Propellant feed systems • Survey of the technologies ...

23
Propulsion Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design © 2002 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Transcript of Propellant feed systems • Survey of the technologies ...

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Propulsion Systems Design

• Rocket engine basics• Survey of the technologies• Propellant feed systems• Propulsion systems design

© 2002 David L. Akin - All rights reservedhttp://spacecraft.ssl.umd.edu

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Overview of the Design Process

System-level Design(based on discipline-

oriented analysis)

Vehicle-level Estimation(based on a few

parameters from prior art)

System-level Estimation(system parameters based

on prior experience)

Program Objectives ✑System Requirements

Increasing complexity

Increasing accuracy

Decreasing abilityto comprehend the “bigpicture”

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Propulsion Taxonomy

Non-ThermalThermal

Mass Expulsion Non-Mass Expulsion

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Thermal Rocket Exhaust Velocity• Exhaust velocity is

where

VT

M

p

pee=

−ℜ

21

10

0

1

γγ

γγ

M average molecular weight of exhaust≡

ℜ ≡ =°

universal gas constJoules

mole K. .8314 3

γ ≡ ≈ratio of specific heats 1 2.

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Ideal Thermal Rocket Exhaust Velocity• Ideal exhaust velocity is

• This corresponds to an ideally expandednozzle

• All thermal energy converted to kineticenergy of exhaust

• Only a function of temperature andmolecular weight!

VT

Me =−

ℜ21

0γγ

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Thermal Rocket Performance• Thrust is

• Effective exhaust velocity

• Expansion ratio

T mV p p Ae e amb e= + −( )˙

T mc c V p pA

me e ambe= ⇒ = + −( )˙

˙

A

A

p

p

p

pt

e

e e=+

+−

γ γγ

γ γγγ1

211

1

1

1

0

1

0

1

Ic

gsp =

0

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Nozzle Design

• Pressure ratio p0/pe=100 (1470 psi-->14.7 psi)Ae/At=11.9

• Pressure ratio p0/pe=1000 (1470 psi-->1.47 psi)Ae/At=71.6

• Difference between sea level and ideal vacuum Ve

• Isp,vacuum=455 sec --> Isp,sl=333 sec

V

V

p

pe

e ideal

e

,

= −

10

1γγ

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Propulsion TaxonomyMass Expulsion Non-Mass Expulsion

Non-ThermalThermal

Non-ChemicalChemical

Monopropellants Bipropellants

LiquidsSolids Hybrids Air-Breathing

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Solid Rocket Motor

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Liquid Rocket Engine

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Propulsion TaxonomyMass Expulsion Non-Mass Expulsion

Non-ThermalThermal

Non-ChemicalChemical

Monopropellants Bipropellants

LiquidsSolids Hybrids

Pressure-Fed Pump-Fed

Air-Breathing

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Liquid Propellant Feed Systems

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Pressurization System Analysis

Pg0, Vg

PL, VL

Pgf, Vg

PL, VL

Adiabatic Expansion of Pressurizing Gas

Initial Final

p V p V p Vg g g f g, ,0γ γ γ= + l l

Known quantities:

Pg,0=Initial gas pressure

Pg,f=Final gas pressure

PL=Operating pressure ofpropellant tank(s)

VL=Volume of propellant tank(s)

Solve for gas volume Vg

Space Systems Laboratory – University of Maryland

Pr

oje

ct

Dia

na

Boost Module Propellant Tanks

• Gross mass 23,000 kg– Inert mass 2300 kg– Propellant mass 20,700 kg– Mixture ratio N2O4/A50 = 1.8 (by mass)

• N2O4 tank– Mass = 13,310 kg– Density = 1450 kg/m3

– Volume = 9.177 m3 --> rsphere=1.299 m

• Aerozine 50 tank– Mass = 7390 kg– Density = 900 kg/m3

– Volume = 8.214 m3 --> rsphere=1.252 m

Space Systems Laboratory – University of Maryland

Pr

oje

ct

Dia

na

Boost Module Main Propulsion

• Total propellant volume VL = 17.39 m3

• Assume engine pressure p0 = 250 psi• Tank pressure pL = 1.25*p0 = 312 psi• Final GHe pressure pg,f = 75 psi + pL = 388 psi• Initial GHe pressure pg,0 = 4500 psi• Conversion factor 1 psi = 6892 Pa• Ratio of specific heats for He = 1.67

• Vg = 3.713 m3

• Ideal gas: T=300°K -->ρρρρ=49.7 kg/m3 (300 psi = 31.04 MPa) MHe=185.1 kg

4500 388 312 17 391 67 1 67 3 1 67psi V psi V psi mg g( ) = ( ) + ( )( ). . .

.

ρHegp M

T=

ℜ,0

0

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Propulsion TaxonomyMass Expulsion Non-Mass Expulsion

Non-ThermalThermal

Non-ChemicalChemical

Monopropellants Bipropellants

LiquidsSolids Hybrids

Pressure-Fed Pump-Fed

Air-Breathing

Nuclear

Electrical

Solar

Beamed

Cold Gas

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Nuclear Thermal Rockets• Heat propellants by

passing through nuclearreactor

• Isp limited bytemperature limits onreactor elements (~900sec for H2 propellant)

• Mass impacts of reactor,shielding

• High thrust system

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

VASIMR Engine Concept

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Propulsion TaxonomyMass Expulsion Non-Mass Expulsion

Non-ThermalThermal

Non-ChemicalChemical

Monopropellants Bipropellants

LiquidsSolids Hybrids

Pressure-Fed Pump-Fed

Nuclear

Electrical

Solar

Ion

MPD

Air-Breathing

Beamed

Cold Gas

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Ion Propulsion

• Uses electrostatic forcesto accelerate ions

• Injects electrons to keepbeam neutral

• High Isp (~3000 sec) atlow thrust (~10 N)

• Substantial mass penaltyfor electrical powergeneration

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Propulsion TaxonomyMass Expulsion Non-Mass Expulsion

Non-ThermalThermal

Non-ChemicalChemical

Monopropellants Bipropellants

LiquidsSolids Hybrids

Pressure-Fed Pump-Fed

Ion

MPDNuclear

Electrical

Solar

Air-Breathing

Solar Sail

Laser Sail

Microwave Sail

MagnetoPlasma

ED Tether

Beamed

Cold Gas

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Solar Sails

• Sunlight reflecting off sailproduces momentumtransfer

• At 1 AU, P=1394 W/m2

• c=3x108 m/sec• T=9x10-6 N/m2

T mV mc= =2 2˙ ˙

E mc mE

cm

E

t c

P

c= ⇒ = ⇒ = =2

2 2 2

Propulsion Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Propulsion TaxonomyMass Expulsion Non-Mass Expulsion

Non-ThermalThermal

Non-ChemicalChemical Solar Sail

Laser Sail

Microwave Sail

MagnetoPlasma

Monopropellants Bipropellants

LiquidsSolids Hybrids

Pressure-Fed Pump-Fed

Ion

MPDNuclear

Electrical

Solar

Air-Breathing ED Tether

Beamed

Cold Gas