QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I....

49
QCD in external magnetic fields Gergely Endr˝ odi Goethe University of Frankfurt 81. Jahrestagung der DPG unster, 28. March 2017

Transcript of QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I....

Page 1: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

QCD in external magnetic fields

Gergely Endrodi

Goethe University of Frankfurt

81. Jahrestagung der DPGMunster, 28. March 2017

Page 2: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

in collaboration with

Gunnar Bali, Falk Bruckmann, Zoltan Fodor, Matteo Giordano,Sandor Katz, Tamas Kovacs, Stefan Krieg, Ferenc Pittler,Andreas Schafer, Kalman Szabo, Jacob Wellnhofer

Page 3: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Outline

I preface: magnetic fields and latticesI lattice quantum chromodynamics

I role of Landau levelsI order parameterI magnetic catalysis

I nonzero temperatureI phase diagramI applications

I summary

1 / 21

Page 4: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Magnetic fields and lattices

Page 5: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Experiments

I conductance of graphene lattices in strong magnetic fields[Ponomarenko et al Nature 497 ’13, Dean et al Nature 497 ’13][Hunt et al Science 340 ’13]

[Ponomarenko et al ’13] [Dean et al ’13]

2 / 21

Page 6: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Landau versus Bloch

• free charged particleI exposed to magnetic field in continuum space: Landau orbits

I on a (crystal) lattice: Bloch waves

• what happens if the two are combined?

3 / 21

Page 7: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Landau versus Bloch

• free charged particleI exposed to magnetic field in continuum space: Landau orbitsI on a (crystal) lattice: Bloch waves

• what happens if the two are combined?

3 / 21

Page 8: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Landau versus Bloch

• free charged particleI exposed to magnetic field in continuum space: Landau orbitsI on a (crystal) lattice: Bloch waves

• what happens if the two are combined?

3 / 21

Page 9: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Hofstadter’s butterfly [Hofstadter ’76]

• relativistic electrons in a magnetic field in 2D [Endrodi ’14]

Bmax ∝ 1/a24 / 21

Page 10: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Hofstadter’s butterfly at low magnetic fields

I Landau levels are visible at low B [Endrodi ’14]

λ2 = 2n · B5 / 21

Page 11: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Hofstadter’s butterfly at low magnetic fields

I Landau levels are visible at low B [Endrodi ’14]

λ2 = 2n · B5 / 21

Page 12: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Hofstadter’s butterfly at low magnetic fields

I Landau levels are visible at low B [Endrodi ’14]

λ2 = 2n · B5 / 21

Page 13: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Hofstadter’s butterfly at low magnetic fields

I Landau levels are visible at low B [Endrodi ’14]

λ2 = 2n · B5 / 21

Page 14: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Translation to lattice QCD

Page 15: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

From quantum mechanics to QCD

I non-interacting electrons strongly interacting quarkssmears out butterfly

I quantum mechanics quantum field theory with pathintegral

Z =∫DAµDψDψ e−S

S =∫

d4x[1

4TrFµνFµν + ψ( /D + m)ψ], /D = γµ(∂µ+igsAµ+iqAµ)

I crystal lattice as a regulator

pmax ≈ 1/a

continuum limit: a→ 0

I energies (measureable) Dirac eigenvalues(not measureable)

6 / 21

Page 16: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

The butterfly in lattice QCD

I continuum limit a→ 0⇒ lowest Landau-level can be separated in full QCD(related to topology) [Bruckmann, Endrodi et al ’16]

7 / 21

Page 17: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

The butterfly in lattice QCD

I continuum limit a→ 0⇒ lowest Landau-level can be separated in full QCD(related to topology) [Bruckmann, Endrodi et al ’16] 7 / 21

Page 18: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

The phases of QCD

Page 19: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Chiral condensate

I physical observable in QCD:condensate of quarks with mass m

ψψ =∑λ

mλ2 + m2

I for m = 0: order parameter for chiral symmetry breaking

SUL(Nf )× SUR(Nf ) ψψ−−→ SULR(Nf )

8 / 21

Page 20: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Chiral condensate

I physical observable in QCD:condensate of quarks with mass m

ψψ =∑λ

mλ2 + m2

I for m = 0: order parameter for chiral symmetry breaking

SUL(Nf )× SUR(Nf ) ψψ−−→ SULR(Nf )

