PROPAGATION OF MAGNETARS THROUGH THE INTERSTELLAR MEDIUM

34
PROPAGATION OF MAGNETARS THROUGH THE INTERSTELLAR MEDIUM Olga Toropina, Space Research Institute, Moscow, Russia [In collaboration with Marina Romanova & Richard Lovelace] [Department of Astronomy, Cornell University, USA]

description

PROPAGATION OF MAGNETARS THROUGH THE INTERSTELLAR MEDIUM. Olga Toropina, Space Research Institute, Moscow, Russia [In collaboration with Marina Romanova & Richard Lovelace] [Department of Astronomy, Cornell University, USA]. I. INTRODUCTION - NEUTRON STARS EVOLUTION STAGES. - PowerPoint PPT Presentation

Transcript of PROPAGATION OF MAGNETARS THROUGH THE INTERSTELLAR MEDIUM

Page 1: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

PROPAGATION OF MAGNETARS THROUGH THE INTERSTELLAR MEDIUM

Olga Toropina,Space Research Institute, Moscow, Russia

[In collaboration with Marina Romanova & Richard Lovelace][Department of Astronomy, Cornell University, USA]

Page 2: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

Rotating magnetized neutron stars pass through different stages in their evolution:

Ejector – a rapidly rotating (P<1s) magnetized neutron star is active as a radiopulsar. The NS spins down owing to the wind of magnetic field and relativistic particles from the region of the light cylinder RL (RA > RL).

Propeller – after the NS spins-down sufficiently, the relativistic wind is then suppressed by the inflowing matter RL > RA. Until RC<RA, the centrifugal force prevents accretion, NS rejects an incoming matter (RC<RA< RL).

Accretor – NS rotates slowly, matter can accrete onto star surface (RA < RC , RA < RL).

Georotator – NS moves fast through the interstellar medium (RA > Rасс).

• Alfven radius (magnetospheric radius): V2/2 = B2/8 RA =2 x 1012 cm, , B=1015 G, V=100 км/с, n=1 cm-3

• Accretion radius: Rасс = 2GM* / (cs2 + v2) =4 x 1013 M/v100

2

• Corotation radius: RC =(GM/2)1/3 = 2 x 108 P12/3 cm

• Light cylinder radius: RL=cP/25 x 109 P1 cm

I. INTRODUCTION - NEUTRON STARS EVOLUTION STAGES

Page 3: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

Some neutron stars with anomalously strong magnetic field

B ~ 1014 – 1016 G

are called Magnetars (Duncan & Thompson 1992, 1995)

There is suggestion (based on observations) that

soft gamma-ray repeaters (SGRs) and

long-period pulsars in supernova remnants

are magnetars (Kulkarni & Frail; Kouveliotou et al)

The estimated birthrate of SGRs is ~ 10% of ordinary pulsars (Kulkarni &Frail; Kouveliotou et al). Thus, magnetars may constitute a nonnegligible percentage of neutron stars (unless their magnetic field decays rapidly)

Magnetars pass through their evolution stages much faster than classical pulsars.

I. INTRODUCTION - NEUTRON STARS EVOLUTION STAGES

Page 4: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

We investigate the propagation of magnetars through the interstellar medium (ISM).

We consider two cases:

(1) Slow rotating magnetar, when Rасс ~ RA

gravitational focusing is important,matter can accrete onto star surface

(2) Magnetar is rotating in the propeller regime, when

RC < RA

rotating star’s magnetic field rejects an incoming matter.

I. INTRODUCTION - NEUTRON STARS EVOLUTION STAGES

Page 5: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

II. MHD SIMULATION OF ACCRETION TO A MAGNETIZED STAR

We consider the equation system for resistive MHD (Landau, Lifshitz 1960):

7/5, 5/3

Non-relativistic, axisymmetric resistive MHD code is used. The code incorporates the methods of local iterations and flux-corrected transport. We assume axisymmetry, but calculate all three components of v and B. We use the vector potential A so that the magnetic field B = x A automatically satisfies • B = 0. We use a cylindrical, inertial coordinate system (r,,z) with the z-axis parallel to the star's dipole moment and rotation axis . The equatorial plane is treated as symmetry plane.

