PSE2014-Tut 1 5 Oehr Plasma Treatment

download PSE2014-Tut 1 5 Oehr Plasma Treatment

of 114

Transcript of PSE2014-Tut 1 5 Oehr Plasma Treatment

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    1/114

    Fraunhofer IGB

    Dr. Christian Oehr

    Titel_OTTI.ppt

    Content IntroductionPolymers

    general aspects

    Plasma functionalization and polymerizationmonomers, conditions and resulting surfaces

    Applicationswetting, adhesion, biomedical devices

    outlook

    Plasma Treatment of Polymers and Plasma

    Polymerization

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    2/114

    Fraunhofer IGB

    Interfaces

    Films/foils0,01 bis 0,12 m 2/g

    roughness

    Woven/non-woven0,5 bis 10 m 2/g

    monofil, multifil

    Membranes0,5 bis 60 m 2/g

    Nanoparticles50-150 m 2/g

    Nanotubes, -fibers

    400-2000 m2

    /gSWNT, MWNT

    Chemistry and Structure

    Film depositionfilm thickness sub-nm to 5 mpreparation and characterization

    a) b)

    a) b)

    100 nm 100 nm

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    3/114

    Fraunhofer IGB

    Development of plasma technology

    microelectronics

    wear/corrosionprotection

    lightening,lamps

    Plasma

    Coating of archi-tecture glass

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    4/114

    Fraunhofer IGB

    a) Scratch-resistantcoating on polymers

    b) Solvent-resistantcoating onpolycarbonate

    c) Hydrophobic finish ofcotton/polyester

    d) Treatment of textilesubstrates for

    enhanced cell growth

    a) b)

    c) d)

    Tailored Surfaces

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    5/114

    Fraunhofer IGB

    Biocompatible /bioinert coatings minimizing of non-

    specific proteinadsorption

    blood vesselprotheses

    blood compatibility implantsImmobilization ofenzymes synthesis of drugs biosensorsSubstrates forcell cultures implants specific cell adhesionSterilization

    medical equipment durability ofpackaging materials

    Cleaning/ activation

    Organiccoatings

    Medicaltechnology

    Membranetechnology

    Textilemodification

    Metals removability of orga-

    nic contaminations removability of inor-

    ganic contaminations cleaning efficiency of

    gap insides cleaning of

    oxidation-sensitiveparts

    Plastics adhesive bounding activation wetting

    Anti-foggingcoatings

    transparent glassesand foils

    Scratch-resistantcoatings on organic glasses

    Coatings of inside

    surfaces vessels tubes

    Powder coating new materials

    Barrier layers corrosion resistance

    of aluminium membranes with

    permeability > 0

    Gas separation oxygen enrichment

    Solution diffusionmembranes alcohol enrichment

    UF/MF Membranes improvement of

    selectivity

    antifouling hydrophilization ofthe inner surfaces ofpores

    Functionalmembranes affinity membranes

    chargedmembranes

    bipolar membranes

    Consumer textiles wettability hydrophobicity /

    oleophobicity dyeability antistatic properties flame retardance

    Technical textiles biological

    applications medical

    applications laminates composites

    Plasma Technology - Application Areas

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    6/114

    Fraunhofer IGB

    Motivation

    polymers:

    + low density+ flexibility+ ease of manufacture+ cost-effectiveness

    surface properties

    plasma treatment of polymers to improve surfaceproperties

    (wetting, adhesion, friction, cleanness, etc.)

    Increase of surfacetension

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    7/114

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    8/114

    Fraunhofer IGB

    Fields of usefor plastics

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    9/114

    Fraunhofer IGB

    WorldPlastics Production 1950 2013

    Source: PlasticsEurope Market Research Group (PEMRG) / Consultic Marketing & IndustrieberatungGmbH

    Plastics are a globalsuccess story.Continuous growthfor more than 50 years.Plastics productionramped up from1.5 Mio t in 1950 to almost300 Mio t (299 Mio t) in

    2013. In 2013 globalplastics production grewby 3.9% compared to2012.Compound Annual Growth

    Rate (CAGR) from 1950 to2013 is about 8.6%.

    Includes Thermoplastics, Polyurethanes, Thermosets, Elastomers, Adhesives,Coatings and Sealants and PP-Fibers. Not included PET-, PA- and Polyacryl-Fibers

    0

    50

    100

    150

    200

    250

    300

    350

    1950 1960 1970 1980 1990 2000 2010 2020

    1950: 1.5

    1977: 50

    2002: 200

    1989: 100

    World

    1950: 1.5

    1977: 50

    World

    Mio t

    1950: 1.5

    1977: 50

    World

    1950: 1.5

    1977: 50

    2009: 250

    2011: ~280

    2013: ~299

    World

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    10/114

    Fraunhofer IGB10

    ThermoplasticsClassification 2013

    amorphous structure semi-crystalline structure

    StandardPlastics

    EngineeringThermoplasticsTI = 100 - 150 C

    High PerformancePolymersTI > 150 C

    100 C

    150 C

    Capability by Temperature Index byUnderwriter Laboratories, USA

    > 2,000 EUR/ton

    > 4,000 EUR/ton

    > 10,000 EUR/ton

    PEEKFP

    LCPPPSPPA PA 46

    PET (Injection)PBTPOMPA 6 PA 66

    PPHDPELDPE LLDPE

    PIPAI

    PEIPESPSU

    PPE mod.PC

    PMMAPA 11 PA 12ABS, SAN, ASA

    EPS PSPET (Bottle grade) PVC

    Triangle of Thermoplasticsby Structure, Capability and Price

    Standard Plasticsinclude Polyolefins,

    PS, EPS, PVCand PET (Bottle grade).

    Engineering Plasticswith improved perfor-mance at higher costs.

    High PerformancePolymerspermitting exceptionalend-use-applications,specialized nicheproducts at high costs.

    Source: PlasticsEurope Market Research Group (PEMRG) / Consultic Marketing & IndustrieberatungGmbH

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    11/114

    Fraunhofer IGB

    Source: PlasticsEurope Market Research Group (PEMRG) / Consultic Marketing & IndustrieberatungGmbH

    WorldPlastics Material Production 2013 by

    Regions

    250 Mio tw/o Other Plastics (~49 Mio t)

    Asiawith the leadingcountry China (24.8%)

    mean-while accountsfor 45.5% ofworldwide demand.

    Europe and NAFTA

    are on a similar leveleach with a share ofaround 20%.

    Due to the economic

    crisis, Europe lostglobal productionshares.

