QGP Formation Signals and Quark Recombination Model

51
QGP Formation Signals and Quark Recombination Model Chunbin Yang Central China Normal University Wuhan

description

QGP Formation Signals and Quark Recombination Model. Chunbin Yang Central China Normal University Wuhan. Outline. Heavy ion collisions and QGP formation Anomalies at RHIC Physics ideas in the recombination model Fragmentation in the recombination model Applications to Au+Au collisions - PowerPoint PPT Presentation

Transcript of QGP Formation Signals and Quark Recombination Model

Page 1: QGP Formation Signals and Quark Recombination Model

QGP Formation Signals and Quark Recombination Model

Chunbin YangCentral China Normal University

Wuhan

Page 2: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 22

OutlineOutlineHeavy ion collisions and QGP formationAnomalies at RHICPhysics ideas in the recombination modelFragmentation in the recombination modelApplications to Au+Au collisions

NCQ scaling of flow v2

Violation of the scalingParticle species dependence of Cronin effectDiscussions

Page 3: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 33

PCM & clust. hadronization

NFD

NFD & hadronic TM

PCM & hadronic TM

CYM & LGT

string & hadronic TM

time

Initial conditions

and interactions

Cooling down

freezing out

Hot and Dense

Page 4: QGP Formation Signals and Quark Recombination Model

QGP formation signals

Strangeness enhancementStrangeness enhancementSuppression of J/Suppression of J/ΨΨDilepton enhancementDilepton enhancementDirect photonDirect photon……

C.B. YangC.B. Yang Recombination ModelRecombination Model 44

Parton degree of QGP?

QGP signal from the bulk?

Experimental probes:

1) Penetrating probes: “jets” energy loss

2) Bulk probes :Elliptic flow, radial flow …

Page 5: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 55

Evidence for the formation of QGPSingle hadron

Jet quenching

Energy loss ofjets in medium

Dihadron

No suppression for p spectrum

Page 6: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 66

Hadron production mechanismsHadron production mechanisms

HOW?

Partons are produced in high energy collisions like e++e-, e+p, p+p, p+A,A+A

Partons in the final stage of evolution are converted into hadrons

Page 7: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 77

Traditional modelsTraditional models

String formation and break for low p T

Fragmentation for high p T

The string model may not be applicable to heavy ion collisionsFragmentation failed for central Au+Au collisions

Page 8: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 88

Anomalies at intermediate pT

• B/M

• v2(pT)

•Jet structure

• Cronin effect

p/ ≈1

v2(baryons) > v2(mesons)

not the same as in pp

RCPp > RCP

Hard to be understood in traditional models

Page 9: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 99

Hadronization by recombination

The colliding system generates quarks and gluons in the phase space

The quarks get dressedThe dressed quarks recombine into

hadrons to the detector

Page 10: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 1010

Parton distribution (log scale)

(recombine) (fragment)

p

p1+p2p q

meson momentum

higher yield heavy penalty

Why Recombination?

Page 11: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 1111

Features

quark momenta add, higher yield for high produced pT hadrons

soft parton density depends on medium

more quarks for baryons than for mesons

enhanced dependence on centrality for baryons when thermal partons are involved

Page 12: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 1212

No anomalies in recombination

At intermediate pT, aplenty soft quarks are more important for proton production than for pionsp/1

For baryons, three quarks contribute to the flow, while only two quarks for mesons v2(baryons) > v2(mesons), quark number scaling

Soft and semi-soft recombination Cronin effect

Process dependence of soft partons different jet structure in dA and AA

Page 13: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 1313

Recombination modelsRecombination models

• Use just the lowest Fock stateUse just the lowest Fock state

i.e. valence quarksi.e. valence quarks qqqqqqB q B q qbarbarMM

• Gluons converted to quarks firstGluons converted to quarks first

• The probability for two (three) quarks to form The probability for two (three) quarks to form a meson (baryon) is given by a process a meson (baryon) is given by a process independent recombination function Rindependent recombination function R