Page 6: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

- the magnetic moment of the star; * - the angular velocity of the star;

R* - the radius of the star, Rmax, Zmax - the limits of the computational region: R* << Rmax

The size of the region was taken to be less then the sonic radius of the Bondi flow Rs=[(5-3)/4]RB, thus matter inflows supersonically to the computational region.

The inflow rate is taken to be the Bondi accretion rate: MBondi= 4(GM*)2 /c

3, where =0.625 for =7/5.

The incoming matter is assumed to be unmagnetized.

A uniform (r,z) grid with 513 x 513 cells was used.

II. GEOMETRY OF THE MHD SIMULATION REGION

There is only one analytical solution for spherical accretion onto non-magnetic center – Bondi 1952. We use this Bondi solution as a boundary condition. In simulations of accretion to an unmagnetized star, we observed that matter accretes supersonically at the Bondi rate. The velocity and density variations were those of the Bondi solution, and no discontinuities were observed in the simulation region.

.

Page 7: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

II. GEOMETRY OF THE MHD SIMULATION REGION

.

We use a cylindrical inertial coordinate system (r,, z), with origin at the star’s center. Z-axis is parallel to the velocity of the ISM at large distances. The dipole magnetic moment of the star is parallel or antiparallel to the z-axis. Supersonic inflow with Mach number M . The incoming matter is assumed to be unmagnetized. = 5/3

Page 8: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

III. ACCRETION ONTO SLOW ROTATING AND SLOW MOVING STAR

Two distinct regions separated by a shock wave are observed. One is the external region where matter inflows with the Bondi rate and the density and velocity agree well with the Bondi (1952) solution. The second is the internal region, where the flow is strongly influenced by the stellar magnetic field. The background scale represents the density of the flow and the solid lines the poloidal magnetic field lines. The length of the arrows is proportional to flow speed. The thick solid line shows the Alfve´n surface. The dashed line shows the sonic surface. The flow becomes strongly anisotropic close to the dipole.

1. THE STRUCTURE OF THE ACCRETION FLOW

Page 9: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

The anisotropy of the flow is evident. The plasma flows along the magnetic field lines to form polar accretion columns. The density in the accretion columns is 3–4 orders of magnitude larger than that in the equatorial plane.The background scale represents the density of the flow and the solid lines the poloidal magnetic field lines. The thick solid line shows the Alfveґn surface.

2. THE STRUCTURE OF THE ACCRETION FLOW INSIDE OF MAGNETOSPHERE

III. ACCRETION ONTO SLOW ROTATING STAR AND SLOW MOVING STAR

Page 10: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

Mass accretion rate through the spheres of radii R at time t=1.7tff . R* is the radius of the star and Rsh is the equatorial radius of the shock.

One can see two regions separated by the shock wave with different accretion rate. Inside shock wave the accretion rate is smaller than MBondi and approximately constant out to the radius of the shock (Rsh), which is propagating outward. This means that a new matter flow has been established around the magnetized star and that it is stationary. At the shock wave R = Rsh, the accretion rate jumps up to the Bondi rate.

3. TWO DISTINCT REGIONS SEPARATED BY A SHOCK WAVE

III. ACCRETION ONTO SLOW ROTATING STAR AND SLOW MOVING STAR

Page 11: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

Dependence of the accretion rate on the magnetic moment ~ -3

Differential mass accretion rate per unit solid angle dM/d as a function of the polar angle for different magnetic moments at a radius 2R*. The dashed line corresponds to Bondi accretion onto a nonmagnetized star.

5. DEPENDENCE OF THE ACCRETION RATE ON MAGNETIC FIELD OF THE STAR

III. ACCRETION ONTO SLOW ROTATING STAR AND SLOW MOVING STAR

Page 12: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

Results of simulations of accretion to a magnetized star with magnetic field at Mach number M = 3 and = 5/3. Poloidal magnetic B field lines and velocity vectors are shown. The background represents logarithm of density. The thick line represents the Alfven surface.

Gravitational focusing is important.

Magnetic field of the star acts as an obstacle for the flow; a conical shock wave forms.

IV. ACCRETION ONTO SLOW ROTATING AND MOVING STAR, (RA < Racc )

Page 13: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

DENSITY, VELOSITY AND ENERGY DISTRIBUTION

IV. ACCRETION ONTO SLOW ROTATING AND MOVING STAR, (RA < Racc )

Page 14: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

IV. ACCRETION ONTO SLOW ROTATING AND MOVING STAR, (RA ~ Racc )

Gravitational focusing is less important.

