PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

11
 Doc. No. : PTM-30-R2-CS-002 Rev. No. : A Table of Contents Page 1. TANK DESIGN CONDITION 5 2. SKETCH 6 3. CALCULATION 7 3.1.DESIGN DATA 7 3.2.SHELL PLATE 7 3.3.SHELL STABILITY AGAINST WIND LOAD 7 3.4.BOTTOM PLATE 7 3.5.ROOF DESIGN, SUPPORTED CONE ROOF 8 3.6.ROOF STRUCTURE DESIGN 8 3.7.SEISMIC DESIGN FOR EMPTY CONDITION 9 3.8.SEIMIC DESIGN FOR OPERATION CONDITION 10 3.9.WIND LOAD FOR EMPTY CONDITION 11 STRENGTH CALCULATION 14'-0 ID x 18'-0 H TEST TANK PTM-30-R2-CS-002 Rev.A 4 of 12 3.10.WIND LOAD FOR OPERATION CONDITION 12 3.11.SLIDDING FORCE, Fs 12  PTM-30-R2-CS-002 Rev.A 4 of 12

description

PTM

Transcript of PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

Page 1: PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

7/18/2019 PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

http://slidepdf.com/reader/full/ptm-30-r2-cs-002strenght-calculation-for-test-tank-t-105a 1/11

Doc. No. : PTM-30-R2-CS-002

Rev. No. : A

Table of Contents

Page

1. TANK DESIGN CONDITION 5

2. SKETCH 6

3. CALCULATION 7

3.1.DESIGN DATA 7

3.2.SHELL PLATE 7

3.3.SHELL STABILITY AGAINST WIND LOAD 7

3.4.BOTTOM PLATE 7

3.5.ROOF DESIGN, SUPPORTED CONE ROOF 8

3.6.ROOF STRUCTURE DESIGN 8

3.7.SEISMIC DESIGN FOR EMPTY CONDITION 9

3.8.SEIMIC DESIGN FOR OPERATION CONDITION 10

3.9.WIND LOAD FOR EMPTY CONDITION 11

STRENGTH CALCULATION14'-0 ID x 18'-0 H TEST TANK

PTM-30-R2-CS-002 Rev.A 4 o

3.10.WIND LOAD FOR OPERATION CONDITION 12

3.11.SLIDDING FORCE, Fs 12

 

PTM-30-R2-CS-002 Rev.A 4 o

Page 2: PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

7/18/2019 PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

http://slidepdf.com/reader/full/ptm-30-r2-cs-002strenght-calculation-for-test-tank-t-105a 2/11

PTM-30-R2-CS-002 Rev.A 5 oPTM-30-R2-CS-002 Rev.A 5 o

Page 3: PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

7/18/2019 PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

http://slidepdf.com/reader/full/ptm-30-r2-cs-002strenght-calculation-for-test-tank-t-105a 3/11

Doc. No. : PTM-30-R2-CS-002

Rev. No. : A

1. TANK DESIGN CONDITION

1. TAG NUMBER : T-105

SERVICE : MIXED LIQUID

NOMINAL CAPACITY : BBL = CU.M

TANK INSIDE DIAMETER : FT = mm

TANK HEIGHT : FT = mm

MAX. LIQUID LEVEL : FT = mmMIN. LIQUID LEVEL : FT = mm

CONTENT NAME : MIXED LIQUID

FLASH POINT :

SPECIFIC GRAVITY :

DESIGN CODE : API STANDARD 650

TEMPERATURE OPERATING : 0F = 0

C

DESIGN : 0F = 0

C

PRESSURE OPERATING : mm. H2O psig.

DESIGN : mm. H2O psig.

DESIGN VACUUM : mm. H2O psig.

