Pumping and population inversion - Laser amplification

41
Pumping and population inversion - Laser amplification Gustav Lindgren 2015-02-12

Transcript of Pumping and population inversion - Laser amplification

Pumping and population inversion -

Laser amplification

Gustav Lindgren

2015-02-12

Contents

Part I: Laser pumping and population inversion Steady state laser pumping and population inversion 4-level laser 3-level laser Laser gain saturation Upper-level laser Transient rate equations Upper-level laser Three-level laser

Solve rate-equations in steady-state Introduce the upper-level model Solve rate-equations under transients

Atomic transitions

Energy-level diagram of Nd:YAG Simplify into ->

4-level laser

Rate equations: 𝑑𝑁4

𝑑𝑑= π‘Šπ‘ 𝑁1 βˆ’ 𝑁4 βˆ’ 𝑁4/𝜏41

𝑑𝑁3

𝑑𝑑=

𝑁4

𝜏43βˆ’

𝑁3

𝜏3

𝑑𝑁2

𝑑𝑑=

𝑁4

𝜏42+

𝑁3

𝜏32βˆ’

𝑁2

𝜏21

Atom conservation: 𝑁1 + 𝑁2 + 𝑁3 + 𝑁4 = 𝑁 β€œOptical approximation”, β„πœ”/π‘˜π΅π‘‡ β‰ͺ 1

Pumping - Decay Decay In/Out Same No thermal occupancy

4-level laser

At steady state:

𝑁3 =𝜏3

𝜏43𝑁4

𝑁2 =𝜏21

𝜏32+

𝜏43𝜏21

𝜏42𝜏3𝑁3 ≑ 𝛽𝑁3

For a good laser: 𝛾42β‰ˆ 0 (𝑖. 𝑒. 𝜏42 β†’ ∞),

β†’ 𝛽 β‰ˆπœ21

𝜏32

Fluorescent quantum efficiency,

πœ‚ β‰‘πœ4

𝜏43β‹…

𝜏3

πœπ‘Ÿπ‘Žπ‘‘

Define beta No direct decay into lev2 β†’ Useful photons: from 4 -> upper laser * From upper laser that lase

4-level laser

Population inversion, 𝑁3 βˆ’ 𝑁2

𝑁=

1 βˆ’ 𝛽 πœ‚π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘

1 + 1 + 𝛽 +2𝜏43πœπ‘Ÿπ‘Žπ‘‘

πœ‚π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘

For a good laser: 𝜏43 β‰ͺ πœπ‘Ÿπ‘Žπ‘‘ 𝛽 β‰ˆ 𝜏21/𝜏32 β†’ 0 πœ‚ β†’ 1

⇒𝑁3 βˆ’ 𝑁2

π‘β‰ˆ

π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘

1 + π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘

- Short lev 4 lifetime - Short lower lev lifetime - High fluorescent quantum efficiency

- Red curves

Calculate the pop. Inv.

3-level laser

𝑑𝑁3

𝑑𝑑= π‘Šπ‘ 𝑁1 βˆ’ 𝑁3 βˆ’

𝑁3

𝜏3

𝑁1 + 𝑁2 + 𝑁3 = 𝑁

πœ‚ =𝜏3

𝜏32

𝜏21

πœπ‘Ÿπ‘Žπ‘‘

𝛽 =𝑁3

𝑁2=

𝜏32

𝜏21

𝑑𝑁2

𝑑𝑑=

𝑁3

𝜏32βˆ’

𝑁2

𝜏21

Rate equations:

Atom conservation:

As before, for 3-level BUT lower level is GROUND level Pumping – decay

decays as before As before Different!