8 / 21

Page 21: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Chiral condensate

I physical observable in QCD:condensate of quarks with mass m

ψψ =∑λ

mλ2 + m2

I for m = 0: order parameter for chiral symmetry breaking

SUL(Nf )× SUR(Nf ) ψψ−−→ SULR(Nf )

8 / 21

Page 22: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Phases of QCD

I chiral symmetry breaking and confinement go hand in hand

ψψ ⇔ PI can be probed by the temperature

[Borsanyi et al ’10, Bruckmann, Endrodi et al ’13]

[Aoki, Endrodi et al ’06]

9 / 21

Page 23: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Phases of QCD

I chiral symmetry breaking and confinement go hand in hand

ψψ ⇔ PI can be probed by the temperature

[Borsanyi et al ’10, Bruckmann, Endrodi et al ’13]

[Aoki, Endrodi et al ’06]

9 / 21

Page 24: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Phases of QCD

I chiral symmetry breaking and confinement go hand in hand

ψψ ⇔ PI can be probed by the temperature

[Borsanyi et al ’10, Bruckmann, Endrodi et al ’13] [Aoki, Endrodi et al ’06]

9 / 21

Page 25: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Condensate in magnetic fields

Page 26: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Landau-levels

lowest Landau-level:I λ well below other eigenvaluesI multiplicity is proportional to magnetic flux Φ = B · L2

higher Landau-levels:I λ >

√2B

• if B sufficiently large, only lowest LL matters10 / 21

Page 27: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Chiral condensate

I physical observable in QCD:condensate of quarks with mass m

ψψ =∑λ

mλ2 + m2

I for B � m2, lowest LL approximation

ψψ ∼ BL2 ∑λ∈ lowest LL

mλ2 + m2

I implication: ψψ increases with B‘magnetic catalysis’ [Gusynin et al ’95]

11 / 21

Page 28: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Magnetic catalysis at T = 0

I magnetic catalysis from first principles[Bali, Bruckmann, Endrodi, Fodor, Katz, Schafer ’12]

lowest LL

I magnetic catalysis is a robust concept: captured by NJL,χPT, AdS/CFT and further models [Andersen, Naylor ’14]

12 / 21

Page 29: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Magnetic catalysis at T = 0

I magnetic catalysis from first principles[Bali, Bruckmann, Endrodi, Fodor, Katz, Schafer ’12]

lowest LL

I magnetic catalysis is a robust concept: captured by NJL,χPT, AdS/CFT and further models [Andersen, Naylor ’14]

12 / 21

Page 30: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Magnetic catalysis at T = 0

I magnetic catalysis from first principles[Bali, Bruckmann, Endrodi, Fodor, Katz, Schafer ’12]

lowest LL

I magnetic catalysis is a robust concept: captured by NJL,χPT, AdS/CFT and further models [Andersen, Naylor ’14]

12 / 21

Page 31: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Summary

lowest Landau-level

magnetic catalysis

13 / 21

Page 32: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Nonzero temperature

Page 33: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Condensate at nonzero temperatures

• going to finite temperatures changes the response qualitativelyinverse magnetic catalysis around Tc[Bruckmann, Endrodi, Kovacs ’13]

14 / 21

Page 34: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Condensate at nonzero temperatures

• going to finite temperatures changes the response qualitativelyinverse magnetic catalysis around Tc[Bruckmann, Endrodi, Kovacs ’13]

14 / 21

Page 35: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Condensate at nonzero temperatures

• going to finite temperatures changes the response qualitativelyinverse magnetic catalysis around Tc[Bruckmann, Endrodi, Kovacs ’13]

14 / 21

Page 36: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Phase diagram

• impact on the QCD phase diagram: Tc(B) decreases[Bali, Bruckmann, Endrodi, Fodor, Katz, Krieg, Schafer, Szabo ’11]

15 / 21

Page 37: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Phase diagram for very strong fields

I go to even stronger B-fieldsI nature of transition changes from crossover to first order

[Endrodi ’15]

16 / 21

Page 38: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Applications

Page 39: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Applications: heavy-ion collisions

I off-central events generate magnetic fields[Kharzeev, McLerran, Warringa ’07]

I strength: B = 1015 T ≈ 1020Bearth ≈ 5m2π

I impact: chiral magnetic effect, anisotropies, elliptic flow,hydrodynamics with B, . . .reviews: [Fukushima ’12] [Kharzeev, Landsteiner, Schmitt, Yee ’14][Kharzeev ’15]

17 / 21

Page 40: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Applications: magnetars

I neutron stars with strong surface magnetic fields[Duncan, Thompson ’92]

I strength on surface: B = 1010 TI strength in core (?): B = 1014 T ≈ 1019Bearth ≈ 0.5m2

π

I impact: convectional processes, mass-radius relation,gravitational collapse/merger [Anderson et al ’08], . . .