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    12/114

    Fraunhofer IGB

    WorldPlastics Materials Demand 1990 2018e

    Source: PlasticsEurope Market Research Group (PEMRG) / Consultic Marketing & IndustrieberatungGmbH

    1)Fibres not included, only molding compounds

    Demand in Mio tby type of pl astic

    1990 2013 2018eGrowth p. a.2013 2018e

    PE-LD, PE-LLD 18,8 43,6 53,3 3,9%PE-HD 11,9 38,6 45,8 3,5%PP 12,9 56,5 66,7 3,4%PVC 17,7 38,9 47 3,9%PS 7,2 11,8 13,7 2,0%EPS 1,7 6 7,8 5,3%

    ABS, ASA, SAN 2,8 7,6 9,3 4,1%PA1) 1 3 3,9 4,2%PC 0,5 3,7 4,5 4,1%PET 1,7 18 22,6 5,2%

    PUR 4.6 (5.0) 13.5 (16.3) 17.3 (20.6) 4,8%Other Thermoplastics 2,8 9,1 11,2 4,1%Total ~83.6 ~250 ~303 3,9%

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    13/114

    Fraunhofer IGB

    Polymer surface

    outermost surface (~1 nm) : density profile; enhanced density of chain ends;

    wettingnear-surface layer (~50 nm) : lowered entanglement reduced T gbulk (>100 nm): macroscopic properties

    ++ +

    adsorption layer

    Surface

    Near-surface Layer

    Bulk

    surface charge

    fillersadditives

    crystallinity

    entanglement

    phasesdurability

    density

    surface tension

    glass transition

    cross-linking

    roughness contaminants

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    14/114

    Fraunhofer IGB

    Dr. Christian Oehr

    Titel_OTTI.ppt

    Content Introduction

    Polymersgeneral aspects

    Plasma functionalization and polymerizationmonomers, conditions and resulting surfaces

    Applicationswetting, adhesion, biomedical devices

    outlook

    Plasma Treatment of Polymers and Plasma

    Polymerization

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    15/114

    Fraunhofer IGB

    Interaction ofPlasmas withSurfaces

    Species generatedin a glow discharge

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    16/114

    Fraunhofer IGB

    Energy of Excitationand Ionization ofSpecies inGlow Discharges

    Species Energy of Excitation[eV]

    Energie of Ionisation[eV]

    Helium 19,8 24,6

    Neon 16,6 21,6Argon 11,5 / 11,7 15,8Krypton 9,9 14,0Xenon 8,3 12,1

    at. Hydrogen 10,2mol. Hydrogen 15,6at. Oxygen 2,0 / 4,2mol.Oxygen 0,98 / 1,6 / 4,5 12,5

    mol. Nitrogen 6,2

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    17/114

    Fraunhofer IGB

    Bond- und Dissociation Energies relevant for Polymertreatment

    Bond Energy(eV)

    CC 3.61

    C=C 6.352.74 for bond

    CH 4.30CN 3.17CO 3.74

    C=O 7.78CF 5.35C-Cl 3.52NH 4.04OH 4.83

    O-O 1.52SiC 2.50SiH 3.30

    molecule Energy of DissociationThermic Electronic

    H2 4.5 8.8O2 5.1 ca. 7N2 9.8 24.3F2 1.6Cl2 2.5 ca. 3.7

    NO 6.5 >10

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    18/114

    Fraunhofer IGB

    Materials Segments example) resistant against is attacked byStandard Polymers

    Polyolefine C CH H

    H CH3n

    Alkali,org. solvents

    Oxidizing acids

    Polyvinylchloride C CH H

    H Cln

    Acids, CFC,aromatic hydrocarbons

    Strong alkali, esters, ketones

    Engineering Polymers

    Polyacrylnitrile C CH H

    H CNn

    Weak acids, alkali,aliphat. hydrocarbons

    Oxidizing acids, CFC, ketones,esters

    Polycarbonate

    CH3

    nO C O CCH 3 O

    Acids, ketones, aliphat.hydrocarbons

    Strong alkali,CFC, benzene

    PolysulfoneCH3

    C

    CH3n

    O S

    O

    O

    OAlkali, acids,aliphat. hydrocarbons

    hydrofluoric acid, CFC, esters,ketones

    High Performance PolymersPolyvinyliden-

    flourideC C

    H

    H n

    F

    F

    Acids, CFC,

    hydrocarbons, alcohols

    DMF, DMSO, ketones, esters

    Polyetherether-ketone C

    O

    On

    O

    Acids, alkali,org. solvents

    almost inert

    Wet-Chemical Resistance of Polymers

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    19/114

    Fraunhofer IGB

    substrate

    plasma

    pump

    gas inlet

    DIN A3-reactor forhomogeneous coatings

    DIN A3-reactor forremote processes

    Modular Plasma Reactors at IGB

    pump

    cold trapmonomer carrier gas

    13,56 MHz

    plasma

    substrates

    R

    R RRe -

    e -e -

    e-

    +

    ++ +

    M*

    M*M*

    M*

    Re-+M*

    radicalselectronsionselectronically excitedparticlesUV-radiation

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    20/114

    Fraunhofer IGB

    Up- andDownscaling

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    21/114

    Fraunhofer IGB

    Ablation

    CleaningEtchingSterilisationDesmearing

    Modification

    Generation offunctional groups

    GraftingCASING

    Deposition

    PlasmapolymerisationProtective coating

    0

    20

    40

    60

    80

    100

    0 200 400 600

    Ar-Plasma Dauer [s]

    G e w

    i c h t s v e r l u s

    t [ % ]

    Polycarbonat

    PMMA

    Ethylcellulose

    Polystyrol

    Ishikawa et al. (1996)

    Possibilities of the Plasma-Treatment of Polymers

    Ar-plasma duration [s]

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    22/114

    Fraunhofer IGB

    Energy inputfrequencypower densitydurationCW / pulse

    Material flowmonomers,carrier gasespressure, flow

    (total/partial)gas background

    Substratematerialdimensionmorphology

    quantitytemperaturepotential

    Reactorgas leading systeminner wallelectrode material

    configuration temperature

    type and degree ofdissoziation of thegases

    live time and residencetime of active species

    homo-/ heterogenousreactions

    ion bombardementand radiation

    Plasma

    Operational Plasma Parameters

    topography

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    23/114

    Fraunhofer IGB

    Etching of polymer surfaces

    treatment of differentpolymers in Ar plasma

    etching by

    ions

    VUV

    Increased etchingwhen

    an oxygenfunctionality

    is present in thepolymer

    backbone

    0

    100

    200

    300

    400

    500

    0 5 10 15 20

    treatment time [min]

    m a s s

    l o s s

    [ g

    / c m

    2 ]

    PMMA

    PETPC

    PE

    PP

    PSC-H polymers

    O-containingpolymers

    Ar plasma, 0.2 mbar, 350 W

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    24/114

    Fraunhofer IGB

    Plasma CVDcompact(e.g. hard coating)

    Pulsed plasmapolymerisationmedium cross-linked/ functionalized(e.g. membranes)

    Grafting(e.g. spacer forbiochemistry)

    Plasma Coating with Various Degrees of Cross-Linking

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    25/114

    Fraunhofer IGB

    Chem.Reaction 1796 Bondt et al .: Spark discharge in acetylene1857 Siemens, W. v .: development of the Ozonizer

    Films 1930 Austin, J., Black, J . Observation of not easy-to-clean filmsunintensional 1931 Brewer, A., Kveck, R discharge tubes.intensional end of the 50th Amorphous solvent-resistent films for the

    electron microscopy

    1960 Goodman, J. Plasmapolymerisation of styrene for

    dielectric filmsmechanisms of 1963 until Haller, I., White, D., Mayhan, K. G.Film deposition 1972 Ionic mechanisms were proposed

    1969 until Denaro, A.R. et al,. Kobayashi, H., Bell, A.T. et al. end of 70thRadical-based mechanisms were proposed

    1981 Yasuda, H . Concept of atomic polymerisation

    History of Plasma Polymerization

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    26/114

    Fraunhofer IGB

    Polymerization Mechanisms, proposedMechanisms Arguments, Observationsionic

    Williams, Hayes (1966) No polymer on the anode. Deposition rate directly proportional to the current densityand correlates to the adsorption rate.