3-level laser

At steady state,

𝑁2 βˆ’ 𝑁1

𝑁=

1 βˆ’ 𝛽 πœ‚π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘ βˆ’ 1

1 + 2𝛽 πœ‚π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘ + 1

Requirements for pop. inversion: 𝛽 < 1

π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘ β‰₯1

πœ‚ 1βˆ’π›½

For a good laser, 𝛽 β†’ 0 πœ‚ β†’ 1

𝑁2 βˆ’ 𝑁1

π‘β‰ˆ

π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘ βˆ’ 1

π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘ + 1

No pumping NEGATIVE pop. Inv. ->

As before New

Red curves

Population inversion

All else equal: 3-level requires more pumping

Upper-level laser

Lasing between two levels high above ground-level 𝑑𝑁3

𝑑𝑑 π‘π‘’π‘šπ‘= π‘Šπ‘ 𝑁0 βˆ’ 𝑁3

Assuming, 𝑁0 β‰ˆ 𝑁 ≫ 𝑁3 and pump efficiency, πœ‚π‘, 𝑑𝑁3

𝑑𝑑 π‘π‘’π‘šπ‘β‰ˆ πœ‚π‘π‘Šπ‘π‘ ≑ 𝑅𝑝

Rate equations: 𝑑𝑁2

𝑑𝑑= 𝑅𝑝 βˆ’ π‘Šπ‘ π‘–π‘” 𝑁2 βˆ’ 𝑁1 βˆ’ 𝛾2𝑁2

𝑑𝑁1

𝑑𝑑= π‘Šπ‘ π‘–π‘” 𝑁2 βˆ’ 𝑁1 + 𝛾21𝑁2 βˆ’ 𝛾1𝑁1

Pump into upper lev. most atoms in ground- state Signal included

Upper-level laser

At steady state:

𝑁1 =π‘Šπ‘ π‘–π‘” + 𝛾21

π‘Šπ‘ π‘–π‘” 𝛾1 + 𝛾20 + 𝛾1𝛾2𝑅𝑝

𝑁2 =π‘Šπ‘ π‘–π‘” + 𝛾1

π‘Šπ‘ π‘–π‘” 𝛾1 + 𝛾20 + 𝛾1𝛾2𝑅𝑝

No atom conservation!

For example, changing pump changes N

Upper-level laser

Population inversion:

Δ𝑁21 = 𝑁2 βˆ’ 𝑁1 =𝛾1 βˆ’ 𝛾21

𝛾1𝛾2β‹…

𝑅𝑝

1 +𝛾1 + 𝛾20

𝛾1𝛾2π‘Šπ‘ π‘–π‘”

Define the small-signal population inversion, Δ𝑁0 =𝛾1βˆ’π›Ύ21

𝛾1𝛾2𝑅𝑝 and the effective

recovery time, πœπ‘’π‘“π‘“= 𝜏2 1 +𝜏1

𝜏20 the expression becomes:

Ξ”N21 = Δ𝑁0

1

1 + π‘Šπ‘ π‘–π‘”πœπ‘’π‘“π‘“

For a good laser: 𝛾2 β‰ˆ 𝛾21 𝛾20 β‰ˆ 0

β†’ Ξ”N21 β‰ˆ 𝑅𝑝 𝜏2 βˆ’ 𝜏1 β‹…1

1 + π‘Šπ‘ π‘–π‘”πœ2

The pop. Inv. Saturates as the signal increases

Prop. To pump-rate and lifetimes, saturation behavior

Upper-level laser

β€’ Condition for obtaining inversion, 𝜏1/𝜏21 < 1

i.e. fast relaxation from lower level and slow relaxation from upper level β€’ Small-signal gain,

Δ𝑁0 ∼ 𝑅𝑝 β‹…πœ2

1 βˆ’ 𝜏1/𝜏21

i.e. small-signal gain is proportional to the pump-rate times a reduced upper-level lifetime β€’ Saturation behavior,

Δ𝑁21 = Δ𝑁0 β‹…1

1 + π‘Šπ‘ π‘–π‘”πœπ‘’π‘“π‘“

i.e. the saturation intensity depends only on the signal intensity and the effective lifetime, not on the pumping rate.