Page 14: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 1414

Different implementations

Duke group etc: 6-dimensional phase space using Wigner function from density matrix

Oregon group: one-dimensional momentum space using phenomenological recombination function

Page 15: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 1515

Duke approach

Low pLow pTT recombination recombination

high phigh pTT fragmentation fragmentation

2 2

23 3 ,

' ' ' 23 3 , ,

( ) / / 2

( , ) ( , (1 ) ) | ( ) |(2 )

( , ) ( , ) ( , (1 ) ) | ( , ) |(2 )

( , ) ( , )

MM

BB

p v T

dN P uE d dxw R xP w R x P x

d P

dN P uE d dxw R xP w R x P w R x x P x x

d P

w p g e e f

Page 16: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 1616

Texas/Ohio approach

Texas A&M/Budapest (Ko, Greco, Levai, Chen)Monte Carlo implementation (with spatial

overlap)Soft and hard partonsSoft-hard coalescence allowed

Ohio State (Lin, Molnar)ReCo as a solution to the opacity puzzle

Page 17: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 1717

, ,..., ,...3 31 2 1 2

1 2 31 2 3

( , , ) ( , , )p

pdx xdx dx x xdNx F x x x R

dx x x x x x x

Basic formulas in Oregon approachBasic formulas in Oregon approach

Page 18: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 1818

Given by the valon distribution of the hadrons

1 2

1 2 3

, ,...1 2 1 2 1 2

, ,...1 2 3 1 2 3 1 2 3

( , ) ( , )

( , , ) ( , , )

KQ Q

p nQ Q Q

R y y y y G y y

R y y y y y y G y y y

1 2

1 2 3

1 2 1 2 1 2

1 2 3 1 2 3 1 2 3

( , ) ( 1)

( , , ) ( 1)

a bQ Q

a b cQ Q Q

G y y y y y y

G y y y y y y y y y

Recombination functions

Page 19: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 1919

Determining R

R p was determined from CTEQ From the parton distributions in proton a=b=1.755, c=1.05 at Q2=1GeV2

R was determined from Drell-Yan processes a=b=0 See Phys. Rev. C 66, 025204

Page 20: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 2020

Fragmentation? Recombination?

Answer: NO FRAGMENTATION

only RECOMBINATION

Fragmentation is not a description of the hadronization process.

It uses phenomenological functions D(z) that give the probability of momentum fraction z of a hadron in a parton jet

Page 21: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 2121

D(z)

qA A

Fragmentation

Page 22: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 2222

Parton shower

q

Initiating parton (hard)

Parton shower (semi-hard)

h

recombination

fragmentation

Page 23: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 2323

Fragmentation function known from fitting e+e- annihilation data S V G S K G K

BKKKKP etc

Recombination function known in the recombination model

Hwa, Phys. Rev. D (1980).

Shower parton distributions

Sij(x1)

i u,d,s,u ,d ,s , g

j u,d,s,u ,d ,s

K, L, G, Ls, Gs

Recombination for fragmentation

Page 24: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 2424

Fitted results

Page 25: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 2525

Shower parton distributions

Page 26: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 2626

Application to Au+Au collisions

Thermalized low pT (soft) partonsHard partons (semi-hard) shower partonsThree types of recombination for mesons

thermal parton & thermal parton thermal parton & shower parton shower parton & shower parton

Joint parton distribution is not factorizable

Page 27: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 2727

Parton sources

Thermal parton distribution is assumed

exp( / )T Tdp C p T

Hard parton distributions fi(k) can be calculated from

pQCD nuclear shadowing nuclear geometry

Page 28: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 2828

Parton sources

Single shower parton distribution Single shower parton distribution isis

( ) ( / )ji i

dpdkkf k S p k

p

Joint two (three) shower parton distributionJoint two (three) shower parton distribution

can also be written downcan also be written down

Page 29: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 2929

Spectrum (0-10%)

