Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring ›...

48
Prospects for Resilience Quantification Using Dynamical Systems Theory Kate Meyer Minnesota Math Climate Seminar March 22nd, 2016

Transcript of Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring ›...

Page 1: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Prospects for Resilience QuantificationUsing Dynamical Systems Theory

Kate MeyerMinnesota Math Climate Seminar

March 22nd, 2016

Page 2: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Outline

MotivationsEcological resilienceTranslating the qualitative to quantitative

Resilience to state variable perturbationsDefinitions from the ecology literatureMathematical tools: ε-pseudo-orbits and intensity of attraction

Resilience to parameter perturbationsDefinition from the ecology literatureMathematical tools: transient and rapid parameter changes

Future directions

Page 3: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Resilience

“[T]he capacity of [a] systemto absorb change and distur-bances and still retain its basicstructure and function”

– Walker & Salt (2006)

Page 4: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Example

Images: http://resac.gis.umn.edu/water/regional_water_clarity/

content/project_summary.htm

Page 5: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Translating to Dynamical Systems

Scheffer et al. (2001)

Page 6: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Translating to Dynamical Systems

Scheffer et al. (2001) Carpenter et al. (2001)

Page 7: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Resilience to state variable perturbations

1 Levin & Lubchenco (2008), Walker et al. (2004)2 Beisner et al. (2003a)

Page 8: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Resilience to state variable perturbations

3 Beisner et al. (2003b), Levin & Lubchenco (2008)4 Ives & Carpenter (2007), Pimm (1984)

Page 9: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

ε-pseudo-orbits

Classically defined for flows:

Fix a disturbance period, τ :

ϕ(t, x) : R× X → X ϕτ (x) : X → X

Page 10: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

ε-pseudo-orbits

Classically defined for flows:

Fix a disturbance period, τ :

ϕ(t, x) : R× X → X ϕτ (x) : X → X

Page 11: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Following McGehee (1988): Let X be a locally compact metricspace and φ : X → X a continuous map.

DefinitionAn ε-pseudo-orbit of length n is a sequence of points(x0, x1, . . . , xn) in the state space X satisfying d(φ(xk−1), xk) < ε,for k = 1, 2, . . . n

Page 12: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Consider the multi-valued map

ϕτε : X →P(X )

x 7→ {y ∈ X : d(y , ϕτ (x)) < ε}

Page 13: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Let Pε(S) =∞⋃n=0

(ϕτε )n (S)

Page 14: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Chain intensity of attraction

DefinitionThe chain intensity of an attractor A is

µ(A) ≡ sup{ε : Pε(A) ⊂ K ⊂ D(A), where K is compact}

Page 15: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Chain intensity of attraction

DefinitionThe chain intensity of an attractor A is

µ(A) ≡ sup{ε : Pε(A) ⊂ K ⊂ D(A), where K is compact}

Chain intensity is amenable to numerical approximation:

Page 16: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Attractor blocks

DefinitionAn attractor block for a map φ is a nonempty, compact set Bsuch that φ(B) ⊂ int(B).

TheoremFor a continuous map on a locally compact metric space,

• every attractor block contains an attractor in its interior, and

• all attractors are the maximal invariant set inside someattractor block.

Page 17: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Attractor blocks

DefinitionAn attractor block for a map φ is a nonempty, compact set Bsuch that φ(B) ⊂ int(B).

TheoremFor a continuous map on a locally compact metric space,

• every attractor block contains an attractor in its interior, and

• all attractors are the maximal invariant set inside someattractor block.

Page 18: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Definitionβ(B) ≡ sup{ε : ϕτε (B) ⊂ B}

Page 19: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Intensity of attraction

DefinitionThe intensity of A isν(A) ≡ sup{β(B) : B is an attractor block associated with A}

DefinitionThe chain intensity of an attractor A isµ(A) ≡ sup{ε : Pε(A) ⊂ K ⊂ D(A), where K is compact}

Theorem

µ(A) = ν(A)

Page 20: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Intensity of attraction

DefinitionThe intensity of A isν(A) ≡ sup{β(B) : B is an attractor block associated with A}

DefinitionThe chain intensity of an attractor A isµ(A) ≡ sup{ε : Pε(A) ⊂ K ⊂ D(A), where K is compact}

Theorem

µ(A) = ν(A)

Page 21: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Intensity of attraction

DefinitionThe intensity of A isν(A) ≡ sup{β(B) : B is an attractor block associated with A}

DefinitionThe chain intensity of an attractor A isµ(A) ≡ sup{ε : Pε(A) ⊂ K ⊂ D(A), where K is compact}

Theorem

µ(A) = ν(A)

Page 22: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Towards a resilience profile

Example

x = x − x3

µτ (A) = ντ (A) = supx∈(−1,0)

{x − ϕτ (x)}

Page 23: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Towards a resilience profile

Example

x = x − x3

µτ (A) = ντ (A) = supx∈(−1,0)

{x − ϕτ (x)}

Page 24: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Towards a resilience profile

Example

x = x − x3

µτ (A) = ντ (A) = supx∈(−1,0)

{x − ϕτ (x)}

Page 25: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Quantifying resilience to parameter changes

5 Ives & Carpenter (2007)

Page 26: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Time-dependent parameter changes

Transient parameter change Rate-induced tipping

Page 27: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Time-dependent parameter changes

Transient parameter change Rate-induced tipping

Page 28: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Time-dependent parameter changes

