PSCAD&Simula,on&of&Grid3Tied&Photovoltaic&...

24
PSCAD Simula,on of GridTied Photovoltaic Systems and Total Harmonic Distor,on Analysis Abdulrahman Kalbat Columbia University in the City of New York (Teaching Assistant at UAE University “currently on leave”) October 4 th , 2013

Transcript of PSCAD&Simula,on&of&Grid3Tied&Photovoltaic&...

PSCAD  Simula,on  of  Grid-­‐Tied  Photovoltaic  Systems  and  Total  Harmonic  Distor,on  Analysis  

Abdulrahman  Kalbat  Columbia  University  in  the  City  of  New  York  

(Teaching  Assistant  at  UAE  University  “currently  on  leave”)  

   

October  4th,  2013  

 

10/04/2013   /24  

Paper  Structure  

•  PSCAD  Model  of  Grid-­‐Tied  Photovoltaic  System  

–  Detailed  descripMon  of  all  model  components  and  the  control  blocks  

•  Total  Harmonic  Distor,on  (THD)  Analysis  

–   IEEE  Std  929-­‐  2000  “IEEE  Recommended  PracMce  for  UMlity  Interface  

of  Photovoltaic  (PV)  Systems”    

–  THD  analysis  using  PSCAD  

–  Effects  of  solar  irradiaMon  on  both  current  and  voltage  THD  

Abdulrahman  Kalbat   Columbia  University   2  

PSCAD  Model  Of  Grid-­‐Tied  Photovoltaic  System  

10/04/2013   /24  

Pscad  Model  Of  Grid-­‐Tied  Photovoltaic  System  

Abdulrahman  Kalbat   Columbia  University   4  

gt1

gt2

gt3

gt4

gt5

gt6

1

EaEc Eb

Eab

Ebc

Idc

35

2 6 4

135

2 6 4

Ia_motor

dcVltg

#1 #2

P = 0.1467Q = -0.0006585

V = 11.06

VA

2e-4

80000

TimedBreakerLogic

Closed@t0 BRK_cap

BR

K_cap

R=0

Icha

rge

5

10000

5

T1

Vpv

Icon

0.01 [H]

V+

G

Tcell

V-

SolRad

CellTemp

Ipv

Solar  RadiaMon  +  

Cell  Temperature  Data  

PV  Array  +  

Output  Capacitor  

DC-­‐DC  Converter    for  MPP  Tracking   3-­‐phase  Inverter  Bridge  

AC  Filter  

Transformer  230V/11kV  

UMlity  Grid  11kV  

•  Model  provided  by  PSCAD  support  team  

10/04/2013   /24  

Pscad  Model  Of  Grid-­‐Tied  Photovoltaic  System  

Abdulrahman  Kalbat   Columbia  University   5  

gt1

gt2

gt3

gt4

gt5

gt6

1

EaEc Eb

Eab

Ebc

Idc

35

2 6 4

135

2 6 4

Ia_motor

dcVltg

#1 #2

P = 0.1467Q = -0.0006585

V = 11.06

VA

2e-4

80000

TimedBreakerLogic

Closed@t0 BRK_cap

BR

K_cap

R=0

Icha

rge

5

10000

5

T1

Vpv

Icon

0.01 [H]

V+

G

Tcell

V-

SolRad

CellTemp

Ipv

Solar  RadiaMon  +  

Cell  Temperature  Data  

PV  Array  +  

Output  Capacitor  

DC-­‐DC  Converter    for  MPP  Tracking   3-­‐phase  Inverter  Bridge  

AC  Filter  

Transformer  230V/11kV  

UMlity  Grid  11kV  

minimizes  the  ripple  of  the  PV  source  current  

10/04/2013   /24  

Pscad  Model  Of  Grid-­‐Tied  Photovoltaic  System  

Abdulrahman  Kalbat   Columbia  University   6  

gt1

gt2

gt3

gt4

gt5

gt6

1

EaEc Eb

Eab

Ebc

Idc

35

2 6 4

135

2 6 4

Ia_motor

dcVltg

#1 #2

P = 0.1467Q = -0.0006585

V = 11.06

VA

2e-4

80000

TimedBreakerLogic

Closed@t0 BRK_cap

BR

K_cap

R=0

Icha

rge

5

10000

5

T1

Vpv

Icon

0.01 [H]