Upper-level laser: Transient rate equation

Assume: No signal (π‘Šπ‘ π‘–π‘” = 0), fast lower-level relaxation (𝑁1 β‰ˆ 0),

𝑑𝑁2 𝑑

𝑑𝑑= 𝑅𝑝 𝑑 βˆ’ 𝛾2𝑁2 𝑑

The upper level population becomes,

𝑁2 𝑑 = 𝑅𝑝 𝑑′ π‘’βˆ’π›Ύ2(π‘‘βˆ’π‘‘β€²)𝑑𝑑′𝑑

βˆ’βˆž

Applying a square pulse,

𝑁2 𝑇𝑝 = 𝑅𝑝0𝜏2(1 βˆ’ π‘’βˆ’π‘‡π‘/𝜏2)

Define the pump efficiency,

πœ‚π‘ =𝑁2 𝑑 = 𝑇𝑝

𝑅𝑝0𝑇𝑝=

1 βˆ’ π‘’βˆ’π‘‡π‘/𝜏2

𝑇𝑝/𝜏2

As for instance before a Q-switched pulse

^Pop. In upper lev per pump-photon

3-level laser: pulses

Assume: No signal (π‘Šπ‘ π‘–π‘” = 0),

Fast upper-level relaxation (𝜏3 β‰ˆ 0), 𝑑𝑁1

𝑑𝑑= βˆ’

𝑑𝑁2

π‘‘π‘‘β‰ˆ βˆ’π‘Šπ‘ 𝑑 𝑁1 𝑑 +

𝑁2 𝑑

𝜏

𝑑

𝑑𝑑Δ𝑁 𝑑 = βˆ’ π‘Šπ‘ 𝑑 +

1

πœΞ”π‘ 𝑑 + π‘Šπ‘ 𝑑 βˆ’

1

πœπ‘

Square pulse:

Δ𝑁 𝑑

𝑁=

(π‘Šπ‘πœ βˆ’ 1) βˆ’ 2π‘Šπ‘ 𝜏 β‹… exp [βˆ’ π‘Šπ‘πœ + 1 𝑑/𝜏]

π‘Šπ‘πœ + 1

If pump pulse duration is short (𝑇𝑝 β‰ͺ 𝜏),

and the pumping rate is high (π‘Šπ‘πœ ≫ 1

Δ𝑁 𝑇𝑝𝑁

β‰ˆ 1 βˆ’ 2π‘’βˆ’π‘Šπ‘π‘‡π‘

3-level laser from prev, no signal

Integrate to get pop. Inv:

Simple model-agrees with experiment!

Summary

Steady state laser pumping and population inversion 4-level laser

𝑁3 βˆ’ 𝑁2

π‘β‰ˆ

π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘

1 + π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘

3-level laser

𝑁2βˆ’π‘1

π‘β‰ˆ

π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘ βˆ’ 1

1 + π‘Šπ‘πœπ‘Ÿπ‘Žπ‘‘

Laser gain saturation Upper-level laser, saturation behavior

Δ𝑁21 = Δ𝑁0 β‹…1

1+π‘Šπ‘ π‘–π‘”πœπ‘’π‘“π‘“

Transient rate equations Upper-level laser

πœ‚π‘ =𝑁2 𝑑 = 𝑇𝑝

𝑅𝑝0𝑇𝑝=

1 βˆ’ π‘’βˆ’π‘‡π‘/𝜏2

𝑇𝑝/𝜏2

Three-level laser

Δ𝑁 𝑇𝑝

π‘β‰ˆ 1 βˆ’ 2π‘’βˆ’π‘Šπ‘π‘‡π‘

Difference between three and four-level systems, and why four-level systems are superior

Saturation intensity is independent of the pumping-rate ”i.e. The signal intensity

needed to reduce the pop. Inv. To half its initial value doesn’t depend on the pumping rate”

Short pulses are needed to obtain high pumping efficiency

These simple models give good agreement with reality

Part II: Laser amplification Wave propagation in atomic media Plane-wave approximation The paraxial wave equation Single-pass laser amplification Gain narrowing Transition cross-sections Gain saturation Power extraction

Contents

Solve wave-eqs See effects on the gain

Wave propagation in an atomic medium

Maxwell’s equations: 𝛻π‘₯𝑬 = βˆ’π‘—πœ”π‘© 𝛻π‘₯𝑯 = 𝑱 + π‘—πœ”π‘« Constitutive relations: 𝑩 = πœ‡π‘― 𝑱 = πœŽπ‘¬ 𝑫 = πœ–π‘¬ + π‘·π‘Žπ‘‘ = πœ– 1 + πŒπ‘Žπ‘‘ 𝑬 Vector field of the form:

𝝐 𝒓, 𝑑 =1

2𝑬 𝒓 π‘’π‘—πœ”π‘‘ + 𝑐. 𝑐

Assume a spatially uniform material (𝛻 β‹… 𝐸 = 0), and apply 𝛻 Γ— to get the wave equation:

𝛻2 + πœ”2πœ‡πœ– 1 + πœ’ π‘Žπ‘‘ βˆ’π‘—πœŽ

πœ”πœ–πΈ π‘₯, 𝑦, 𝑧 = 0

Material parameters: πœ‡ – magnetic permeability 𝜎 – ohmic losses πœ– – dielectric permittivity (not counting atomic transitions) πœ’π‘Žπ‘‘(πœ”) – resonant susceptibility due to laser transitions

Plane-wave approximation

Consider a plane wave,

πœ•2𝐸

πœ•π‘₯2 ,πœ•2𝐸

πœ•π‘¦2 β‰ͺπœ•2𝐸

πœ•π‘§2

i.e. 𝛻2 →𝑑2

𝑑𝑧2

The equation reduces to:

𝑑𝑧2 + πœ”2πœ‡πœ– 1 + πœ’ π‘Žπ‘‘ βˆ’

π‘—πœŽ

πœ”πœ–πΈ 𝑧 = 0

<- Ok approx. If wavefront is flat

Plane-wave approximation

Without losses: 𝑑𝑧

2 + πœ”2πœ‡πœ– 𝐸 𝑧 = 0, Assume solutions on the form: 𝐸 𝑧 = π‘π‘œπ‘›π‘ π‘‘ β‹… π‘’βˆ’Ξ“π‘§

β‡’ Ξ“2 + πœ”2πœ‡πœ– 𝐸 = 0 The allowed values for Ξ“ are, Ξ“ = Β±π‘—πœ” πœ‡πœ– ≑ ±𝑗𝛽 With the solution,

𝝐 𝑧, 𝑑 =1

2𝐸+𝑒𝑗 πœ”π‘‘βˆ’π›½π‘§ + 𝐸+

βˆ—π‘’βˆ’π‘— πœ”π‘‘βˆ’π›½π‘§ +1

2πΈβˆ’π‘’π‘— πœ”π‘‘+𝛽𝑧 + πΈβˆ’

βˆ—π‘’βˆ’π‘— πœ”π‘‘+𝛽𝑧

The free space propagation constant, 𝛽, may be written:

𝛽 = πœ” πœ‡πœ– =πœ”

𝑐=

2πœ‹

πœ†

Different beta from last chapter

First, no losses

Plane-wave approximation

With laser action and losses:

𝑑𝑧2 + 𝛽2 1 + πœ’ π‘Žπ‘‘ βˆ’

π‘—πœŽ

πœ”πœ–πΈ 𝑧 = 0

Assuming 𝐸 𝑧 = π‘π‘œπ‘›π‘ π‘‘ β‹… π‘’βˆ’Ξ“π‘§, as before:

Ξ“ = 𝑗𝛽 1 + πœ’ π‘Žπ‘‘β€² πœ” + π‘—πœ’ π‘Žπ‘‘

β€²β€² πœ” βˆ’ π‘—πœŽ/πœ”πœ–

Normally, πœ’ π‘Žπ‘‘ πœ” ,𝜎

πœ”πœ–β‰ͺ 1:

Ξ“ β‰ˆ 𝑗𝛽 1 +1

2πœ’π‘Žπ‘‘

β€² πœ” +𝑗

2 πœ’π‘Žπ‘‘

β€²β€² πœ” βˆ’π‘—πœŽ

2πœ”πœ–=

≑ 𝑗𝛽 + π‘—Ξ”π›½π‘š πœ” βˆ’ π›Όπ‘š πœ” + 𝛼0

The final solution becomes:

𝝐 𝑧, 𝑑 = 𝑅𝑒𝐸 0 exp π‘—πœ”π‘‘ βˆ’ 𝑗 𝛽 + π›₯π›½π‘š πœ” 𝑧 + π›Όπ‘š πœ” βˆ’ 𝛼0 𝑧

1 + 𝛿 β‰ˆ 1 +𝛿

2

Put losses back Expand the sqrt Define four terms

Propagation Factors

𝝐 𝑧, 𝑑 = 𝑅𝑒𝐸 0 exp π‘—πœ”π‘‘ βˆ’ 𝑗 𝛽 + π›₯π›½π‘š πœ” 𝑧 + π›Όπ‘š πœ” βˆ’ 𝛼0 𝑧 Linear phase-shift (Red) 𝛽 – Plane-wave propagation constant, fundamental phase variation, Nonlinear phase-shift (Blue) Ξ”π›½π‘š πœ” – Additional atomic phase- shift due to population inversion β†’ Total phase-shift (Green) Gain (Orange) π›Όπ‘š πœ” – Atomic gain or loss coefficient (due to transitions) Background 𝛼0 – Ohmic background loss

Phase-shift loss/gain

Exceptions

Larger atomic gain or absorption effects

The results so far are based on the assumption that πœ’ π‘Žπ‘‘ βˆ’π‘—πœŽ

πœ”πœ–β‰ͺ 1, however, there are a

few situations of interest where this doesn’t hold: - Absorption in metals and semiconductors, at frequencies higher than the bandgap

energy, the effective conductivity, 𝜎 can become very large

- Absorption on strong resonance lines in metal vapor, the transitions are very strongly allowed giving a high absorption per unit length

For expanding the sqrt Big sigma Big chi

The paraxial wave equation

The full wave-equation,

𝛻2 + 𝛽2 1 + πœ’ π‘Žπ‘‘ βˆ’π‘—πœŽ

πœ”πœ–π‘¬ 𝒓 = 0

New ansatz,

𝐸 𝒓 ≑ 𝑒 𝒓 π‘’βˆ’π‘—π›½π‘§ Insert into the wave equation,

πœ•2𝑒

πœ•π‘₯2 + πœ•2𝑒

πœ•π‘¦2 +πœ•2𝑒

πœ•π‘§2 βˆ’ 2π‘—π›½πœ•π‘’

πœ•π‘§βˆ’ 𝛽2𝑒 π‘’βˆ’π‘—π›½π‘§ = 0

Assume that 𝑒 𝒓 changes slowly along the z-direction,

πœ•2𝑒

πœ•π‘§2β‰ͺ 2𝛽

πœ•π‘’

πœ•π‘§

and πœ•2𝑒

πœ•π‘§2β‰ͺ

πœ•2𝑒

πœ•π‘₯2,πœ•2𝑒

πœ•π‘¦2

β‡’ 𝛻𝑑2𝑒 βˆ’ 2𝑗𝛽

πœ•π‘’

πœ•π‘§+ 𝛽2 πœ’ π‘Žπ‘‘ βˆ’

π‘—πœŽ

πœ”πœ–π‘’ = 0

Want to handle transverse variations change const -> u(r) ”Paraxial wave equation”

Diffraction- and propagation effects

Rewrite: πœ•π‘’ 𝒓

πœ•π‘§= βˆ’

𝑗

2𝛽 𝛻𝑑

2𝑒 𝒓 βˆ’ [𝛼0βˆ’π›Όπ‘š + π‘—Ξ”π›½π‘š]𝑒 𝒓

𝛼0, π›Όπ‘š πœ” , and π‘—Ξ”π›½π‘š πœ” are defined as before Two terms:

Diffraction, βˆ’π‘—

2𝛽 𝛻𝑑

2

Ohmic and atomic gain/loss, βˆ’[𝛼0βˆ’π›Όπ‘š + π‘—Ξ”π›½π‘š]

Separate terms –> Independent to first order, gain and phase-shift results are the same as for plane waves

Re-write the equation Four terms, same as before Reproduce the plane-wave result

Laser amplification

The laser gain after length L:

𝑔 πœ” ≑𝐸 𝐿

𝐸 0

In terms of intensity,

𝐺 πœ” =𝐼 𝐿

𝐼 0=

𝐸 𝐿2

𝐸 02 = exp 2π›Όπ‘š πœ” 𝐿 βˆ’ 2𝛼0𝐿 = exp [π›½πœ’β€²β€² πœ” 𝐿 βˆ’