Transient parameter change Rate-induced tipping

Page 29: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Time-dependent parameter changes

Transient parameter change Rate-induced tipping

Page 30: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Time-dependent parameter changes

Transient parameter change Rate-induced tipping

Page 31: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Example: transient change in salinity forcingof ocean circulation

http://earthobservatory.nasa.gov/Features/Paleoclimatology_

Evidence/paleoclimatology_evidence_2.php

Page 32: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Cessi’s 1D model

y = p + p(t)− y[1 + µ2(1− y)2

], where p(t) =

{∆ 0 ≤ t ≤ τ0 o’wise

Cessi (1994)

Page 33: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Cessi’s 1D model

Page 34: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Calculating critical time in terms of ∆

τcrit(∆) =

∫ τcrit

0dt =

∫ yb

ya

dy

p + ∆− y [1 + µ2(1− y)2]

Page 35: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Calculating critical time in terms of ∆

τcrit(∆) =

∫ τcrit

0dt =

∫ yb

ya

dy

p + ∆− y [1 + µ2(1− y)2]

Page 36: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

τcrit(∆) =

∫ τcrit

0dt =

∫ yb

ya

dy

p + ∆− y [1 + µ2(1− y)2]

Figure 3 from Cessi (1994)

Page 37: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Time-dependent parameter changes

Transient parameter change Rate-induced tipping

Page 38: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Rate-induced tippingAn example from Ashwin et al. (2012):

dx

dt= (x + λ)2 − µ (µ > 0 fixed)

withdλ

dt= r

Page 39: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

dx

dt= (x + λ)2 − µ (µ > 0 fixed)

dt= r

adapted from Figure 3 of Ashwin et al. (2012)

Page 40: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Asymptotically autonomous parameter shifts

An example from Ashwin et al. (2015):

dx

dt= −

((x − 0.25 + bλ)2 − 0.4 tanh(λ+ 0.3)

)(x − K/ cosh(3λ))

dt= −r(λ+ 1)(λ− 1)

Page 41: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Future directions

• Develop a continuous analogue to intensity of attraction

• Generalize Cessi’s method to higher dimensions

• Generalize Cessi’s method to smooth parameter changes

Page 42: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Develop a continuous analogue to intensity of attraction

Maps Flows

Space X locally compact, metric locally compact, metric

Disturbed φε(x) : X →P(X ) ϕr (t, x) : R× X →P(X )Trajectories flow on f + g , |g | < r

Region of Pε(A) Pr (A)Accessibility

Chain Intensity sup{ε : Pε(A) ⊂ K ⊂ D(A)} sup{r : Pr (A) ⊂ K ⊂ D(A)}

Attractor compact, nonempty, compact, nonempty,Block φ(B) ⊂ int(B) ϕt(B) ⊂ int(B) ∀t > 0

Intensity sup{β(B)}

Page 43: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Generalize Cessi’s method to higher dimensions

Cessi’s 1D system

y = p − y[1 + µ2(1− y)2

]came from

x ′ = −(x − 1)− εx [1 + µ2(x − y)2]y ′ = ε

(p − y [1 + µ2(x − y)2]

)via fast-slow reduction.

Page 44: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Generalize Cessi’s method to smooth parameter changes

e.g. p(rt) = p + ∆1+(rt)2

Page 45: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Page 46: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

References

Ashwin et al. (2015) Parameter shifts for nonautonomous systems in lowdimension: bifurcation and rate-induced tipping. arXiv, 1506.07734v1

Ashwin et al. (2012) Tipping points in open systems: bifurcation,noise-induced and rate-dependent examples in the climate system. Phil. TransRoyal Soc., 370:1166-1184.

Beisner et al. (2003a) Variability of lakes on the landscape: roles ofphorsphorus, food webs, and dissolved organic carbon. Ecology, 84:1563-1575.

Beisner et al. (2003b) Alternative stable states in ecology. Frontiers in Ecol.Envir., 1:376-382.

Carpenter et al. (2001) From metaphor to measurement: resilience of what towhat? Ecosystems, 4:765-781.

Cessi (1994) A simple box model of stochastically forced thermohaline flow. J.Phys. Ocean. 24:1911-1920.

Ives and Carpenter (2007) Stability and diversity of ecosystems. Science,317:58-62.

Page 47: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

References, cont’d

Levin and Lubchenco (2008) Resilience, robustness, and marineecosystem-based management. BioScience, 58:27-32.

McGehee (1988) Some metric properties of attractors with applications tocomputer simulations of dynamical systems. Unpuplished manuscript.

Pimm (1984) The complexity and stability of ecosystems. Nature, 307:321-326.

Scheffer et al. (2001) Catastrophic shifts in ecosystems Nature, 413:591-596.

Stommel (1961) Thermohaline convection with two stable regimes of flow.Tellus, XIII(2):224-230.

Walker et al. (2004) Resilience, adaptability and transformability insocial-ecological systems. Ecology and Society, 9:5.

Walker and Salt (2006). Resilience thinking: sustaining ecosystems and people

in a changing world. Island Press.

Page 48: Prospects for Resilience Quanti cation Using … › ... › 2016-1Spring › Meyer_Resilience.pdfWalker et al. (2004) Resilience, adaptability and transformability in social-ecological

Motivations Resilience to state variable perturbations Resilience to parameter perturbations Future directions

Thank you.

Questions?