PUMPING RATES IN : Cu.m/hour

OUT : Cu.m/hour

CORROSION ALLOWANCE SHELL : mm

BOTTOM : mm

ROOF : mm

ROOF STRUCTURE : mm

NOZZLES & MANHOLES : mm

REFERENCE :

ROOF DESIGN TYPE : SELF SUPPORTED CONE ROOF

ROOF TYPE SLOPE : 1/6

BOTTOM SLOPE : 1/120

DESIGN LOAD EARTHQUAKE FACTOR : API STANDARD 650 APPENDIX E

 

14.700636

14.700636

3.0

3.0

1.53.0

1.00

173

250

78.33

121.11

1.5

10338

10338

18.00 5486.4

16.36 4987.63641.15 350

STRENGTH CALCULATION14'-0 ID x 18'-0 H TEST TANK

493.5 78.5

14.00 4267.2

PTM-30-R2-CS-002 Rev.A 7 of 12

Z : Zone 3 In ones an Co e

I :

MAX. WIND SPEED : m/s = KPH

SNOW LOAD :

MATERIAL ROOF : ASTM- A36

SHELL : ASTM- A36

BOTTOM : ASTM- A36

PIPE : A 106 B

FLANGE : A 105/ A36

 

18.945.26

.

1

PTM-30-R2-CS-002 Rev.A 7 of 12

Page 4: PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

7/18/2019 PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

http://slidepdf.com/reader/full/ptm-30-r2-cs-002strenght-calculation-for-test-tank-t-105a 4/11

Doc. No. : PTM-30-R2-CS-002

Rev. No. : A

2. SKETCH

ID = 14 FT 0 IN = MM

H = 18 FT 0 IN = MM

506.7

[ 150x75x6.5x9 t

6

L-50X50X6 1

9.5

t

t

t

H' 5486.4 H 4987.6 t

t

0.0

0.0

6.35

6.35

5486.4

1828.8

1828.8

6.35

STRENGTH CALCULATION14'-0" ID x 18'-0" H TEST TANK

0

0

0

6.00

4267.2

5486.4

SHELL-2

SHELL-3

SHELL-4

α

SHELL-5

SHELL-6

ID. 7620

t

ID. t

OD.

BCD.

NOMINAL CAPACITY =   π X ID2/4 X H' = 78.46 Cu.m = BBL

WORKING CAPACITY =   π X ID2/4 X (H-LL) = 71.33 Cu.m = BBL

MATERIAL SPEC. SHELL : ASTM- A36

BOTTOM : ASTM- A36

ROOF : ASTM- A36

4431.9

4631.9

493.51

448.65

1828.8 6.35

9.534267.2

SHELL-1

PTM-30-R2-CS-002 Rev.A 9 of 1

Page 5: PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

7/18/2019 PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

http://slidepdf.com/reader/full/ptm-30-r2-cs-002strenght-calculation-for-test-tank-t-105a 5/11

RAFTER 150 75 6.5 9

TOPANGLE 50 50 6

[ 150x75x6.5x9

150 75 6.5 9

7315.2

6976

DIA 4.27 m

HEIGHT 5.49 m

VOL 78 Cu.m

PTM-30-R2-CS-002 Rev.A 10 of 1

Page 6: PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

7/18/2019 PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

http://slidepdf.com/reader/full/ptm-30-r2-cs-002strenght-calculation-for-test-tank-t-105a 6/11

Doc. No. : PTM-30-R2-CS-002

Rev. No. : A

3. CALCULATION

3.1.DESIGN DATA

CODE = API 650

DESIGN PRESSURE P = mm.H2O

DESIGN TEMPERATURE T =0

CWIND VELOCITY V = m/sec.