    Westwood (1971) Deposition rate corresponds to the bias potential of substrate support.Deposition at neg. bias (pos. Ions relevant).

    Thompson, Mayhan Radical scavenger do not decrease the polymerization rate.(1972)

    radicalic Denaro (1969) High concentration of radicals in plasma polymers detectable. A model is developed for

    radical based styrene plasma polymerization.

    Kobayashi (1974) Less energy is necessary for radical production than for ionization. Average energy at 2-5eV. Radicals concentration in the discharge two orders of magnitude higher than that ofions.No correlation between ionization potential and deposition rate. High amount ofradicals in polymers, up to 10 19 spins/g.The high deposition rate in DC-discharges on cathodes may be due to the nearbynegative glow (there proceeds the main material conversion).

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    27/114

    Fraunhofer IGB

    Observation The composition of the plasma polymer is mainly related to the power and theposition in the reactor. Inert gas molecules in contrast to conventionalPolymerization are incorporated.

    Supposition Monomers are highly fragmented, these reactive particles are in the gas phase aswell as at surfaces reorganized, and are building blocks for film deposition. Thus,the film structures are very different compared with the structure of the precursormolecules.Main parameters for film deposition are: Power, monomer flow and molecularweight of the monomer.

    Yasuda factor The so-called Yasuda-Factor is the ratio of power input (W) to monomer flow (F)and molecular weight (M):

    Yasuda factor = W/FM [J/kg]

    (J/kg = W/FM) 1.3410 9 with W in Watts, F in sccm, M in gram/Mol). At smallYasuda-factors more monomer is flowing through the reactor than can beconverted due to a power deficit. Thus the fragmentation is incomplete. Biggerstructure elements from the monomer will be retained. At elevated Yasuda factorsalmost complete fragmentation down to atomic units will proceed.(atomicpolymerization)

    Yasudas Concept

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    28/114

    Fraunhofer IGB

    up scaling Difference to sputtering-

    Plasma Processes for Thin Film Techniques

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    29/114

    Fraunhofer IGB

    up scaling Difference to sputtering-

    Plasma Processes for Thin Film Techniques

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    30/114

    Fraunhofer IGB

    up scaling Difference to sputtering-

    Plasma Processes for Thin Film Techniques

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    31/114

    Fraunhofer IGB

    up scaling Difference to sputtering-

    Plasma Processes for Thin Film Techniques

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    32/114

    Fraunhofer IGB

    up scaling Difference to sputtering-

    Plasma Processes for Thin Film Techniques

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    33/114

    Fraunhofer IGB

    up scaling Difference to sputtering-

    Plasma Processes for Thin Film Techniques

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    34/114

    Fraunhofer IGB

    up scaling Difference to sputtering-

    Plasma Processes for Thin Film Techniques

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    35/114

    Fraunhofer IGB

    To minimizefragmentation of themonomer precursor

    in the plasma processand to control thecross-linking of adeposited film severalmeans have beenempolyed

    use of low power input (pulsed, low Yasuda factors,working at higher pressures

    avoiding ionic bombardementsubstrate cooling

    working down-streamplasma grafting

    indirect:

    direct:

    Retention of Monomer Structure

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    36/114

    Fraunhofer IGB

    Oligomerisation of Methane in the Gas Phase

    Mass spectrum ofIons from themethane plasma

    Ion mass

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    37/114

    Fraunhofer IGB

    Dependence of needed discharge powerto obtain a comparable level of glowdischarge polymerization on the flow ratesof starting materials. The neededdischarge power is greatly dependent onthe molecular weight of the startingmaterials.

    Yasuda and Hirotsu (1978).

    Influence of Monomers on depositionrate

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    38/114

    Fraunhofer IGB

    Dependence of needed dischargepower to obtain a comparable level

    of glow discharge polymerization onthe flow rates of hydrocarbonprecursors containing six carbonatoms. The needed discharge poweris dependent on the structures of thestarting materials.

    Yasuda and Hirotsu (1978).

    Influence of molecular structure ondeposition rate

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    39/114

    Fraunhofer IGB

    Defined wettability siloxane-based plasma layers

    Siloxane-based plasmacoatings cover the wholerange between quartz(SiO2) and PDMS(SiOC2:H) of contactangle against water.

    Wetting propertiesdepend on the residualcarbon content.

    Defined wettingproperties

    0

    10

    20

    30

    40

    50

    60

    7080

    90

    100

    110

    120

    0 10 20 30 40 50

    rel. carbon concentration [at%]

    a d v .

    c o n

    t a c

    t a n g

    l e [ ]

    PDMS

    quartz

    SiO xCy films

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    40/114

    Fraunhofer IGB

    0

    20

    40

    60

    80

    100

    120

    -50 -25 0 25 50 75 100 125 150 175 200

    film thickness [nm]

    r e l . c o n c .

    [ a t % ]

    O2/HMDSO

    PC interphase gradient

    O

    Si

    C

    continuously varyingdeposition conditions

    gradually reducedcarbon content

    designed to uniformlyadapt film properties topolymer

    Chemical composition ofthe gradient layer (byXPS)

    Improvement of adhesion gradientlayers

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    41/114

    Fraunhofer IGB

    IR-Spectra from polysiloxane films

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    42/114

    Fraunhofer IGB

    SIMS-Spectrum of plasma-polymerized HMDSO (section)

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    43/114

    Fraunhofer IGB

    The fragments areproposed on the baseof IR- and SIMS-Spectra

    pp-HMDSO-Structure

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    44/114

    Fraunhofer IGB

    Carboxylgruppen CO

    OH

    Primre Amine NH

    H

    Thiole S H

    Alkohole C OH

    Epoxy-Verbindungen CH

    O

    CH2

    Carboxyl

    Primary amine

    Thiol

    Alcohol

    Epoxy

    Functional Groups

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    45/114

    Fraunhofer IGB

    Composition by ESCA[at%]

    substrate Activation with CF 2 COOH COH

    COC

    CH2 O N F

    poly-propylene

    untreated

    H2O grafted

    N2 grafted

    4.4

    7.3

    7.2

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    46/114

    Fraunhofer IGB

    RF plasma (13.56 MHz, 0.3 mbar)By using moderate plasma power the monomerstructure of acrylic acid is preserved

    Peak No.

