nm)

0.7

0.8

0.9

ach

Dist (nm)

0.7

0.8

0.9

Mac

h

Dist (nm)

0.7

0.8

0.9

Mac

h

Dist (nm)

0.7

0.8

0.9

ach

3 5 7 9

0 200 400 600 8000.5

0.6

Dist (nm)

M

0 200 400 600 8000.5

0.6

Dist (nm)

M

0 200 400 600 8000.5

0.6

Dist (nm)

M

0 200 400 600 8000.5

0.6

Dist (nm)

M

18

Altitude Sensitivity Example

Washington – Dallas (1,030 nm) MD82 Avg Improvement: 2.30% 3

3.5

4

4.5

nt

Speed

Altitude

g p• Altitude Alone: 1.40%**• Speed Alone: 1.35%

Altitude improvement potential may be exaggerated due to weight estimateS

1

1.5

2

2.5

3

% I

mpr

ovem

e

340

350

)

Actual

Ideal

330

340

350

)

320

330

)

340

350

)

Sensitivity to weight estimate for #3, 5, and 9 examined 1 2 3 4 5 6 7 8 9 10 11 12 13

0

0.5

0 200 400 600 800310

320

330

Di t ( )

Alti

tude

(F

L)

0 200 400 600 800

290

300

310

320

330

Dist (nm)

Alti

tude

(F

L)

0 200 400 600 800290

300

310

Dist (nm)

Alti

tude

(F

L)

0 200 400 600 800310

320

330

Di t ( )

Alti

tude

(F

L)

Dist (nm)

0.7

0.8

0.9

ach

Dist (nm)

0.7

0.8

0.9

Mac

h

Dist (nm)

0.7

0.8

0.9

Mac

h

Dist (nm)

0.7

0.8

0.9

ach

3 5 7 9

Examined sensitivity to weight estimate on following slide

0 200 400 600 8000.5

0.6

Dist (nm)

M

0 200 400 600 8000.5

0.6

Dist (nm)

M

0 200 400 600 8000.5

0.6

Dist (nm)

M

0 200 400 600 8000.5

0.6

Dist (nm)

M

19

Performance Sensitivity to Weight Estimate

3 Flights from Washington to Dallas

3.00%

4.00%

Initial

Alternate

Weight Estimates

340

350

FL)

Actual

Ideal

MD82s Examined

sensitivity to initial weight estimate

Plots show fuel

0.00%

1.00%

2.00%

Total Speed Only Alt Only0 200 400 600 800

310

320

330

Alti

tude

(

32

0

330

340

Improved trajectory using weight estimate based on filed altitude

Plots show fuel burn reduction from actual to improved

Varying bar height 3.00%

4.00%

5.00%

0 200 400 600 800Dist (nm)

320

330

340

350

de (

FL)

ion

Fro

m A

ctua

l

Bar labels indicate Initial altitudes resulting from

i ht ti tindicates volatility to weight estimate

Shorter bars represent cases where given

0.00%

1.00%

2.00%

Total Speed Only Alt Only 0 200 400 600 800290

300

310

320

Dist (nm)

Alti

tud

Improved trajectories using alternate weight estimates

300

320

330

340

Fue

l Bur

n R

educ

ti weight estimates

where given weight estimate brings improved case closer to actual 1.50%

2.00%

2.50%

Dist (nm)

310

320

330

tude

(F

L)

300

% F

20

0.00%

0.50%

1.00%

Total Speed Only Alt Only 0 200 400 600 800290

300

Dist (nm)

Alti

t

320

310 3

Very Short Range Flights

Short flights often lack significant cruise leg Alternative analysis required to develop

optimum profile

Short flights often cannot reach ideal altitude Operators stay low for speed, simplicity Weight estimation unclearp p

0 50 100 150 200 250 300

Distance(nm)

400 0 50 100 150 200 250 300

Distance(nm)

200

CRJ-200LAX – SFO (290 nm)

Dash 8 Q400JFK – PIT (270 nm)

g

200

300

ltitu

de (

100s

ft)

100

150

titud

e (1

00s

ft)

Ideal trajectories using alternate

0 50 100 150 200 250 300

Distance(nm)

0 10 20 30 40 50 600

100Al

Minutes0 10 20 30 40 50 60 70

0

50Alt

Minutes

Distance(nm)

using alternate weight estimates

0 50 100 150 200 250 300

200

400

de (

100s

ft)

0 50 100 150 200 250 300

100

150

200

de (

100s

ft)

210 10 20 30 40 50 60

0

Alti

tud

Minutes0 10 20 30 40 50 60

0

50Alti

tud

Minutes

Speed and Altitude Optimization Overview

Speed and Altitude Optimization Identified as Potential Opportunity

F d V ti l d S d C i O ti i ti f li it d f fli ht Focused on Vertical and Speed Cruise Optimization for a limited scope of flights and aircraft type

2-5% cruise fuel burn reduction appears possiblepp p• 1-2% from altitude improvements• 2-4% from speed improvements

N t t Next steps• Additional aircraft types and routes• Attempt to obtain data set with actual weights• Larger time scope (more than 1 day)a ge t e scope ( o e t a day)• Include optimal climbs and descents