SEISMIC FACTOR Cs =

TANK DIAMETER (ID) D = mm

MAX. FILLING HEIGHT H = mm

TANK HEIGHT H' = mm

SPECIFIC GRAVITY OF LIQUID G = kg/Cu.m

CORROSION ALLOWANCE SHELL C.A = mm

BOTTOM C.A = mm

ROOF C.A = mm

MATERIAL SHELL : ASTM- A36 YIELD STRENGTH AT AMBIENT TEMP. Sy SHELL : kg/Sq.Cm

BOTTOM : ASTM- A36 Sy BOTTOM : kg/Sq.Cm

ROOF : ASTM- A36 Sy ROOF : kg/Sq.CmTENSILE STRENGTH AT AMBEINT TEMP. ST SHELL : kg/Sq.Cm

ST BOTTOM : kg/Sq.Cm

ST ROOF : kg/Sq.Cm

3.2.SHELL PLATE

TANK DIAMETER (ID) D = m

HEIGHT FROM THE BOTTOM OF COURSE UNDER CONSIDERATION TO H =

THE FILLING HEIGHT LIMITED BY THE TANK OVER FLOW

EQUIV. HEIGHT DUE TO INTERNAL PRESS. (P/1000G) H1 =

DESIGN SPECIFIC GRAVITY OF LIQUID G =

CORROSION ALLOWANCE OF SHELL C.A =

ALLOWABLE STRESS FOR DESIGN CONDITION Sd = k /S .Cm

3.00

1,631.11

4.27

4.99

1.5

-

1.00

4,077.78

4,077.78

4,987.64

5,486.40

3.0

3.0

0.08

4,267.20

2,531.04

2,531.04

2,531.04

STRENGTH CALCULATION14'-0" ID x 18'-0" H TEST TANK

1

4,077.78

10,338.00

121.118.47

ALLOWABLE STRESS FOR HYDRO.TEST CONDITION St = kg/Sq.Cm

REDUCTION FACTOR (APP. M TABLE M-1) F =

DESIGN THICKNESS, td = (50xDx(H+H1-0.3048)xG/Sd)+C.A

HYDROSTATIC TEST THICKNESS, th = 50xDx(H'-0.3048)xG/St

3.3.SHELL STABILITY AGAINST WIND LOAD

h1= H1=

h2= H2=

h3= H3=

h4= H4=

h5= H5=

h6= H5=

h7= H5=

Hi < H "WIND GIRDER IS NOT REQUIRED"

H = 9.4644 x t x (t/D)^1.5 x (44.7/V)̂ 2

t = THICKNESS OF SHELL COURSE PLATE, CORRODED (mm)

V = WIND VELOCITY (m/sec.)

Hi = hi x (t1/t2)^5/2

t1 = THICKNESS OF TOP SHELL COURSE

t2 = THICKNESS OF CONSIDERED SHELL COURSE

3.4.BOTTOM PLATE

MINIMUM THICKNESS 6.35 + C.A = mm

USE THICKNESS = mm

1,747.62

0.91

hi (m)

SPACE

WIDTH OF

COURSEH'(m)

HYDROTEST CONDITION

th USE THK

0.9 6.35

TOP SHELL

THK (mm)

CORR.

1 1.8 5.0 3.06

WIDTH OF

COURSEH (m) td

COURSE

NO.

DESIGN CONDITION

USE THK

1.8 3.7 0.4 6.356.35 1.8 5.5 0.6

3 1.8 1.3 3.01

6.352 1.8 3.2 3.04 6.35

0.0 0.0 0.0 6.35

6.35 1.8 1.8 0.2

5 0.0 -0.5 2.99

6.35

4 0.0 -0.5 2.99 6.35

0.00 0.0 0.0 0.0

0.00 0.0 0.0

0.00

H (m)JUDGE

0.9 < 3,042.0

0.000.0

0.9

0.9 6.35

0.9 6.35 6.35 0.9

0.9 0.00 0.00 #DIV/0!

6.35 0.9

9.35

9.53

#DIV/0! 0.0

0.0

0.0

0.00 #DIV/0!

3,042.0

< 3,042.0

6 0.0 0.0 3.00

0.9 6.35 6.35

6.35

0.0

3,042.0

<

THK (mm)

#DIV/0!