𝜎

πœ–π‘πΏ]

For most lasers, 𝛼0 β‰ͺ π›Όπ‘š β‡’ 𝐺 πœ” β‰ˆ exp (π›½πœ’β€²β€² πœ” 𝐿)

Calculate the gain from def. alpha exponential dependence on chi

Gain narrowing

The gain, 𝐺 πœ” ∼ exp πœ’β€²β€² πœ” β†’ Narrower frequency dependence, i.e. ”Gain Narrowing”

Laser gain & Atomic lineshape FWHM bandwidth is lowered by 30-40%

Absorbing media have opposite sign of πœ’(πœ”) β†’ ”Absorption broadening”

Absorption broadening

Uninverted population -> absorption broadening

For a black-body: Ξ”π‘ƒπ‘Žπ‘π‘  = 𝜎 β‹… 𝐼

Thin slab, atomic densities N1 and N2, cross-sections 𝜎12 and 𝜎21

Net absorbed power: Ξ”π‘ƒπ‘Žπ‘π‘  = 𝑁1𝜎12 βˆ’ 𝑁2𝜎21 β‹… 𝑃Δ𝑧 The cross-sections are related, 𝑔1𝜎12 = 𝑔2𝜎21 Convert power β†’ intensity:

1

𝐼

𝑑𝐼

𝑑𝑧= βˆ’Ξ”π‘12𝜎21

Previously:

1

𝐼

𝑑𝐼

𝑑𝑧= βˆ’2π›Όπ‘š(πœ”)

Stimulated transition cross-sections

Loss or gain can be calculated from cross-sections and atomic density

β‡’ 2π›Όπ‘š πœ” = Δ𝑁12𝜎21(πœ”)

Cross-section formula

From previous page: 2π›Όπ‘š πœ” = Δ𝑁12𝜎21(πœ”)

From definition of 𝛼: π›Όπ‘š πœ” =πœ‹πœ’β€²β€² πœ”

πœ†

β‡’ 2π›Όπ‘š πœ” = Ξ”π‘πœŽ πœ” =2πœ‹

πœ† πœ’β€²β€²(πœ”)

Using the full expression for πœ’:

𝜎 πœ”π‘Ž =3βˆ—

2πœ‹

π›Ύπ‘Ÿπ‘Žπ‘‘

Ξ”πœ”π‘Žπœ†2 β‹…

1

1 + 2(πœ” βˆ’ πœ”π‘Ž)/Ξ”πœ”π‘Ž2

Cross-section estimation: Assume, Ξ”πœ”π‘Ž ≑ π›Ύπ‘Ÿπ‘Žπ‘‘. (purely radiative transmission), 3 = 3βˆ—, (all atoms aligned)

β‡’ πœŽπ‘šπ‘Žπ‘₯ =3πœ†2

2πœ‹β‰ˆ

πœ†2

2β‰ˆ 10βˆ’9π‘π‘š2

The cross section is far greater than the area of an atom, due to its internal resonance.

The cross-section is a function of wavelength, transition rate and lineshape

Estimate the max cross-section

Real cross-sections

Allowed transitions in gas and non-allowed in solids -> π‰π’ˆπ’‚π’” β‰ͺ π‰π’”π’π’π’Šπ’…

πœ†2

2> Real cross-sections ≫ Atom area

Population difference saturation

Gain saturation, In a medium,

𝑑𝐼

𝑑𝑧= Β±2π›Όπ‘šπΌ = Β±Ξ”π‘πœŽπΌ

As shown previously, Δ𝑁 saturates according to:

Δ𝑁 = Δ𝑁0 β‹…1

1 + π‘Šπœπ‘’π‘“π‘“= Δ𝑁0 β‹…

1

1 + 𝐼/πΌπ‘ π‘Žπ‘‘

𝑁0 - unsaturated or small signal gain πΌπ‘ π‘Žπ‘‘ - saturation intensity

Stimulated-transition probability, From before, Ξ”π‘ƒπ‘Žπ‘π‘  = 𝑁1𝜎12 βˆ’ 𝑁2𝜎21 β‹… 𝑃Δ𝑧 From rate equation analysis,Ξ”π‘ƒπ‘Žπ‘π‘  = π‘Š12𝑁1 βˆ’ π‘Š21𝑁2 π΄Ξ”π‘§β„πœ”π‘Ž