Magnetic field of the star acts as an obstacle for the flow; a conical shock wave forms.

Results of simulations of accretion to a magnetized star with magnetic field at Mach number M = 3 and = 5/3. Poloidal magnetic B field lines and velocity vectors are shown. The background represents logarithm of density. The thick line represents the Alfven surface.

Page 15: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

ENERGY DISTRIBUTION IN MAGNETOTAIL

IV. ACCRETION ONTO SLOW ROTATING AND MOVING STAR, (RA ~ Racc )

Page 16: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

Dependence of the accretion rate on the magnetic moment for M=3, normalized to MBHL.

DEPENDENCE OF THE ACCRETION RATE ON MAGNETIC FIELD OF THE STAR

IV. ACCRETION ONTO SLOW ROTATING AND MOVING STAR, (RA ~ Racc )

Page 17: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

IV. ACCRETION ONTO SLOW ROTATING AND FAST MOVING STAR, (RA > Racc )

Gravitational focusing is not important.

Magnetic field of the star acts as an obstacle for the flow; but bow shock is narrow. Magnetic lines form long magnetotail.

Results of simulations of accretion to a magnetized star with magnetic field at Mach number M = 10 and = 5/3. Poloidal magnetic B field lines and velocity vectors are shown. The background represents logarithm of density. The thick line represents the Alfven surface.

Page 18: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

DENSITY AND MAGNETIC FIELD VARIATIONS AT DIFFERENT MACH NUMBERS

- Density in the magnetotail is low- Magnetic field in the magnetotail reduced gradually

IV. ACCRETION ONTO SLOW ROTATING AND FAST MOVING STAR, (RA > Racc )

Page 19: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

V. SPHERICAL ACCRETION ONTO STAR IN THE PROPELLER REGIME

Matter flow in the "propeller" regime for a star rotating at  after 7 rotation periods of the star. The axes

are measured in units of the star's radius. The background represents the density and the length of the arrows is proportional to the poloidal velocity. The thin solid lines are magnetic field lines. Two distinct regions separated by a shock wave are observed. One is the external region where matter inflows with the Bondi rate and the density and velocity agree well with the Bondi (1952) solution. The second is the internal region, where the flow is strongly influenced by the stellar magnetic field and rotation.

1. THE STRUCTURE OF THE ACCRETION FLOW

Page 20: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

Spherical accretion to a rapidly rotating star. Matter flow in the "propeller" regime for a star rotating at  

A new regime of matter flow inside the expanding shock wave. The axes are measured in units of the star's radius. The background represents the density and the length of the arrows is proportional to the poloidal velocity. The thin solid lines are magnetic field lines. The bold line represents the Alfven surface. Dotted line shows sonic surface.

2. THE STRUCTURE OF THE ACCRETION FLOW INSIDE OF MAGNETOSPHERE

V. SPHERICAL ACCRETION ONTO STAR IN THE PROPELLER REGIME

Page 21: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

Matter flow in the "propeller" regime for a star rotating at  . The background represents angular

velocity *= v (r,z)/r. The axes are measured in units of the star's radius.  A new regime of matter flow forms

inside the expanding shock wave. The rapidly rotating magnetosphere expels matter outward in the equatorial region.

2. THE STRUCTURE OF THE ACCRETION FLOW INSIDE OF MAGNETOSPHERE

V. SPHERICAL ACCRETION ONTO STAR IN THE PROPELLER REGIME

Page 22: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

A new regime of matter flow inside the expanding shock wave. Figure shows the streamlines of the matter flow. Matter free-falls along the field lines going into the poles of the star. Some matter that flows close to the z-axis accretes onto the surface of the star. However, matter more remote from the z-axis comes close to the star, is deflected by the rotating magnetic field, and then moves outward in the equatorial plane.

2. THE STRUCTURE OF THE ACCRETION FLOW INSIDE OF MAGNETOSPHERE

V. SPHERICAL ACCRETION ONTO STAR IN THE PROPELLER REGIME

Page 23: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

THE STRUCTURE OF THE ACCRETION FLOW FOR A STAR ROTATING AT *=0.5 K*

Page 24: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

VI. ACCRETION ONTO MOVING STAR IN THE PROPELLER REGIME

The structure of flow depends on velocity of moving star v. Example of matter flow for a star rotating at *=0.7 K and Mach number M=v/cs=1. Accretion radius Rасс=2GM* / (cs

2 + v2) is large then magnetospheric radius RA. A star can capture a matter, the flow looks like in the spherical case with equatorial outflows. Velocities of star v and outflow vp are the same order, the bow shock is wide.