<

TRANSPOSED

Hi (m)

0.9 0.00

0.0 0.00 0.00

PTM-30-R2-CS-002 Rev.A 12 of 12

Page 7: PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

7/18/2019 PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

http://slidepdf.com/reader/full/ptm-30-r2-cs-002strenght-calculation-for-test-tank-t-105a 7/11

Doc. No. : PTM-30-R2-CS-002

Rev. No. : ASTRENGTH CALCULATION

14'-0" ID x 18'-0" H TEST TANK

3.5.ROOF DESIGN, SUPPORTED CONE ROOF

MINIMUM THICKNESS = mm

USE THICKNESS = mm

THICKNESS OF SHELL (CORRODED) tc = mm = in.

THICKNESS OF ROOF (CORRODED) th = mm = in.

SLOPE   α = deg.

INSIDE RADIUS (CORRODED) Rc = mm

R2 = Rc/sin α = mm

Wc = 0.6 x (Rc x tc)^0.5 = mm

Wh = 0.3 x (R2 x th)^0.5 = mm

THE CROSS SECTIONAL AREA OF THE ROOF TO SHELL JUNCTURE

ANGLE L-50X50X6 = Sq.mm = Sq.in

ROOF = th x Wh = Sq.mm = Sq.in

SHELL = tc x Wc = Sq.mm = Sq.in

ACTUAL AREA A = Sq.mm = Sq.in

REQUIRED AREA UNDER INTERNAL LOAD OF THE ROOF

Ar1 = D^2/(3000 x sin α) Sq.in

Ar1 =<

A = -------(SATISFIED)

4.76 4.76

6.00

12,996.4

50.8

0.133.4

4.5 0.18

170.1 0.3

1,387.0 2.1

145.1

0.9564.0

653.0 1.0

0.4

0.4 2.1

9.46

2,136.6

Wh

th

3.6.ROOF STRUCTURE DESIGN (SUPPORTED CONE ROOF)

1. DESIGN LOADSELF WEIGHT OF ROOF PLATE = kg/Sq.m

LIVE LOAD = kg

RAFTER LOAD = kg/m

TOTAL DESIGN LOAD W = kg/Sq.m = kg/Sq.cm

2. STRUCTURAL CALCULATION OF RAFTER

NUMBER OF RAFTER N = ea.

SPAN LENGTH OF RAFTER FROM RING L1 m = cm

OUTSIDE RADIUS OD TANK R m = cm

RADIUS OF CENTER RING Ro m = cm

SLOPE OF ROOF   α = deg.

HEIGHT = L1 x tan α h = cm

61

189.44 0.02

48.04

9.46

31.39

1.88

2.14

10.00

25.000.25

188.36

213.70

122.40

19.00

Wc

Wc

tc

h

H

V1

H

V2 L1 Ro

R

P1

P2

PTM-30-R2-CS-002 Rev.A 13 of 12

Page 8: PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

7/18/2019 PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

http://slidepdf.com/reader/full/ptm-30-r2-cs-002strenght-calculation-for-test-tank-t-105a 8/11

Doc. No. : PTM-30-R2-CS-002

Rev. No. : ASTRENGTH CALCULATION

14'-0" ID x 18'-0" H TEST TANK

3.7.SEISMIC DESIGN FOR EMPTY CONDITION

1. DESIGN DATA

DIAMETER OF TANK D = m = ft

MAXIMUM LIQUID LEVEL H = m = ft

SPECIFIC GRAVITY OF LIQUID G = =

TOTAL WEIGHT OF TANK CONTENT Wt= = kg

2. OVERTURNING MOMENT CALCULATION

a. NATURAL PERIOD

T = K x (D)^0.5 = sec.

K = FACTOR FROM FIG.E-14 API 650 APP. E =

D/H=

b. LATERAL EARTHQUAKE COEFF. FOR SLOSHING MODE

C1 =

C2 = 0.75 x S / T = sec.