β‡’ W =ΟƒI

ℏω

i.e. the cross-section, the intensity and the stimulated transition probability are interdependent

As Δ𝑁 saturates, the gain saturates

Population difference saturation

At the line center: From previous slide,

2π›Όπ‘š(πœ”, 𝐼) =Δ𝑁0

1 + 𝐼/πΌπ‘ π‘Žπ‘‘=

Δ𝑁0𝜎

1 + πœŽπœπ‘’π‘“π‘“/β„πœ” 𝐼

β†’ πΌπ‘ π‘Žπ‘‘ β‰‘β„πœ”

πœŽπœπ‘’π‘“π‘“

i.e. 𝐼 = πΌπ‘ π‘Žπ‘‘: one incident photon within the cross-section per recovery time Off center: The expression is modified by the lineshape,

2π›Όπ‘š(πœ”, 𝐼) =Δ𝑁0𝜎

1 +𝐼

πΌπ‘ π‘Žπ‘‘β‹…

11 + 𝑦2

Where y is the normalized frequency detuning,

𝑦 = 2 πœ” βˆ’ πœ”0 /Ξ”πœ” Frequency dependence due to, transition lineshape and saturation behavior

Re-arrange prev expressions

Practical values

From previous slide,

πΌπ‘ π‘Žπ‘‘ β‰‘β„πœ”

πœŽπœπ‘’π‘“π‘“

πΌπ‘ π‘Žπ‘‘ is an important parameter since little only little gain will be obtained once the intensity approaches this level. πΌπ‘ π‘Žπ‘‘ is independent of the pumping intensity, since neither 𝜎 nor πœπ‘’π‘“π‘“ are intensity

dependent. However, harder pumping does increase the small-signal gain

Laser type: β„πœ” 𝜎 πœπ‘’π‘“π‘“ πΌπ‘ π‘Žπ‘‘

Gas

10βˆ’19 𝐽 10βˆ’πŸπŸ‘ π‘π‘š2 10βˆ’πŸ” 𝑠 1 𝑾/π‘π‘š2

Solid-state

10βˆ’19 𝐽 10βˆ’πŸπŸ— π‘π‘š2 10βˆ’πŸ‘ 𝑠 1 π’Œπ‘Ύ/π‘π‘š2

I-sat varies a lot between materials

Saturation in laser amplifiers

As a signal passes through an amplifier, it grows exponentially with distance until the intensity approaches πΌπ‘ π‘Žπ‘‘ For a single pass amplifier:

1

𝐼(𝑧)

𝑑𝐼

𝑑𝑧= 2π›Όπ‘š 𝐼 =

2π›Όπ‘š0

1 + 𝐼(𝑧)/πΌπ‘ π‘Žπ‘‘

Integrating,

1

𝐼+

1

πΌπ‘ π‘Žπ‘‘π‘‘πΌ =

𝐼=πΌπ‘œπ‘’π‘‘

𝐼=𝐼𝑖𝑛

2π›Όπ‘š0 𝑑𝑧

𝑧=𝐿

𝑧=0

gives:

lnπΌπ‘œπ‘’π‘‘

𝐼𝑖𝑛+

πΌπ‘œπ‘’π‘‘ βˆ’ πΌπ‘–π‘›πΌπ‘ π‘Žπ‘‘

= 2π›Όπ‘š0𝐿 = ln 𝐺0

where, 𝐺0 is the small-signal gain

Calculate the saturation

Saturation in laser amplifiers

The total gain,

𝐺 β‰‘πΌπ‘œπ‘’π‘‘

𝐼𝑖𝑛= 𝐺0 β‹… exp(βˆ’

πΌπ‘œπ‘’π‘‘ βˆ’ πΌπ‘–π‘›πΌπ‘ π‘Žπ‘‘

)

Is the unsaturated gain, reduced by a factor exponentially dependent on πΌπ‘œπ‘’π‘‘ βˆ’ 𝐼𝑖𝑛

Saturation in laser amplifiers

Plotting the normalized output intensity vs the normalized input intensity, it is clear that the transmission tends to unity as the input intensity is increased -The amplifier becomes transparent.