18 / 21

Page 41: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Applications: early universe

I large-scale intergalactic magnetic fields 10 µG = 10−9 TI origin in the early universeI generation through a phase transition: electroweak epoch

B ≈ 1019 T [Vachaspati ’91, Enqvist, Olesen ’93]

19 / 21

Page 42: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Applications: low-energy models

I effective theories / low energy models of QCD:incorporate relevant degrees of freedom / mechanismsfor example PNJL model [Gatto, Ruggieri ’11]

eB=19

eB=15

eB=10

eB=0

160 170 180 190 200 2100.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T HMeVL

S�S

0

I models work at low T but not around TcI phase diagram just the opposite of the lattice resultsI some important ingredient is missed [Andersen, Naylor ’14]

[Braun et al ’14, Muller et al ’15, . . . ]20 / 21

Page 43: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Applications: low-energy models

I effective theories / low energy models of QCD:incorporate relevant degrees of freedom / mechanismsfor example PNJL model [Gatto, Ruggieri ’11]

C+ΧSB

D+ΧSR

TT

Χ

P

TB=0 =175 MeV

0 5 10 15 200.8

0.9

1.0

1.1

1.2

eB�mΠ2

TΧ,TPHM

eVL

I models work at low T but not around TcI phase diagram just the opposite of the lattice resultsI some important ingredient is missed [Andersen, Naylor ’14]

[Braun et al ’14, Muller et al ’15, . . . ]20 / 21

Page 44: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Summary

C+ΧSB

D+ΧSR

TT

Χ

P

TB=0 =175 MeV

0 5 10 15 200.8

0.9

1.0

1.1

1.2

eB�mΠ2

TΧ,TPHM

eVL

21 / 21

Page 45: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Backup

Page 46: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Hofstadter’s butterfly [Hofstadter ’76]

I true fractal structure (if the lattice is infinite)I energies accumulate into bands if flux Φ ∈ Q

(2π/a2 and qB are commensurable)I energies isomorphic to the Cantor set if Φ 6∈ Q

(2π/a2 and qB are incommensurable)

1 / 2

Page 47: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Hofstadter’s butterfly [Hofstadter ’76]

I true fractal structure (if the lattice is infinite)I energies accumulate into bands if flux Φ ∈ Q

(2π/a2 and qB are commensurable)I energies isomorphic to the Cantor set if Φ 6∈ Q

(2π/a2 and qB are incommensurable)

1 / 2

Page 48: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Mechanism behind MC and IMC

• two competing mechanisms at finite B[Bruckmann,Endrodi,Kovacs ’13]

I direct (valence) effect B ↔ qfI indirect (sea) effect B ↔ qf ↔ g⟨

ψψ(B)⟩∝∫DAµ e−Sg det( /D(B,A) + m)︸ ︷︷ ︸

sea

Tr[( /D(B,A) + m)−1

]︸ ︷︷ ︸

valence

BB BB

2 / 2

Page 49: QCD in magnetic fields - uni-frankfurt.deendrodi/endrodi_dpg17.pdf · and qB are commensurable) I. energies isomorphic to the Cantor set if Φ 6∈Q (2. π/ a. 2. and qB are incommensurable)

Mechanism behind MC and IMC

• two competing mechanisms at finite B[Bruckmann,Endrodi,Kovacs ’13]

I direct (valence) effect B ↔ qfI indirect (sea) effect B ↔ qf ↔ g⟨

ψψ(B)⟩∝∫DAµ e−Sg det( /D(B,A) + m)︸ ︷︷ ︸

sea

Tr[( /D(B,A) + m)−1

]︸ ︷︷ ︸

valence

2 / 2