    EB(eV)

    5288.1

    4286.8

    3289.4

    2

    285.5

    1285.0

    chem. composition in at%

    40 W 5.5 26.1 27.3 41.1100 W 5.1 11.6 4.7 33.5 45.0

    ( CH CH )2

    C=O

    OH

    2

    3

    n1

    1

    2

    2nd

    Approach: Retention of MonomerStructureCoating with Acrylic Acid

    2nd Approach: Retention of Monomer

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    47/114

    Fraunhofer IGB

    rf pulse plasma (40 W, 0.3 mbar)

    off-time variation

    Peak No.EB(eV)

    5287.6

    4286.8

    3289.4

    2285.5

    1285.0

    chem. composition in at%

    1ms/2ms 4.1 24.5 28.8 42.5

    1ms/5ms 2.5 26.8 28.5 42.1

    1ms/10ms 8.2 17.4 19.5 18.5 36.3

    2nd Approach: Retention of MonomerStructure 1ms/10ms

    1ms/5ms

    1ms/2ms

    Binding Energy (eV)292 290 288 286 284

    ( CH CH )2

    C=O

    OH

    2

    3

    n1

    1

    2

    Acrylic Acid on Si Wafer and KBr

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    48/114

    Fraunhofer IGB

    Acrylic Acid on Si-Wafer and KBr

    treatment(on/off times)

    [W]

    pressure[mbar]

    flow[sccm]

    Yasudafactor

    [MJ/kg]

    IR modesC=O/C-H

    depostion[nm/min]

    rate[nm/J]

    AAc plasma CW 100 0.3 20 92.9 1.25 150 0.03

    AAc plasma CW 40 0.3 20 37.2 7.0 200 0.08

    AAc pulsed (1ms/1ms)AAc pulsed (1ms/2ms) AAcpulsed (1ms/4ms) AAcpulsed (1ms/5ms)

    AAc pulsed (1ms/10ms)

    2013.3

    86.7

    3.6

    0.30.30.30.3

    0.3

    20202020

    20

    (18.6)(12.4)(7.4)(6.1)

    (3.3

    9.512.510.59.8

    8.2

    250160180170

    40

    0.210.200.380.42

    0.19

    AAc + KBr 13.5

    Acrylic Acid(AAc)

    M2 = 72.06

    O

    OH

    Epoxy Functionalisation of Polypropylene

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    49/114

    Fraunhofer IGB

    Comparison of pulse plasmaand CW-plasma depositionwith glycidylmethacrylate

    CH3

    ( CH C )2

    C=O

    O

    O

    1

    2

    3

    3

    4 4

    5n

    1

    1

    2

    ( CH C )2

    CH CH CH2 2

    Peak No. 5 4 3 2 1EB (eV) 288.6 286.4 286.2 285.0 284.5

    Composition in Atom%Theory 14.3 28.5 14.3 14.3 28.5Pulse 15.3 25.1 18.0 17.5 23.8

    CW 14.4 25.2 12.3 14.2 29.8

    I n t

    e n s

    i t y

    ( a r

    b .

    u n

    i t s

    )

    292 290 288 286 284 282Binding Energy (eV)

    Pulse-Plasma

    1

    23

    4

    5 I n t

    e n s

    i t y

    ( a r

    b .

    u n

    i t s

    )

    Binding Energy (eV)292 290 288 286 284 282

    CW-Plasma

    1

    23

    4

    5

    Erh_Mono_PP_Epoxy1(e).ppt

    Epoxy-Functionalisation of Polypropylene

    Glycidyl Methacrylate

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    50/114

    Fraunhofer IGB

    FTIR-Spektra

    rf pulse plasma 40 W

    glycidyl methacrylate

    0.4 mbar, 30 sccm

    Wave number [cm -1]

    Glycidyl-Methacrylate

    Glycidyl Methacrylate on Polypropylene and KBr

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    51/114

    Fraunhofer IGB

    treatment time

    pressure flow thickness IR modes IR modes

    [min] [W] [mbar] [sccm] [nm] Epoxy/C-H C=O/C-H

    GM plasma CW 5 40 0.4 30 900 0.85 5.15

    GM pulse plasma1 ms/1 ms on/off

    5 20 0.4 30 850 1.15 7.1

    GM pulse plasma1 ms/2 ms on/off

    5 13.3 0.4 30 800 1.3 7.2

    GM pulse plasma1 ms/4 ms on/off

    5 8 0.4 30 750 1.15 7.1

    GM + KBr 1.65 7.65

    Mr=142.16

    (CH) = 2930 cm -1

    (epoxy group) = 910 cm -1

    (C=O) = 1720 cm -1

    O

    H2C=CCOCH2CHCH2CH3

    Glycidyl Methacrylate on Polypropylene and KBr

    Glycidyl-Methacrylate(GM)

    O

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    52/114

    Fraunhofer IGB

    1 Of five bonds in the ring, the two onesvicinal to the ketone group are weakerand thus may be preferentially brokendue to electron impact, resulting in abiradical.

    2 (or 3) Termination of one of the radicalpositions by hydrogen results in analdehyde group

    3 (or 2) The radical grafts onto the substrate

    HCOO

    electronimpact

    C

    O

    + H

    CH

    O

    + substrate

    3rd Approach: Opening of cyclic molecules by

    plasma

    Cyclopentanon

    eas precursor

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    53/114

    Fraunhofer IGB

    NH2

    HN

    plasma

    OHO

    plasma

    SHS

    plasma

    primary amine frompyrrolidine

    hydroxyl fromtetrahydrofurane

    Thiol groups fromtetrahydrothiophene

    3rd Approach: Opening of cyclic molecules by plasma

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    54/114

    Fraunhofer IGB

    Wet chemical quantification of amino groups on surfaces using Sulfo-SDTB

    Sulfo-SDTBSulfo-succinimidyl-4-O-(4,4-dimethoxytrityl)-butyrateMW 605.6 (Pierce Inc.)

    + H2NH2N

    H2N

    OCH3

    C O (CH2)3 CO

    O N

    SO3Na

    OCH3 OCH3

    C O (CH2)3 C

    O

    OCH3

    O N

    H

    OCH3

    CH

    OCH3

    perchloricacid solution

    1 2

    Amino modifiedsurface

    +

    e = 70.000 M -1 cm -1

    weak alkalinesolution

    HO (CH2)3 C

    O

    N

    H

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    55/114

    Fraunhofer IGB

    A thin layer (5-50 nm) ofplasma polymer or parylenedeposited onto a glas

    substrate (coverslip).Derivatisation with asuitable spin label(maleimide-PROXYL forthiol, amine-TEMPO foraldehyde).As a control, the sameplasma polymer treatedwith the same solution butwithout spin label, or withspin label with aninappropriate function(e.g. carboxy-TEMPO) isused.

    water

    SH S

    +

    NO

    N

    O

    O

    NO

    N

    O

    O

    water

    HCO

    H2C

    HNN

    NH 2

    O

    +

    N O NaCNBH 3

    carbodiimide+

    NH2N

    O

    OOH

    HN

    N OO

    Quantitative detection of surface functionalities via spin labelling

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    56/114

    Fraunhofer IGB

    For tetrahydrothiopheneplasma polymer, density ofaccessible thiol groups of0.1 to 0.15 nm -2 is measured.

    For cyclopentanone plasmapolymer, the density ofaccessible aldehyde groupsis 0.15 to 0.3 nm -2.