V+

G

Tcell

V-

SolRad

CellTemp

Ipv

Solar  RadiaMon  +  

Cell  Temperature  Data  

PV  Array  +  

Output  Capacitor  

DC-­‐DC  Converter    for  MPP  Tracking   3-­‐phase  Inverter  Bridge  

AC  Filter  

Transformer  230V/11kV  

UMlity  Grid  11kV  

Opera,ng  at  Maximum  Power  Point  8><

>:

�I/�V = �I/V, at MPP

�I/�V > �I/V, left of MPP

�I/�V < �I/V, right of MPP

Incremental  Conductance  

Tracking  Algorithm    

!

10/04/2013   /24  

Pscad  Model  Of  Grid-­‐Tied  Photovoltaic  System  

Abdulrahman  Kalbat   Columbia  University   7  

gt1

gt2

gt3

gt4

gt5

gt6

1

EaEc Eb

Eab

Ebc

Idc

35

2 6 4

135

2 6 4

Ia_motor

dcVltg

#1 #2

P = 0.1467Q = -0.0006585

V = 11.06

VA

2e-4

80000

TimedBreakerLogic

Closed@t0 BRK_cap

BR

K_cap

R=0

Icha

rge

5

10000

5

T1

Vpv

Icon

0.01 [H]

V+

G

Tcell

V-

SolRad

CellTemp

Ipv

Solar  RadiaMon  +  

Cell  Temperature  Data  

PV  Array  +  

Output  Capacitor  

DC-­‐DC  Converter    for  MPP  Tracking   3-­‐phase  Inverter  Bridge  

AC  Filter  

Transformer  230V/11kV  

UMlity  Grid  11kV  

Crea,ng  MPPT  voltage  reference    

!

10/04/2013   /24  

Pscad  Model  Of  Grid-­‐Tied  Photovoltaic  System  

Abdulrahman  Kalbat   Columbia  University   8  

gt1

gt2

gt3

gt4

gt5

gt6

1

EaEc Eb

Eab

Ebc

Idc

35

2 6 4

135

2 6 4

Ia_motor

dcVltg

#1 #2

P = 0.1467Q = -0.0006585

V = 11.06

VA

2e-4

80000

TimedBreakerLogic

Closed@t0 BRK_cap

BR

K_cap

R=0

Icha

rge

5

10000

5

T1

Vpv

Icon

0.01 [H]

V+

G

Tcell

V-

SolRad

CellTemp

Ipv

Solar  RadiaMon  +  

Cell  Temperature  Data  

PV  Array  +  

Output  Capacitor  

DC-­‐DC  Converter    for  MPP  Tracking   3-­‐phase  Inverter  Bridge  

AC  Filter  

Transformer  230V/11kV  

UMlity  Grid  11kV  

!

Connect  DC  system  to  AC  system  

10/04/2013   /24  

Pscad  Model  Of  Grid-­‐Tied  Photovoltaic  System  

Abdulrahman  Kalbat   Columbia  University   9  

gt1

gt2

gt3

gt4

gt5

gt6

1

EaEc Eb

Eab

Ebc

Idc

35

2 6 4

135

2 6 4

Ia_motor

dcVltg

#1 #2

P = 0.1467Q = -0.0006585

V = 11.06

VA

2e-4

80000

TimedBreakerLogic

Closed@t0 BRK_cap

BR

K_cap

R=0

Icha

rge

5

10000

5

T1

Vpv

Icon

0.01 [H]

V+

G

Tcell

V-

SolRad

CellTemp

Ipv

Solar  RadiaMon  +  

Cell  Temperature  Data  

PV  Array  +  

Output  Capacitor  

DC-­‐DC  Converter    for  MPP  Tracking   3-­‐phase  Inverter  Bridge  

AC  Filter  

Transformer  230V/11kV  

UMlity  Grid  11kV  

Smoothing  the  inverter  output  

!