Extracted Intensities

Output Intensities

Gain starts at G0 and declines towards 0 dB

Power-extraction

Define the extracted intensity,

𝐼𝑒π‘₯π‘‘π‘Ÿ ≑ πΌπ‘œπ‘’π‘‘ βˆ’ 𝐼𝑖𝑛 = ln𝐺0

𝐺⋅ πΌπ‘ π‘Žπ‘‘

As the amplifier saturates, 𝐺 β†’ 1,

πΌπ‘Žπ‘£π‘Žπ‘–π‘™ = lim𝐺→1

ln𝐺0

𝐺⋅ πΌπ‘ π‘Žπ‘‘ = ln 𝐺0 β‹… πΌπ‘ π‘Žπ‘‘

Using ln 𝐺0 = 2π›Όπ‘š0𝐿:

πΌπ‘Žπ‘£π‘Žπ‘–π‘™ = 2π›Όπ‘š0𝐿 β‹… πΌπ‘ π‘Žπ‘‘ = Δ𝑁0𝜎𝐿 β‹…β„πœ”

πœŽπœπ‘’π‘“π‘“

And re-writing: πΌπ‘Žπ‘£π‘Žπ‘–π‘™

𝐿≑

π‘ƒπ‘Žπ‘£π‘Žπ‘–π‘™

𝑉=

Δ𝑁0β„πœ”

πœπ‘’π‘“π‘“

i.e. the maximum available power is the total inversion energy, Δ𝑁0β„πœ”, once every recovery time, πœπ‘’π‘“π‘“

Calculate the extracted power

Power-extraction efficiency

Full power extraction requires complete saturation of the amplifier which gives low small-signal gain. Define the extraction efficiency,

πœ‚π‘’π‘₯π‘‘π‘Ÿ ≑𝐼𝑒π‘₯π‘‘π‘Ÿ

πΌπ‘Žπ‘£π‘Žπ‘–π‘™=

ln G0 βˆ’ ln 𝐺

ln 𝐺0= 1 βˆ’

𝐺𝑑𝐡

𝐺0,𝑑𝐡

i.e. there’s a tradeoff between effiency and small-signal gain for single-pass amplifiers.

Summary

Wave propagation in atomic media Plane-wave approximation,

𝑑𝑧2 + 𝛽2 1 + πœ’ π‘Žπ‘‘ βˆ’

π‘—πœŽ

πœ”πœ–πΈ 𝑧 = 0

The paraxial wave equation,

πœ•π‘’ 𝒓

πœ•π‘§= βˆ’

𝑗

2𝛽 𝛻𝑑

2𝑒 𝒓 βˆ’ [𝛼0βˆ’π›Όπ‘š + π‘—Ξ”π›½π‘š]𝑒 𝒓

Single-pass laser amplification Gain narrowing,

𝐺 πœ” ∼ exp πœ’β€²β€² πœ” Transition cross-sections,

2π›Όπ‘š πœ” = Δ𝑁12𝜎21(πœ”) Gain saturation,

𝐺 = 𝐺0 β‹… exp(βˆ’πΌπ‘œπ‘’π‘‘ βˆ’ 𝐼𝑖𝑛

πΌπ‘ π‘Žπ‘‘)

Power extraction,

πœ‚π‘’π‘₯π‘‘π‘Ÿ = 1 βˆ’πΊπ‘‘π΅

𝐺0,𝑑𝐡

𝛽 – Plane-wave propagation constant, fundamental phase variation, Ξ”π›½π‘š πœ” – Additional atomic phase- shift due to population inversion π›Όπ‘š πœ” – Atomic gain or loss coefficient (due to transitions) 𝛼0 – Ohmic background loss Diffraction and gain are separate to first order

30-40% lower FWHM bandwidth

Low signal gain is saturated by a factor exponentialy dependent on the intensity difference

Loss/gain can be calculated from atomic density and cross-sections

There’s a tradeoff between efficiency and small-signal gain