    The functional groupsdetection limit depends onthe number of plasmaproduced radicals in thesample and is estimated to

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    57/114

    Fraunhofer IGB

    Working frequency

    13.56MHz RF in pulsedmode

    Symmetrical, ccp chamber

    Process gas4sccm CHF3+25sccm ArProcess pressure 0.8mbar

    Experimental Setup / Plasma Parameters

    Contact AngleM

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    58/114

    Fraunhofer IGB

    Measurements

    advancing and receding contact angles

    (water, benzyl alcohol, 1-

    bromonaphtaline )

    Hysteresis:

    Information oninhomogenities

    Owens-Wendt: polar and dispersesurface energies

    sdisps polldisp

    l pol

    ldisp

    ltot ,,,

    ,

    ,,

    2

    )cos1(

    SurfaceE

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    59/114

    Fraunhofer IGB

    Energy

    Surface tensions determinedwith linear regression fromOwens-Wendt;Fitted curves:

    exponential decay

    200ms off 5ms on

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    60/114

    Fraunhofer IGB

    X-ray Photo-electron Spectra

    200ms off 5ms on

    Development of integral

    peaks

    (a) shows steeper increase

    in fluorine content -> faster

    film growth

    KRATOS AXIS ULTRA

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    61/114

    Fraunhofer IGB

    with increasing duty-cycle

    CF-structure CF 3 already present at low

    dc Peak shift with increasing

    dc due to enhancedcrosslinking

    200ms off 5ms on

    ESCA-Spectrafrom domains towards closed film

    Plasma Treatment of Polymers and Plasma

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    62/114

    Fraunhofer IGB

    Dr. Christian Oehr

    Titel_OTTI.ppt

    Content IntroductionPolymers

    general aspects

    Plasma functionalization and polymerizationmonomers, conditions and resulting surfaces

    Applicationswetting, adhesion, biomedical devices

    outlook

    Polymerization

    Fields of Application I

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    63/114

    Fraunhofer IGB

    Protective coatingsagainst mechanical stress scratch and wear resistance,hardnessagainst chemical attack corrosion and solvent resistance

    Coatings with specified transport propertiesOptical transport lenses, mirrors, waveguidesetcElectrical transport conductive and dielectric layersetcMaterial transportMaterial specific permeation separation membranespermeation 0 barrier layers

    Material transport out of layer- systemsDefined release (medicament) dosage systems

    Fields of Application IThin films (micro...)

    Improvement of adhesion gradient layers

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    64/114

    Fraunhofer IGB

    Adaption of mechanicalproperties of SiO x filmson polycarbonate:

    Graded transition ofinternal stress andhardness improvesadhesion to polymers.

    (Measurements wereperformed on individuallayers.)

    -140

    -120

    -100

    -80

    -60

    -40

    -20

    0-50 -25 0 25 50 75 100 125 150 175 200

    film thickness [nm]

    i n t e r n a

    l s t r e s s

    [ M P a ] .

    0

    0,5

    1

    1,5

    2

    2,5

    3

    3,5

    4

    4,5

    5

    h a r d n e s s

    [ G P a ]

    PC after N 2 gradient layer pre-treatment

    O2/HMDSO

    Improvement of adhesion aging

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    65/114

    Fraunhofer IGB

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 2 4 6 8 10 12 14

    aging [months]

    p e e

    l s

    t r e n g

    t h [ N / c m

    ]

    measurement limit

    measurement limit

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 2 4 6 8 10 12 14

    aging [months]

    p e e

    l s

    t r e n g

    t h [ N / c m

    ]

    1.5 m SiO x on PC (without gradient)

    measurement limit

    measurement limit

    The adhesion of quartz-likefilms on PC is subject toaging due to waterdiffusion into the interface.

    (peel strength was measuredusing an adhesive tape peeltest)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 2 4 6 8 10 12 14

    aging [months]

    p e e

    l s

    t r e n g

    t h [ N / c m

    ]

    1.5 m SiO x on PC

    1.5 m SiO x on PC (without gradient)

    measurement limit

    measurement limit

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 2 4 6 8 10 12 14

    aging [months]

    p e e

    l s

    t r e n g

    t h [ N / c m

    ]

    1.5 m SiO x on PC

    250 nm SiO x on PC

    1.5 m SiO x on PC (without gradient)

    measurement limit

    measurement limit

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 2 4 6 8 10 12 14

    aging [months]

    p e e

    l s

    t r e n g

    t h [ N / c m

    ]

    1.5 m SiO x on PC/ABS

    1.5 m SiO x on PC

    250 nm SiO x on PC

    1.5 m SiO x on PC (without gradient)

    measurement limit

    measurement limit

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 2 4 6 8 10 12 14

    aging [months]

    p e e

    l s

    t r e n g

    t h [ N / c m

    ]

    1.5 m SiO x on PC/ABS

    1.5 m SiO x on PC

    250 nm SiO x on PC

    1.5 m SiO x on PC (without gradient)

    250 nm SiO x on PC (stored in water)

    measurement limit

    measurement limit

    aging depends on:

    adaption of mechanicalproperties

    film thickness (int. stresses)storage conditions

    (air or water)

    Functions determining the Membrane Characteristics

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    66/114

    Fraunhofer IGB

    J =-Ddc d x

    c = Sp J = DS p /

    P = DS = J / p

    AB =P AP B

    DADB

    S AS B

    =

    J = flux [ cm 3 gas/cm 2s]

    D = difusion constant [cm 2/s]

    c = concentration

    S = solubility coefficient [cm 3 gas /

    (cm3

    polym cmHg)]p = pressure difference over the

    membrane [ cmHg]

    d = membrane thickness [cm]

    P = permeability

    = selectivity A,B= components

    Yasuda Factor and Membrane Properties I

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    67/114

    Fraunhofer IGB

    p6

    4

    2

    0

    E t O

    H

    3015

    51

    W/FM [kJ/g]Einflu von W/FM auf ETOH und Q. Beschichtungsdauer: 60 min

    Q [ k g / ( m

    2 h ) ]

    2

    1

    3

    50 100 150 20000

    Matsuyama et al. (1994)

    50 100 150 20000

    Influence of W/FM on ETOH and Q, deposition time: 60 min

    Matsuyama et al 1994

    Yasuda Factor and Membrane Properties II

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    68/114

    Fraunhofer IGB

    p

    E t O H

    [ -

    ]

    0

    W/FM [kJ/g]20 40 60

    5,0

    4,5

    5,5

    E t O H

    [ -

    ]

    6

    4

    2

    0100 110 120 130

    E t O H

    [ -

    ]

    00

    6

    4

    2

    6

    4

    2

    020 40 60

    Beschichtungsdauer [min]

    Q [ k g

    / ( m 2 h ) ]

    30 W15 W

    5 W1 W

    Matsuyama et al. (199

    Correlation between ETOH and low valuesof W/FM

    Influence of durationof deposition

    W/FM= 36kJ/g, W=5 W

    Correlation between ETOH and contact angleW/FM> 30kJ/g

    Yasuda Factor and Membrane Properties III DMTSO

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    69/114

    Fraunhofer IGB

    p

    6

    4

    2

    0

    E t O H

    [ - ]

    50 100 150 20

    Q [ k g

    / ( m

    2 h ) ]

    0

    2

    1

    3

    0

    W/FM [kJ/g]

    OMTSOHMDSO

    Einflu von W/FM auf ETOH und Q.15 W. Beschich tungsdauer: 60 m

    Matsuyama et al. (1994)

    Influence of W/FM on ETOH and Q, deposition time: 60 min

    Plasmadeposited multilayer barriers

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    70/114

    Fraunhofer IGB

    Permeability (plasma only):WVTR: 10 -2 -10 -3 g/m 2d plasOTR: 10 -2 -10 -3 cm 3 /m 2dbar

    Production with combination of vacuum andliquid phase process about 2 orders ofmagnitude better

    Competition: Pilot Production of Ultrabarrier

    Substrate for Flexible Displays (Vitex Systems,mixed process)

    Fields of Application II

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    71/114

    Fraunhofer IGB

    Tailored surface energy (wettability waterrepellency) (solid-liquid-gaseous)

    Tailored contact between polymers and other phasesstatic: solid-solid, (Adhesion)dynamic: solid-(liquid)-solid (Tribology)

    Interaction with biological systems

    (binding and adsorption of biomolecules,biocompatible or bioactive surfaces)

    Separation membranes and ion-exchange materials

    Basic research and analytical methods

    Fields of Application IIUltra-thin films (nano...)

