Propagation Chapter III ALUMNO

download Propagation Chapter III ALUMNO

of 78

Transcript of Propagation Chapter III ALUMNO

  • 8/12/2019 Propagation Chapter III ALUMNO

    1/78

    PROPAGATION

    ChapterIIIIng.EdgarOchoaFigueroa,MgT

  • 8/12/2019 Propagation Chapter III ALUMNO

    2/78

    FadingandMultipathCharacterization Fadingisroughlygroupedintotwocategories:large-scaleandsmall-scalefading.

    Large-scalefadingissometimescalledslowfadingorshadowing,althoughthetermslowfadinghasamoreprecisedefinitioninthecontextofsmall-scalefading.

    Large-scalefadingisoftencharacterizedbyalog-normalprobabilitydensity function(pdf)and isattributedtoshadowing,andtheresultingdiffractionand/ormultipath.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 2

  • 8/12/2019 Propagation Chapter III ALUMNO

    3/78

    FadingandMultipathCharacterization Changesinlarge-scalefadingareassociatedwithsignificantchangesinthetransmitter/receivergeometry,suchaswhenchanginglocationwhiledriving.

    Small-scalefadingisassociatedwithverysmallchangesinthetransmitter/receivergeometry,ontheorderofawavelength.

    Small-scale fadingmaybeeither fastorslowand isduetochangesinmultipathgeometryand/orDopplershiftfromchangesinvelocityorthechannel.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 3

  • 8/12/2019 Propagation Chapter III ALUMNO

    4/78

    GROUND-BOUNCEMULTIPATH Mostterrestrialcommunicationsystemsdonotoperateinafree-spaceenvironment,butrathermustaccountfortheeffectoftheearthssurfaceonthepropagationpath.

    Therearetwokeyeffects:groundreflectionandpathblockageand/ordiffractionwhenpartofthepathisbeyondlineofsight.

    Whenthepropagationpathisneartheearthssurfaceandparalleltoit,severefadingcanoccurifthegroundissufficientlyreflective.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 4

  • 8/12/2019 Propagation Chapter III ALUMNO

    5/78

    GROUND-BOUNCEMULTIPATH Considerapoint-to-pointcommunicationslinkoperatingincloseproximitytotheearthssurface,forthisanalysis,aflat,smooth,andreflectivegroundsurfaceisassumed.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 5

  • 8/12/2019 Propagation Chapter III ALUMNO

    6/78

    GROUND-BOUNCEMULTIPATH Thustherewillbespeculargroundreflectionfromaflatearth.

    Specularreflectionoccursifandonlyiftheangleofincidenceequals theangleofdepartureat the reflectionpoint1=2.

    Theslantrangeis And

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 6

  • 8/12/2019 Propagation Chapter III ALUMNO

    7/78

    GROUND-BOUNCEMULTIPATH Expressionsforthereflectionanglesareasfollows:

    From

    these

    expressions

    and

    the

    fact

    that

    the

    two

    angles

    areequal,itisclearthat

    thefollowingequationcanbewritten:

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 7

  • 8/12/2019 Propagation Chapter III ALUMNO

    8/78

    GROUND-BOUNCEMULTIPATHSolvingthisequationford1yields

    Replacingd1byd-d

    2inthisequationandsolvingford

    2,

    providesthefollowingequationsford2.

    Thusthespecularreflectionpointbetweenthetwoantennascanbedeterminedbyknowingtheheightsoftheantennas.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 8

  • 8/12/2019 Propagation Chapter III ALUMNO

    9/78

    GROUND-BOUNCEMULTIPATH The following equations follow from the speculargeometry:

    Andalsofromthegeometry,theslantrangeisfoundtobe

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 9

  • 8/12/2019 Propagation Chapter III ALUMNO

    10/78

    GROUND-BOUNCEMULTIPATH Thereceivedsignalcanbefoundbytakingthevectorsumofthedirectandreflectedwaveatthereceiveantenna.

    Themagnitudeandphaseofthereflectedsignalaredeterminedbythepath-lengthdifference(primarilyphasesincethedistancesarenearlyequal)andthereflectioncoefficientoftheground.

    Thereflectioncoefficient,oftendenotedby,isacomplexparameterthatmodifiesboththemagnitudeandphaseofthereflectedwave.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 10

  • 8/12/2019 Propagation Chapter III ALUMNO

    11/78

    GROUND-BOUNCEMULTIPATH Thus for the ground-bounce case the reflectioncoefficient iswell-approximatedby= -1as longas thesurfaceissmoothandconductiveandtheangleofincidenceissmall.

    Thereflectioncoefficientofthegrounddependsuponfourfactors:Angle

    of

    incidence

    (assumed

    to

    be

    very

    small)

    Groundmaterialproperties(flat,smooth,andconductive)FrequencyPolarization (if the grazing angle is small enough, thepolarizationdoesnotaffectthereflection)

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 11

  • 8/12/2019 Propagation Chapter III ALUMNO

    12/78

    GROUND-BOUNCEMULTIPATH Sincethegrazingangleisassumedtobesmall,thereflectionundergoesa180degreephaseshiftatthepointofreflectionregardlessofpolarization.Thesmallgrazinganglealsomeansthat||~1.