Page 30: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 3030

Nuclear modification RAA

AA

T TAA pp

CT T

dNp dp dyd

RdN

Np dp dyd

Page 31: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 3131

p spectrum

Page 32: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 3232

p/

Page 33: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 3333

Centrality dependence

Page 34: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 3434

New physics

Thermal-thermal recombination makes p/ increase from very small value to about 1 at pT3GeV/c

Thermal-shower recombination plays an important role

This recombination can be equivalently regarded as modification of the fragmentation functions

Page 35: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 3535

NCQ scaling

)3(3)(

)2(2)(

22

22

Tquark

Tbaryon

Tquark

Tmeson

pvpv

pvpv

partons moving-co of ecoalescenc

by formation hadronFor AMPT model results:Scaling in v2: partonic dof dominant;

No scaling in v2 : hadronic dof dominant

=>

A tool to search for the possible phase boundary!

The beam energy

dependence of the partonic cross sections will not affect the v2 scaling argument.

=>

Important for Beam Energy Scan program.

Page 36: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 3636

NCQ scaling violation

Page 37: QGP Formation Signals and Quark Recombination Model

Why NCQ scaling ?

C.B. YangC.B. Yang Recombination ModelRecombination Model 3737

φdependence joint distribution collinearAssumptions:

F(p1,p2)=F(p1)F(p2)

Validity of the assumptions?

Page 38: QGP Formation Signals and Quark Recombination Model

Because of quark interactions, joint Because of quark interactions, joint distributions are not products of quark distributions are not products of quark distributionsdistributions

Recombined quarks not necessarily have Recombined quarks not necessarily have the same momentumthe same momentum

Fluctuations: large n=1,3 terms appears in Fluctuations: large n=1,3 terms appears in quarks distributions. They contribute to vquarks distributions. They contribute to v22

NCQ at RHIC may be coincidentNCQ at RHIC may be coincident

C.B. YangC.B. Yang Recombination ModelRecombination Model 3838

Why NCQ scaling violates?

Page 39: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 3939

Application to d+Au collisions

Basic formulas the same as for Au+Au collisions

Soft parton distribution the same form, T not temperature but inverse slope

No jet quenchingNuclear shadowing a little different from

that in Au+Au case

Page 40: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 4040

Pion spectrum

Page 41: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 4141

Centrality dependence

Page 42: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 4242

Cronin effect

Enhancement of hadron spectrum in pAEnhancement of hadron spectrum in pA

collisions at high pcollisions at high pTT

Traditional explanation: Traditional explanation: initial interactions

Many soft collisions before the last hardMany soft collisions before the last hard one, each gives a one, each gives a kT kick

Page 43: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 4343

Cronin effect

)

)

(

(

Central

C T TCP

Peripheral

C T T

dN

N p dp dyR

dN

N p dp dy

Shadowing effect is cancelled partiallyShadowing effect is cancelled partially

Page 44: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 4444

Puzzles

If Cronin effect is really due to initial interactions, dilepton spectrum should show similar effect.

Experimentally, the effect for dilepton is very small, no definite conclusion

Species dependence of the Cronin effect

Page 45: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 4545

From recombination

Medium density depends on centrality

Medium effects are different in mesonand baryon production

Page 46: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 4646

Proton spectrum

T differentT different

for differentfor different

centralitiescentralities

Page 47: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 4747

RCP for proton

Page 48: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 4848

RCP for p &

Page 49: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 4949

DiscussionsDiscussions

QGP signal can be found from the bulkHadronization of partons can be described

by ReCo for d+Au and Au+Au collisionsReCo naturally explains species

dependence, such as baryon enhancement, v2 scaling...

Cronin effect can be interpreted as from final state interactions

Page 50: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 5050

DiscussionsCombination with other models, such as

hydrodynamics etc, is needed and under development

Recombination formulism from pQCD How to calculate the joint distributions?

Page 51: QGP Formation Signals and Quark Recombination Model

C.B. YangC.B. Yang Recombination ModelRecombination Model 5151