    W tt bilit i

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    72/114

    Fraunhofer IGB

    Wettability isrelevant for:

    Wetting

    Adhesion

    Gluing Contamination

    Printing

    Varnishing

    Coating

    Cleanabilityeasy-to-clean

    LaminationProtein-Adsorptionfouling, biocompatibility

    Water transportcapillarity, goretex , sympatex

    Microfluidicsdiagnostics

    Soldering

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    73/114

    Fraunhofer IGB

    Aramid Textileright: hydrophilic row materialleft: hydrophobized in a flourcarbonplasma

    Oleophobic Finish on Cotton/PET

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    74/114

    Fraunhofer IGB

    Material:Cotton/Polyester-Mixture

    Evaluation:3M-Oiltest

    Method:Plasmagrafting of aflourcarbon monomer

    The finish was washed at60 C

    Defined wettability aging

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    75/114

    Fraunhofer IGB

    Polymers can berendered eitherhydrophobic orhydrophilic.

    To minimize agingeffects ,a stable and well-adherent ultrathin

    plasma layer is superiorto a plasma treatment.

    Moreover, active sites inthe plasma layers should

    be avoided.

    (samples were stored in air)

    0

    20

    40

    60

    80

    100

    120

    0 2 4 6 8 10 12 14

    aging [months]

    w a t e r c o n

    t a c

    t a n g

    l e [ ]

    PC untreated

    siloxane on PC

    fluorocarbon on PC

    N2 plasma treated PC

    SiOx on PC

    hydrophobicplasma treatment

    hydrophilicplasma treatment

    Enhanced

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    76/114

    Fraunhofer IGB

    Adhesive PVD direct metallization

    Polymers after a plasma treatment Epoxid Urethane Cyan-acrylate

    Copper

    FEP (Polytetrafluorethylene- co-hexafluorpropylene)

    >15 (film rupture)

    10-15 *

    PTFE (Polytetrafluorethylene) 7 10-15 *

    PFA (Hyflon MFA) Poly(perfluoralkoxy)

    5

    F l u o r p o

    l y m e r s

    PVDF (Polyvinylidendifluoride) 20-25 *

    PI (Polyimide) 10-15

    PP (Polypropylene) >15 ** 10-15 *

    P o

    l y -

    o l e f i n s

    PE (Polyethylene) >15 ** 10-15 * >10-15

    PE (primer DP8005 from 3M) 5,2

    * (cohesion failure in the adhesive)** (film rupture)

    Adhesion

    The effectivity ofadhesives isenhanced by thinfunctional films

    Requirements regarding Surface Properties of Polymeric

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    77/114

    Fraunhofer IGB

    have to be well defined with respect to their

    topographysurface tension

    density and distribution of chemical groups

    density and distribution of surface charges

    The polymericsurfaces

    Materials for biomedical use

    Thin Plasma Films deposited for

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    78/114

    Fraunhofer IGB

    Diagnostics and Therapy

    Thin Plasma Films deposited for

    Replacement of Glassin Medicine and Pharmacy

    Interface between Technical Materials and Biology

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    79/114

    Fraunhofer IGB

    Interface between Technical Materials and Biology

    Interface and... enhanced Interaction decreased Interaction

    Proteins andother biologicalactive molecules

    Specific binding of bio-molecule >> diagnosticse.g. new pyrogene test,heterogeneous bio-catalysis, specific scavengers

    Decreased proteinadsorption>> minimized fouling

    Microbes Immobilized Microbes/plasma sterilization

    bacteriophobic,bacteriostatic, bacteriozidicsurfaces

    Mammaliancells

    Growing and proliferationof cells for artificial organsand test-kits

    minimizing problems withtemporary Implants,minimized restenosis etc.

    Minimisation of Unspecific Protein Adsorption (IgG) with

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    80/114

    Fraunhofer IGB

    Minim_Proteinads.ppt

    Different Surface Modifications

    Type of Surface Modification

    P r o

    t e i n a

    d s o r p

    t i o n

    g

    / c m 2 2

    Plasma grafting (O 2)Vinylpyrrolidon

    Plasma fixation of (PEO-PPO-PEO) 80

    using Ar

    N2-Plasma grafting Allyl-PEO (1100)

    unmodified O2-plasma graftingVinyllimidazole

    Plasma grafting (O 2)Ethoxide

    Plasma fixation(PEO-PPO-PEO) 250

    Plasma grafting (N 2)(Allyl-PEO) 350

    N2-Plasma graftingHEMA

    The measurements were doneafter stability testing using1 M NaOH, 1 h, 50 C

    Type of surface modification

    Specific Biofunctionalisation of Textile Substrates

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    81/114

    Fraunhofer IGB

    NH

    OON

    O

    O

    O

    NaO3S

    S

    HN NH

    O

    NHS-LC-Biotin-immobilisation

    plasmaaminofunctionalisation

    NH2

    NH2

    NH2 NH Biotin

    NH Biotin

    NH2

    Streptavidin

    NH2

    OregonGreen

    textile substrate

    PumpeKhlfalle

    Monomer Trgergas

    13,56 MHz

    Plasmabrennraum

    Substrate

    RR RRe -

    e -e -

    e -++

    + +

    M*M*

    M*

    M*

    substrate with IGF-1

    NH Biotin

    NH Biotin Biotin

    Biotin

    Microporous Membranes as alternative Carrier Material for

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    82/114

    Fraunhofer IGB

    Microporous membrane Pore size ~ 0.5 m) with selective functionalization ofpores

    Affinity Adsorption from Blood

    New approach: Chemical regioselective Aim:Inner pore surface is widely functionalised,

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    83/114

    Fraunhofer IGB

    surface modification

    Convective flowof plasma through

    the pores of the membraneBlood plasmaon permeate

    side

    Laminar flow of whole blood in the lumen

    [ m ]20

    0

    [ -NH2 ]

    Inner pore surface is widely functionalised,but not the blood compatible lumen surfaceGreen line: ideal distribution

    Parameters:In vitro Apheresis:LPS removal from donated human blood

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    84/114

    Fraunhofer IGB

    Membrane module:A(fiber lumen) = 200 cm, n(fiber) =140, l eff = 10 cm

    Blood from healthy donors,V=70ml , T=37

    LPS: E. coli, 3 EU/ml,45 min prior perfusion

    270 min recirculation

    g = 600s -1 (QB=8ml/min),QF=1ml/min, TMP

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    85/114

    Fraunhofer IGB

    LPS retention duringplasma permeation acrossthe membrane

    LPS reduction in the bloodreservoir

    0%

    25%

    50%

    75%

    non-modif.membrane

    polycationicmembrane

    L P S r e

    d u c

    t i o

    [ 1 - c f i l t r a

    t e / c

    f e e d

    0

    1

    2

    3

    4

    5

    0 50 100 150 200 250 300

    t [min]