S = SITE COEFF. FROM API 650 APP.E (TABLE E-3) =

c. EFFECTIVE MASS OF TANK CONTENTS

(FROM API 650 AAP.E FIG.E-2 & E-3)

W1 = FACTOR x Wt = kg = FACTOR =

W2 = FACTOR x Wt = kg = FACTOR =

X1 = FACTOR x H = kg = FACTOR =

X2 = FACTOR x H = kg = FACTOR =

d. OVERTUNING MOMENT

M = ZI ( C1WsXS + C1WrHt + C1W1X1 + C2W2X2)

Cs x (WsXs + WrHt + W1X1 + W2X2) = kg-m

WHERE,

SEISMIC FACTOR Cs =

TOTAL WEIGHT OF TANK SHELL Ws = kg

 

0.60

0.94

1.50

0.7559,160.9

20,321.8 0.26

2.2 0.39

3.9 0.72

17,968.74

0.08

3,745.15

78,462.72

18.0

1.00

0.78

1.20

0.579

5.49

14.04.27

  . s = m

TOTAL WEIGHT OF ROOF AND PORTION OF LIFE LOAD Wr = kg

TOTAL HEIGHT OF TANK SHELL Ht = m

3. RESISTANCE TO OVERTUNING

WL= 31.619 x tb x (Fby x G x H)^0.5 = kg-m

WL= 20.023 x G x H x D = kg-m

WHICH IS THE SMALLER VALUE IS USED = kg-m

WHERE,

WL = MAX. WEIGHT OF TANK CONTENTS OF SHELL CIRCUMFERENCE,

WHICH MAY BE UTILIZED TO RESIST SHELL OVEERTUNING MOMENT.THICKNESS OF BOTTOM PLATE UNDER SHELL tb = mm

MIN. YIELD STRENGTH OF BOTTOM PLATE Fby = kg/Sq.mm

SPECIFIC GRAVITY OF CONTENT G =

MAX. FILLING HEIGHT OF TANK H = m

4. MAX. LONGITUDINAL SHELL COMPRESSIVE FORCE, b

Y = M/(D^2 x (Wt + WL)) =

Wt= (Ws + Wr)/(π x D) = kg/m

Y =   > 0.8

b = Wt + 1.273 x M/D^2 = kg/m

5. SHELL COMPRESSIVE STRESS, FcFc = b/(1000 x t) = kg/Sq.mm

t = THK OF BOTTOM SHELL COURSE EXCLUDING C.A = mm

6. MAX. ALLOWABLE LONGITUDINAL COMPRESSIVE STRESS, Fa

U = G x H x D^2/t^2 =

WHEN,

U > ---- Fa= 8.437 x t/D =

U < ---- Fa= 3.37488xt/D+0.76412x(GxH)^0.5 =

Fa= =

Fc =   < Fa=(SATISFIED )

1,627.11

0.26

6.35

1.18

370.91

1.18

9.53

25.31

1.00

5.49

.

1,227.2

5.49

3,549.00

468.77

468.77

6.81

0.26 6.81

2.48

43.89

43.89

12.56

6.81

PTM-30-R2-CS-002 Rev.A 14 of 12

Page 9: PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

7/18/2019 PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

http://slidepdf.com/reader/full/ptm-30-r2-cs-002strenght-calculation-for-test-tank-t-105a 9/11