10/04/2013   /24  

Pscad  Model  Of  Grid-­‐Tied  Photovoltaic  System  

Abdulrahman  Kalbat   Columbia  University   10  

gt1

gt2

gt3

gt4

gt5

gt6

1

EaEc Eb

Eab

Ebc

Idc

35

2 6 4

135

2 6 4

Ia_motor

dcVltg

#1 #2

P = 0.1467Q = -0.0006585

V = 11.06

VA

2e-4

80000

TimedBreakerLogic

Closed@t0 BRK_cap

BR

K_cap

R=0

Icha

rge

5

10000

5

T1

Vpv

Icon

0.01 [H]

V+

G

Tcell

V-

SolRad

CellTemp

Ipv

Solar  RadiaMon  +  

Cell  Temperature  Data  

PV  Array  +  

Output  Capacitor  

DC-­‐DC  Converter    for  MPP  Tracking   3-­‐phase  Inverter  Bridge  

AC  Filter  

Transformer  230V/11kV  

UMlity  Grid  11kV  

•  Voltage  adjustment  (step  up  or  down)  •  Galvanic  insola,on  

Total  Harmonic  Distor,on  (THD)  Analysis  

10/04/2013   /24  

Total  Harmonic  Distor,on  (THD)  Analysis  

•  Harmonics:    

–  are  sinusoidal  components  of  a  periodic  wave  having  a  frequency  that  

is  at  mulMples  of  the  fundamental  frequency  

•  Generated  in  PV  systems  by  the  converters  that  are  using  

switching  techniques  that  generate  signals  that  are  not  

perfect  sinusoidal.  

•  UMlity  grid  is  already  being  injected  with  harmonics  by  the  

non-­‐linear  load  

–  ConnecMng  PV  systems  will  add  a  stress  on  the  power  quality  of  the  

grid.  

Abdulrahman  Kalbat   Columbia  University   12  

10/04/2013   /24  

IEEE  Std  929-­‐  2000    

•  “IEEE  Recommended  PracMce  for  UMlity  Interface  of  

Photovoltaic  (PV)  Systems”  

1.  Total  harmonic  current  distorMon  shall  be  less  than  5%  of  the  

fundamental  frequency  current  at  rated  inverter  output.  

2.  Each  individual  harmonic  shall  be  limited  as  follows  

•  If  odd  harmonic  à  limits  in  the  table  

•  If  even  harmonic  à  less  than  25%  of  the  odd  harmonic  limits  listed  

Abdulrahman  Kalbat   Columbia  University   13  

Odd Harmonic Distortion Limit3rd � 9th < 4.0 %11th � 15th < 2.0 %17th � 21st < 1.5 %23rd � 33rd < 0.6 %Above the 33rd < 0.3 %

10/04/2013   /24  

IEEE  Std  929-­‐  2000    

•  This  standard  is  valid  for  medium  and  high  voltage  level  

electric  uMlity  

–  Simulated  grid  is  11  kV  60  Hz  system  (medium)  

Abdulrahman  Kalbat   Columbia  University   14  

Voltage Class Nominal Line-Line RMS Voltage

Low Voltage < 600 VMedium Voltage 600 V � 69 kVHigh Voltage 69 kV � 230 kVExtra High Voltage 230 kV � 1100 kVUltra High Voltage > 1100 kV

10/04/2013   /24  

THD  Analysis  using  PSCAD  

•  CalculaMon  of  Total  Harmonic  DistorMon  

1.  Fast  Fourier  Transform  (FFT)  à  Harmonic  frequency  components  

magnitude  (each  index)  