    C L P S

    [ E U / m

    l ]

    non-modif. membrane

    polycationic membrane

    theor

    Penetration of active species into the wall of a hollow fiber

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    86/114

    Fraunhofer IGB

    Plasma functionalization with amino groups,XPS spot measurement on cross-section of hollow fiber: ~15 m resolution

    The plasma-treated membrane was derivatized wet-chemically with pentafluorphenylalanine priorto XPS.

    scan through

    cross-section

    g f e d c b a

    0.2

    0.2

    00

    0.4

    0.4

    0

    1

    scan width [mm]

    s c a n w

    i d t h [ m m

    ]

    0

    0.5

    1

    1.5

    2

    2.5

    g f e d c b a

    analysis spot

    F 1 s c o n c e n

    t r a

    t i o n [ a

    t % ]

    fluorine conc.(corrected)

    fluorine conc.(not corrected)

    Scalable in-line air to air low pressure plasmamodification unit

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    87/114

    Fraunhofer IGB

    Plasma chamber

    Rotary pump 1

    Rotary pump 3

    Rotary pump 2

    Hf-Excitation

    Aminoprecursor

    N2-liqu. trap

    Ventilation

    Tnzerwelle

    + Feed through: 0.5 mm * Feed through: 0.7 mm

    Hoolow fiber membrane feed

    Drying chamber

    N2-Addition

    Transport velocity variation: 5 - 100 m/min

    Plasma exposure time: 4 s 200 ms

    + * * * * +

    Rotary pump 4

    * *

    1 2 3 4 5 6 7

    Enhanced Cell Growth by Surface Treatment

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    88/114

    Fraunhofer IGB

    ECTFE untreated

    ECTFE modified

    Keratinocytes Cornea cells

    Human rhabdomyosarcoma cells: dyed with ethidium bromide (red) and calcein(green)

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    89/114

    Fraunhofer IGB

    Rat insulinoma cells (Pankreas): dyed with ethidium bromide (red) andFDA (green)

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    90/114

    Fraunhofer IGB

    hydrophobic/hydrophilicpatterning done byplasma deposition

    D Ch i ti O h

    Plasma Treatment of Polymers

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    91/114

    Fraunhofer IGB

    Dr. Christian Oehr

    Titel_OTTI.ppt

    Content IntroductionPolymers

    general aspects

    Plasma functionalization and polymerisationmonomers, conditions and resulting surfaces

    Applicationswetting, adhesion, biomedical devices

    outlook

    The need for simplified manageability makes

    k i i i l t i t d t

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    92/114

    Fraunhofer IGB

    T. Vaahs, KU Kunststoffe 90/ 10 (2000) 242

    Evolution

    Driver

    Results

    Intelligent packaging more complex dosage systems Chip-Integration etc.

    Differentiationincreasingly bymanageability;less by activeagent

    Inhaler systems

    Needleless Injection

    Increasingly simplifiedmedication

    + Information (date)

    Prefilled syringes

    Glass bottles

    Blister packaging

    + in dosage system

    Insulin PENs

    protective function

    + individual dosage

    packaging increasingly turn into dosage systems

    Structured coatings via plasma based mask techniques

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    93/114

    Fraunhofer IGB

    Strukturierte_Beschichtung.ppt

    water droplets onhydrophilized areas(plasma treatment withmask technique).

    Volume of droplets:approx. 50 nl

    Fluorpolymere stainless steel / TitaniumPolycarbonate

    chemically patterned substratesStained with thioninacetate.

    Functionalisisation with Carboxyl-Groups.

    Dotsize: 100 m 2mm

    1 cm cm

    AFM-Investigation of microstructured AAc-coated Si-wafer

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    94/114

    Fraunhofer IGB

    ESCA-Investigations of microstructured AAc-Coating

    225007000

    CH-Image Si-Image

    on Silicon wafer

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    95/114

    Fraunhofer IGB

    200m 200m5000 0

    on Silicon wafer

    on Polypropylene

    200m 200m

    10000

    1500

    32000

    9000

    COOH-Image O1s-Image

    Energy-dispersive x-ray microanalysis of mask structureElement mapping of mask structure

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    96/114

    Fraunhofer IGB

    SEM-Figure 5KV

    C-K

    O-K

    Si-K

    C-K O-K

    Si-K

    Line-scan measurement:

    high C- and O-rate, dark areashigh Si-rate, light areas

    Element mapping:

    C- and O-contrast in meshesSi-contrast on tissue threads

    Deposition rate related to the position in a plasma

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    97/114

    Fraunhofer IGB

    D e p o s i

    t i o n r a

    t e [ n m

    / m i n ]

    Substrate position between electrodes[mm]

    from diploma thesisJ. Matheis,

    Stuttgart 2004

    Highest deposition ratesome mm apart from theelectrode at the edgebetween bulk plasma tothe plasma sheath

    Plasma treatment of trenches parallel to the applied fieldDeposition of SiO x films on polycarbonate parts.

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    98/114

    Fraunhofer IGB

    Deposition of SiO x films on polycarbonate parts.

    Film thickness on the inside depends on pressure and plasma sheatheffects.

    plane width/depth 1.5/3 mm electrodew/d 1/2 mm w/d 6/30 mmw/d 3/6 mm

    sheath2.6 2.6 2.6

    2.0

    3.0

    50 Pa

    film thickness in mat top and bottom

    50 Pa

    30 Pa50 Pa

    20 Pa

    20 Pa 20 Pa

    bulk plasma

    0.36 0.74 1.1 0.212.92.9

    1.20.65

    0.8

    0.025E

    Plasma treatment of trenches parallel to the appliedfield

    Film thickness on the inside higher than expected from an isotropic model:

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    99/114

    Fraunhofer IGB

    g p p

    for a sticking coefficient = 1 and width/depth = 0.5 d bottom /d top = 0.06[*]

    d bottom /d top 20 Pa 30 Pa 50 Pa

    3 mm 0.22 0.41

    4 mm 0.14 0.29 0.428 mm 0.11

    pressure

    Heigth

    ofsample

    increase of electric field (non-isotropic)

    increase of pressure(collisions)

    enhanced surfacediffusion

    [*] M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, 1994.

    Plasma treatment of trenches parallel to the appliedfield

    Pressure effects are1 5 fil t f th t h

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    100/114

    Fraunhofer IGB

    present fortrenches >100 m(mean free pathlength).

    Deposition of SiO xon smaller trenches.

    d bottom /d top = 0.4

    15 m

    75 m

    600 nm

    1.5 m film on top of the trench

    250 nm

    Light-optical microscope and AFM results

    Plasma treatment (30

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    101/114

    Fraunhofer IGB

    (min. treatment time) ofsilicon wafers through afinely woven tissue

    Carboxylbehandlung.ppt

    Result: Plasma coating through a finely woven tissue results in astrong layer thickness reduction.