Doc. No. : PTM-30-R2-CS-002

Rev. No. : ASTRENGTH CALCULATION

14'-0" ID x 18'-0" H TEST TANK

7. ANCHORED TANK DUE TO SEISMIC LOAD

MIN. ANCHORAGE RESISTANCE PER SHELL CIRCUM., Fr

Fr = (1.273 x M/D^2)-Wt = kg/m

TOTAL UP-LIFT FORCE OF ANCHOR BOLT, TT =   π x D x Fr = kg

REQUIRED BOLT AREA Ab= T/(N x Sa) = Sq.mm

ACTUAL ROOT AREA OF BOLT, Ac

Ab= Sq.mm NO TENSILE

THEREFORE, ANCHORAGE DESIGN IS SATISFIED IN SEISMIC LOAD

WHERE,

BOLT MATERIAL =

SIZE OF BOLT =

ALLO. STRESS OF BOLT Sa = kg/Sq.mm

ROOT AREA OF BOLT Ac = Sq.mm

BOLT CIRCLE DIAMETER Db = mm

NUMBER OF BOLT N = EA

3.8.SEIMIC DESIGN FOR OPERATION CONDITION

1. DESIGN DATA

DIAMETER OF TANK D = m = ft

MAXIMUM LIQUID LEVEL H = m = ft

SPECIFIC GRAVITY OF LIQUID G = =

TOTAL WEIGHT OF TANK CONTENT Wt= = kg

2. OVERTURNING MOMENT CALCULATION

5.49 18.0

1

78,462.72

4.27 14.0

4.92

194.84

4,631.9

885.29

11,868.07

401.92

6.00

401.92

A 307-B

M20

a. NATURAL PERIOD

T = K x (D)^0.5 = sec.

K = FACTOR FROM FIG.E-14 API 650 APP. E =

D/H=

b. LATERAL EARTHQUAKE COEFF. FOR SLOSHING MODE

C1 =

C2 = 0.75 x S / T = sec.

S = SITE COEFF. FROM API 650 APP.E (TABLE E-3) =

c. EFFECTIVE MASS OF TANK CONTENTS

(FROM API 650 AAP.E FIG.E-2 & E-3)W1 = FACTOR x Wt = kg = FACTOR =

W2 = FACTOR x Wt = kg = FACTOR =

X1 = FACTOR x H = kg = FACTOR =

X2 = FACTOR x H = kg = FACTOR =

d. OVERTUNING MOMENT

M = ZI ( C1WsXS + C1WrHt + C1W1X1 + C2W2X2)

Cs x (WsXs + WrHt + W1X1 + W2X2) = kg-m

WHERE,

SEISMIC FACTOR Cs =

TOTAL WEIGHT OF TANK SHELL Ws = kg

HEIGHT FROM BOTTOM OF SHELL TO C.G OF SHELL Xs = m

TOTAL WEIGHT OF ROOF AND PORTION OF LIFE LOAD Wr = kg

TOTAL HEIGHT OF TANK SHELL Ht = m

3. RESISTANCE TO OVERTUNING

WL= 31.619 x tb x (Fby x G x H)^0.5 = kg-m

WL= 20.023 x G x H x D = kg-mWHICH IS THE SMALLER VALUE IS USED = kg-m

WHERE,

WL = MAX. WEIGHT OF TANK CONTENTS OF SHELL CIRCUMFERENCE,

WHICH MAY BE UTILIZED TO RESIST SHELL OVEERTUNING MOMENT.

THICKNESS OF BOTTOM PLATE UNDER SHELL tb = mm

MIN. YIELD STRENGTH OF BOTTOM PLATE Fby = kg/Sq.mm

SPECIFIC GRAVITY OF CONTENT G =

MAX. FILLING HEIGHT OF TANK H = m

468.77

9.53

25.31

1.00

5.49

3,745.15

2.74

5.49

3,549.00

468.77

1,227.2

0.75

20,321.8 0.26

2.2 0.39

0.08

3.9 0.72

17,968.74

59,160.9

1.20

0.579

0.78

0.60

0.94

1.50

PTM-30-R2-CS-002 Rev.A 15 of 12

Page 10: PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

7/18/2019 PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

http://slidepdf.com/reader/full/ptm-30-r2-cs-002strenght-calculation-for-test-tank-t-105a 10/11