The axes are measured in units of Bondi radius. The background represents the density and the length of the arrows is proportional to the poloidal velocity.

1. THE STRUCTURE OF THE ACCRETION FLOW FOR MOVING STAR AT M=1

289 x 865 = 5/3

Page 25: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

VI. ACCRETION ONTO MOVING STAR IN THE PROPELLER REGIME

289 x 865, = 5/3

1. THE STRUCTURE OF THE ACCRETION FLOW FOR MOVING STAR AT M=1

Page 26: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

V. ACCRETION ONTO MOVING STAR IN THE PROPELLER REGIME

Example of matter flow for a star rotating at *=0.7 K and Mach number M=3. Rасс ~ RA The magnetic field of the star acts as an obstacle for the flow, most of the inflowing matter is kept away from the star and a conical shock wave forms. At larger distances the field is stretched by the flow, forming long magnetotail. The rapidly rotating magnetosphere expels matter outward in the equatorial region. This matter first flows radially outward, then along Z-direction.

2. THE STRUCTURE OF THE ACCRETION FLOW FOR FAST MOVING STAR, M=3

289 x 865 = 5/3

Page 27: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

V. ACCRETION ONTO MOVING STAR IN THE PROPELLER REGIME

2. THE STRUCTURE OF THE ACCRETION FLOW FOR FAST MOVING STAR, M=3

289 x 865, = 5/3

Page 28: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

Rapidly rotating star looses an angular momentum and spins down. We can estimate the total angular momentum loss rate from the star by evaluating the integral over the surface around the star's magnetosphere:

V. ACCRETION ONTO MOVING STAR IN THE PROPELLER REGIME

3. AN ANGULAR MOMENTUM FLUX

Left panel: Angular momentum flow connected with matter.Right panel: Angular momentum flow connected with magnetic field.

Page 29: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

V. ACCRETION ONTO MOVING STAR IN THE PROPELLER REGIME

4. AN ANGULAR MOMENTUM EVOLUTION

The total angular momentum flux around the magnetosphere (solid line) becomes constant approximately after 10-15 rotation periods of the star. As the matter is passing the angular momentum flux in tail (dotted line) is increasing up to value of flux around the magnetosphere and becomes constant. Figure shows that total flux across section z=0.6 becomes constant and equal to flux around the magnetosphere approximately after 26 rotation periods.

Page 30: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

V. ACCRETION ONTO MOVING STAR IN THE PROPELLER REGIME

DEPENDENCE OF THE ANGULAR MOMENTUM FLUX ON DIFFERENT PARAMETERS

The summary of scaling laws:

Page 31: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

We can estimate spin-down of magnetar due to the propeller effect for typically parameters:

M = 1.4 M☼= 2.8 x 1033 g,R = 106 km,

B = 1015 Gs,P = 105 s,

n∞ = 1 cm-3,cs = 30 km/s.

The characteristic time of spin-down is T= L*/L, where

L*=I* * - an angular momentum of a star

L - an angular momentum loss rate, which is obtained by evaluating the integral:

5. SPIN-DOWN OF MAGNETARS

V. ACCRETION ONTO MOVING STAR IN THE PROPELLER REGIME

..

.

Page 32: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

5. SPIN-DOWN OF MAGNETARS

V. ACCRETION ONTO MOVING STAR IN THE PROPELLER REGIME

The characteristic time of spin-down is

For periods P* ~ 103 s, which correspond to beginning of the propeller stage, the evolution scale will be T = 103 years, while at period P* ~ 106 s corresponding to the end of propeller stage T = 3 x 104 years. Thus we see that magnetars are expected to spin down very fast at the propeller stage.

This time-scale however may be much larger if diffusivity is very small.

Page 33: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

VLT observations by Kerkwijk and Kulkarni

Page 34: PROPAGATION OF MAGNETARS   THROUGH THE INTERSTELLAR MEDIUM

Vela pulsar X-ray, Chandra data