    Light-optical microscope photo ofa wafer, coated with one-layertissure

    AFM-picture of a wafer, coated with one-layer tissueLayer thicknss valley: 50-80nmLayer thickness mountain: 150-190 nm

    Coating with double-layer tissueLayer thicknessvalley: 30nm

    Coating with double-layer tissue (45)Layer thicknessvalley: 10nm

    Coating with three-layer tissueLayer thicknessvalley : 5nm

    Coating with four-layer tissueLayer thicknessvalley :

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    102/114

    Fraunhofer IGB

    SEM Scanning Electron Microscopy

    High Resolution Digital Microscopy

    AFM Atomic Force Microscopy

    Ellipsometry

    Contact Angle Measurements

    ESCA / XPS X-Ray Photoelectron Spectr.

    EDX Energy Dispersive. X-Ray Spectr.

    AES Auger Electron SpectroscopyConfocal Raman & FluorescenceSpectr. (optional: Raman-AFM)

    UV-Vis & IR-Spectroscopy

    ChemicalCharacterization

    Contact Angle & TensiometerMeasurements

    BET specific Surface Area

    ESR Electron Spin Resonance Analysis

    OES Optical Emission Spectroscopy

    LIF Laser Induced Fluorescence

    Microwave Interferometer

    MS Plasma Mass Spectroscopy

    Plasma Temperature Measurem

    FE-SEM AFM Ellipsometry Conctact AngleLMEDX ESCA / XPS AES FT-IRRaman-AFMBET Conctact Angle ESRMW-Interf.LIF MSOES

    Pl a . u . ]

    acrylic acidplasma polymer (x10)

    fluorocarbonplasma polymer

    ethylene plasma polymer

    ESR-Spectrum

    1.5

    2.0 Spin Density exponential fit

    3 (

    x 1 0 2 0 )

    0.1 h12 h24 h

    Electron-Spin-Resonance:estimation of the radical density

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    103/114

    Fraunhofer IGB

    Substrat

    Plasma-Polymer + dangling bonds

    UVe - und Ionen-bombardment

    Plasma

    Radikale

    330 340 350

    I n t e n s i

    t y [ a

    B-Field [mT]

    Precursor PlasmaPower[W/cm 2]

    SpinDensity[1/cm 3]

    c-C4F8 0,17 1,2 x10 20

    c-C4F8 + H2 0,17 0,6 x10 20

    AAc CH2=CHCOOH +H2

    0,07 1,5 x10 18

    Ethylene H 2C=CH2

    (1)

    0,63 6,0 x10 20

    Ethylene H 2C=CH2 + H2(2)

    0,63 4,9 x10 20

    0 10 20 30 40 500.0

    0.5

    1.0

    S p

    i n D e n s i

    t y / c m

    Standing Time [hrs.]

    Kinetics

    Probe

    percentage ofC-Radicals oftotal C-content

    pp-C 4F8 0,939%

    a-CH (1) 1,553%

    a-CH (2) 1,792%

    AAc 0,004%

    CoronaIrradiation

    e beam crosslinking

    Coating techniques usedfor surface tailoring

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    104/114

    Fraunhofer IGB

    Polymercoating

    Coronahydrophilicity

    Sputter coatingradiopacity

    Ozonisationactivation for grafting

    Silanizationcoupling to metals

    Texturing photoresist, screeningor printing techniques

    Parylene barrier, lubricity

    Dip coatingLbL,SAM ,nanocytes

    Photocouplinggrafting,

    Plasma(-CVD,-Polym.)regioselective deposition,

    e-beam, crosslinking

    Electroless depositionmetallic layers

    Competitive surface treatment methods

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    105/114

    Fraunhofer IGB

    Von G. Decher

    Ressource efficiencySurface treatment by:

    Liquid based methods Gasphase based methods Gasphase based methods

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    106/114

    Fraunhofer IGB

    Liquid based methods p(atmos. pressure plasma)

    Gasphase based methods(low pressure plasma)

    solvent: e.g. H 2O3,3 10 22 molecules cm -3

    solvent: air, N 2,Ar,He2,7 10 19 molecules cm -3

    solvent: vacuum, carrier gas2,7 10 15 molecules cm -3( working pressure: 0.1 mbar)

    Some characteristics of liquid phase and gas phase with respect

    to surface treatment

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    107/114

    Fraunhofer IGB

    Gas phase

    10 6 less material consuming

    Conc. of reactive species:10 -5-50%(in-situ produced)

    Diff. coeff. ca. 10 -1 to 1 cm 2 /sat atm. press.)(prop. to mean free path)Geometric restrictions prop. tomean free path (relat. to pressure)

    Liquid phase

    Material consuming

    Conc. of reactive species:10 -2 -20%

    Diff. coeff. ca. 10 -5 cm2 /s(e.g. Albumin 6*10 -7 cm2 /s)

    Geometric restrictions (e.g. due tocapillary depression)

    Replacement of chromic sulfuric acid

    Example: tailored wettability of ink guiding systems

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    108/114

    Fraunhofer IGB

    X

    X

    Categories of plasma treated peaces

    A.

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    109/114

    Fraunhofer IGB

    B.

    C.

    Costs of surface treatment by low pressure plasma

    category Peaces per Year[ illi ]

    Cost per peace[ ]

    energy costs[f i ]

    Materials

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    110/114

    Fraunhofer IGB

    [millions] [cent] [fraction] costs[fraction]

    A. Goods inbulk(treatment bytumbling)

    6-33 0,08-0,98 1-8 % 0,04-0,5%

    B. smallpeaces

    0,6-2,7 0,3(a)-9,77(b)

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    111/114

    Fraunhofer IGB

    Energy input

    frequencypower densitydurationCW / pulse

    o o e s,carrier gasespressure, flow (total/partial)

    gas background

    materialdimensionmorphologyquantity

    temperaturepotential

    Reactorgas leading systeminner wallelectrode material configuration

    temperature

    type and degree ofdissoziation of the

    gases

    live time and residencetime of active species

    homo-/ heterogenousreactions

    ion bombardementand radiation

    Plasmatopography

    To the Co-Workers:

    Plasma Experiments and Analytics:

    Acknowledgements I

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    112/114

    Fraunhofer IGB

    p yJ.Barz, B. Elkin, M. Haupt, E. Kurz, H. Malthaner,J. Mayer, M. Mller (Mr.), M. Riedl, V. Sciarratta,U. Vohrer,

    Surface Tension, Contact AngleM. Mller (Ms.), M. Schmidt

    Cell BiologyH. Walles, U. Burger-Kentischer, M. Kaufmann

    MicrobiologyI. Trick, S. Schmidt

    for financial support

    to the German Federal Ministry for Education and Research BMBF

    Acknowledgements II

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    113/114

    Fraunhofer IGB

    to the German Federal Ministry for Education and Research BMBFand the project coordination centers PTJ and VDI for supportingand funding this research

    Thank you for your attention

    Acknowledgments toDr. Hilgers, IBM,Germany, (Nanofunctionalization)Dr. Storr, Gambro GmbH, (production, wet chemical treatment and testingof hollow fiber membranes)

    C ti I f ti

  • 8/10/2019 PSE2014-Tut 1 5 Oehr Plasma Treatment

    114/114

    Fraunhofer IGB

    Continuous Informationon the Topic:

    Polymer Treatment andDeposition by Plasmas

    will be released in theJournal

    contemporary impactfactor (ISI): ~2,96