Doc. No. : PTM-30-R2-CS-002

Rev. No. : ASTRENGTH CALCULATION

14'-0" ID x 18'-0" H TEST TANK

4. MAX. LONGITUDINAL SHELL COMPRESSIVE FORCE, b

Y = M/(D^2 x (Wt + WL)) =

Wt= (Ws + Wr)/(π x D) = kg/m

Y =   > 0.8

b = Wt + 1.273 x M/D^2 = kg/m

5. SHELL COMPRESSIVE STRESS, Fc

Fc = b/(1000 x t) = kg/Sq.mm

t = THK OF BOTTOM SHELL COURSE EXCLUDING C.A = mm

6. MAX. ALLOWABLE LONGITUDINAL COMPRESSIVE STRESS, Fa

U = G x H x D^2/t^2 =

WHEN,

U > ---- Fa= 8.437 x t/D =

U < ---- Fa= 3.37488xt/D+0.76412x(GxH)^0.5 =

Fa= =

Fc =   < Fa=(SATISFIED )

7. ANCHORED TANK DUE TO SEISMIC LOAD

MIN. ANCHORAGE RESISTANCE PER SHELL CIRCUM., FrFr = (1.273 x M/D^2)-Wt = kg/m

TOTAL UP-LIFT FORCE OF ANCHOR BOLT, T

T =   π x D x Fr = kg

REQUIRED BOLT AREA Ab= T/(N x Sa) = Sq.mm

ACTUAL ROOT AREA OF BOLT, Ac

Ab= Sq.mm NO TENSILE

THEREFORE ANCHORAGE DESIGN IS SATISFIED IN SEISMIC LOAD

11,868.07

401.92

43.89 12.56

43.89 6.81

401.92

6.81

0.26

0.26

6.35

885.29

6.81

2.48

1.18

1.18

1,627.11

370.91

,

WHERE,

BOLT MATERIAL =

SIZE OF BOLT =

ALLOW. STRESS OF BOLT Sa = kg/Sq.mm

ROOT AREA OF BOLT Ac = Sq.mm

BOLT CIRCLE DIAMETER Db = mm

NUMBER OF BOLT N = EA

3.9.WIND LOAD FOR EMPTY CONDITION (API 650 PARA.3.11 & ASCE 7-88)

WIND EXPOSURE CATEGORIES (A, B, C, D) Cat =SHELL OUTSIDE DIAMETER Do = m

TOTAL HEIGHT OF TANK (PLUS ROOF HEIGHT) L = m

INSULATION THICKNESS It =

BASIC (OR DESIGN) WIND SPEED V = Km/Hr

IMPORTANCE FACTOR (TABLE 5) I =

VELOCITY PRESS. EXPOSURE COEF. (TABLE 6) Kz =

FORCE COEFFICIENT (TABLE 12) Cf =

GUST FACTOR (TABLE 8) Gh =

DESIGN WEIGHT W = kg

a. VELOCITY PRESSURE, Qz

Qz = 0.00256 x Kz x (I x V)^2 x 4.8828 = kg/Sq.m

b. WIND LOAD OVER TANK, Fw

Fw = Qz x Gh x Cf x De x L = kg

WHERE, = EFFECTIVE DIAMETER = GREATER OF De1 OR De2 = m

De1 = (Do + 2 x It) x 1.2 = m

De2 = (Do + 2 x It) x 0.6 = m

c. WIND MOMENT, M

M = Fw x L/2 = kg-m

M =   < 2/3 x (W x D/2 ) =(STABLE PER PARA.3.11.2)

d. REQUIRE ANCHOR BOLT AREA DUE TO WIND LOAD, Ab

Ab = (4 x M/Db-W)/(N x Sa) = Sq.mm

WHERE,

BOLT MATERIAL =

SIZE OF BOLT =

ALLOW. STRESS OF BOLT Sa = kg/Sq.mm

ROOT AREA OF BOLT Ac = Sq.mm

BOLT CIRCLE DIAMETER Db = mm

A 307-B

M20

4.92

194.84

4,631.9

5.14

2.57

317.22

317.22 8,772.20

-208.22

1.26

6,148.88

3.90

105.9

5.14

5.99

0.00

18.94

1.00

0.87

0.70

C4.28

M20

4.92

194.84

4,631.9

A 307-B

6.00

PTM-30-R2-CS-002 Rev.A 16 of 12

Page 11: PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

7/18/2019 PTM 30 R2 CS 002_Strenght Calculation for Test Tank (T 105)_A

http://slidepdf.com/reader/full/ptm-30-r2-cs-002strenght-calculation-for-test-tank-t-105a 11/11