2.  Using  harmonic  frequency  components    

•  Total  Harmonic  DistorMon  (%)  

•  Individual  Harmonic  DistorMon  (%)      

Abdulrahman  Kalbat   Columbia  University   15  

X1

X2

X3

Ph1

Ph2

Ph3

Mag1 Mag2 Mag3

(15)

(15)

(15)

(15) (15) (15)

dc1 dc2 dc3

F F T

F = 60.0 [Hz]

12

3

I_pcc

HarmonicDistortion

Total

Individual

15

15

HarmonicDistortion

Total

Individual

15

15

HarmonicDistortion

Total

Individual

15

15

10/04/2013   /24  

THD  Analysis  using  PSCAD  

•  IEEE  Std  929-­‐  2000    –  Total  harmonic  current  distorMon  shall  be  less  than  5%  of  the  

fundamental  frequency  current  at  rated  inverter  output.  

Abdulrahman  Kalbat   Columbia  University   16  !

10/04/2013   /24  

THD  Analysis  using  PSCAD  

•  IEEE  Std  929-­‐  2000    –  Each  individual  harmonic  shall  be  limited  as  follows  

•  If  odd  harmonic  à  limits  in  the  table  

•  If  even  harmonic  à  less  than  25%  of  the  odd  harmonic  limits  listed  

Abdulrahman  Kalbat   Columbia  University   17  !

10/04/2013   /24  

THD  Analysis  using  PSCAD  

•  Expanding  the  harmonic  index  to  63  

–  The  harmonics  with  indices  from  38  to  46  are  violaMng  the  distorMon  

limits,  which  is  0.3%  

Abdulrahman  Kalbat   Columbia  University   18  !

10/04/2013   /24  

Solar  Irradia,on  Effects  on  Current  and  Voltage  THD  

•  IEEE  Std  929-­‐  2000  –  Limits  were  established  for  THD  of  the  current  at  PCC  

•  It  is  a  common  pracMce,  especially  in  the  case  of  grid-­‐Med  PVs,  

to  pay  more  ahenMon  to  current  THD  analysis.    

•  WHY?  

Abdulrahman  Kalbat   Columbia  University   19  

10/04/2013   /24  

Solar  Irradia,on  Effects  on  Current  and  Voltage  THD  

•  Current  THD  Vs.  Solar  IrradiaMon  –  Current  THD  decreases  as  the  Solar  IrradiaMon  increases  

Abdulrahman  Kalbat   Columbia  University   20  

10/04/2013   /24  

Solar  Irradia,on  Effects  on  Current  and  Voltage  THD  

•  Voltage  THD  Vs.  Solar  IrradiaMon  –  Voltage  THD  is  not  affected  by  the  varying  Solar  IrradiaMon  

Abdulrahman  Kalbat   Columbia  University   21  

10/04/2013   /24  

Solar  Irradia,on  Effects  on  Current  and  Voltage  THD  

•  Current  THD  Vs.  Solar  IrradiaMon  –  PV  systems  operaMng  under  low  solar  irradiaMon  values  inject  more  

current  harmonics  into  the  uMlity  grid  than  at  high  irradiaMon  values.  

Abdulrahman  Kalbat   Columbia  University   22  

10/04/2013   /24  

Solar  Irradia,on  Effects  on  Current  and  Voltage  THD  

•  This  problem  might  force  PV  system  operators  to  

–  Disconnect  the  PV  system  from  the  grid  to  avoid  paying  the  high  THD  

levels  penalty  specified  by  the  uMlity  operator.  

–  Use  beher  filtering  techniques  

•  Passive  filters  (RLC)  

•  Shunt  AcMve  Power  Filters  (used  for  harmonic  compensaMon)  

Abdulrahman  Kalbat   Columbia  University   23  

Thank  You  

Contact  Informa,on  Abdulrahman  Kalbat  

[email protected]  

[email protected]