Doc. No. : PTM-30-R2-CS-002

Rev. No. : ASTRENGTH CALCULATION

14'-0" ID x 18'-0" H TEST TANK

NUMBER OF BOLT N = EA

Ab =   < Ac=(SATISFIED )

3.10.WIND LOAD FOR OPERATION CONDITION (API 650 PARA.3.11 & ASCE 7-88)

WIND EXPOSURE CATEGORIES (A, B, C, D) Cat =

SHELL OUTSIDE DIAMETER Do = m

TOTAL HEIGHT OF TANK (PLUS ROOF HEIGHT) L = m

INSULATION THICKNESS It =

BASIC (OR DESIGN) WIND SPEED V = Km/Hr

IMPORTANCE FACTOR (TABLE 5) I =

VELOCITY PRESS. EXPOSURE COEF. (TABLE 6) Kz =

FORCE COEFFICIENT (TABLE 12) Cf =

GUST FACTOR (TABLE 8) Gh =

DESIGN WEIGHT W = kg

a. VELOCITY PRESSURE, Qz

Qz = 0.00256 x Kz x (I x V)^2 x 4.8828 = kg/Sq.m

b. WIND LOAD OVER TANK, Fw

Fw = Qz x Gh x Cf x De x L = kg

WHERE, = EFFECTIVE DIAMETER = GREATER OF De1 OR De2 = mDe1 = (Do + 2 x It) x 1.2 = m

De2 = (Do + 2 x It) x 0.6 = m

c. WIND MOMENT, M

M = Fw x L/2 = kg-m

M =   < 2/3 x (W x D/2 ) =(STABLE PER PARA.3.11.2)

317.22

317.22 120709.7

3.90

105.9

5.145.14

2.57

18.94

1.00

0.87

0.70

1.26

84,611.60

-208.22 194.84

C

4.28

5.99

0.00

6.00

d. REQUIRE ANCHOR BOLT AREA DUE TO WIND LOAD, Ab

Ab = (4 x M/Db-W)/(N x Sa) = Sq.mm

WHERE,

BOLT MATERIAL =

SIZE OF BOLT =

ALLOW. STRESS OF BOLT Sa = kg/Sq.mm

ROOT AREA OF BOLT Ac = Sq.mm

BOLT CIRCLE DIAMETER Db = mm

NUMBER OF BOLT N = EA

Ab =   < Ac= (SATISFIED )

3.11.SLIDDING FORCE, Fs

Fs = 1.5 x EMPTY WEIGHT x μ = kg

WIND LOAD UNDER EMPTY CONDITION, Fw = kg

Fs =   > Fw =(ANCHOR SHEAR CHECK IS NOT REQUIRED )

REQUIRE SHEAR AREA OF BOLT, Ab

Ab = Fw/(N x Ss) = Sq.mm

WHERE,

NUMBER OF BOLT = EA

ALLOW. TENSILE STRESS OF BOLT = kg/Sq.m

ALLOW. SHEAR STRESS OF BOLT Ss = 0.8 Sa = kg/Sq.m

ACTUAL ROOT AREA OF BOLT = Sq.mm

Ab =   < Ac =(SATISFIED )

194.84

4.92

194.84

105.9

2,767.0 105.9

4631.9

6.00

4.48 194.84

4.48

6.00

4.92

3.94

-2,865.39 194.84

2,767.0

-2,865.39

A 307-B

M20

PTM-30-R2-CS-002 Rev.A 17 of 12