    Forgeometrieswhereds>>htandds>>hr(isverysmall),thefollowingapproximationcanbemade:

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 12

  • 8/12/2019 Propagation Chapter III ALUMNO

    13/78

    GROUND-BOUNCEMULTIPATH Thusthepathloss(free-spaceloss)isapproximatelythesameforthedirectandreflectedpaths.

    In thiscase, if thewavesareexactly inphase, therewillbea6dBincreaseinthereceivedsignal(twicetheamplitudeimpliesfourtimethepower).

    Ifthewavesareexactly180degreesoutofphase,thesignalwillcancelcompletelyandnosignalwillbereceived.

    03/03/2011

    Ing.Edgar

    Ochoa

    Figueroa,

    MgT

    13

  • 8/12/2019 Propagation Chapter III ALUMNO

    14/78

    GROUND-BOUNCEMULTIPATH TheEfieldatthereceivercanbeexpressedas

    EistheelectricfieldatthereceiverEdistheelectricfieldduetothedirectwaveatthereceiveristhephasedifferencebetweenthedirectandreflectedwavefrontsduetothepath-lengthdifference.

    For

    the

    small

    grazing

    angle

    case,

    =

    -1

    and

    03/03/2011

    Ing.Edgar

    Ochoa

    Figueroa,

    MgT

    14

  • 8/12/2019 Propagation Chapter III ALUMNO

    15/78

    GROUND-BOUNCEMULTIPATH ThemagnitudeoftheEfieldcanbeexpressedas

    TheexpressionforthemagnitudeofEcanbeexpandedasfollows:

    03/03/2011

    Ing.Edgar

    Ochoa

    Figueroa,

    MgT

    15

  • 8/12/2019 Propagation Chapter III ALUMNO

    16/78

    GROUND-BOUNCEMULTIPATH

    TheexpressionforthemagnitudeofEcanbeexpandedasfollows:

    Whereisthephasedifferenceduetopath-lengthdifferenceandEdistheEfieldduetothedirectreturnonly.

    03/03/2011

    Ing.Edgar

    Ochoa

    Figueroa,

    MgT

    16

  • 8/12/2019 Propagation Chapter III ALUMNO

    17/78

    GROUND-BOUNCEMULTIPATH Thephasedifferencebetweenthedirectandthereflectedwave(duetopath-lengthdifference)is

    03/03/2011

    Ing.Edgar

    Ochoa

    Figueroa,

    MgT

    17

  • 8/12/2019 Propagation Chapter III ALUMNO

    18/78

  • 8/12/2019 Propagation Chapter III ALUMNO

    19/78

    GROUND-BOUNCEMULTIPATHin thebinomialexpansion, it isclear that ifd>>hrandd>>ht,then

    Thususingonlythefirsttwotermsofthebinomialexpansionwillbeagoodapproximation.Makingthedesignatedsubstitutions

    03/03/2011

    Ing.Edgar

    Ochoa

    Figueroa,

    MgT

    19

  • 8/12/2019 Propagation Chapter III ALUMNO

    20/78

    GROUND-BOUNCEMULTIPATH whichsimplifiesto

    whichindicatesthatthereceivedpowerisproportionaltothemagnitudesquaredoftheEfield:

    03/03/2011

    Ing.Edgar

    Ochoa

    Figueroa,

    MgT

    20

  • 8/12/2019 Propagation Chapter III ALUMNO

    21/78

    GROUND-BOUNCEMULTIPATH Therefore,thereceivedsignalpowerwillbe

    whereisthecharacteriticimpedanceoffreespace,but,fromthefree-spacelossequation,themagnitudesquaredofthedirectpathEfieldatthereceiver,Ed,isgivenby

    so

    03/03/2011

    Ing.Edgar

    Ochoa

    Figueroa,

    MgT

    21

  • 8/12/2019 Propagation Chapter III ALUMNO

    22/78

    GROUND-BOUNCEMULTIPATH whichresultsinthefollowing(approximate)expressionforthepathlossonanear-earthpropagationpathoveraflat,smoothconductingsurface:

    Theexactground-bounceexpressionisseldomusedsincethegeometryisrarelypreciseenoughtolocatethepeaksandnullsaccurately.

    Therecommendedapproachistocompute thefree-spaceloss andtheapproximateground-bounce pathloss andusewhichever givesgreaterloss .

    03/03/2011

    Ing.Edgar

    Ochoa

    Figueroa,

    MgT

    22

  • 8/12/2019 Propagation Chapter III ALUMNO

    23/78

    GROUND-BOUNCEMULTIPATH Thecrossoverpointisdefinedasthedistanceatwhichthe1/d4approximationandfree-spacelossareequal.

    The crossover point is found by equating theapproximateground-bouncepathlossandthefreespacelossandsolvingford.

    03/03/2011

    Ing.Edgar

    Ochoa

    Figueroa,

    MgT

    23

  • 8/12/2019 Propagation Chapter III ALUMNO

    24/78

    GROUND-BOUNCEMULTIPATH Example: Consider the following point-to-pointcommunicationslink: hT=hR=10md=4kmf=2GHz

    Whatisthepredictedpathlossforthislink?

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 24

  • 8/12/2019 Propagation Chapter III ALUMNO

    25/78

    SurfaceRoughness Whendeterminingifgroundreflectionislikelytobesignificant,ameansofquantifyingthesmoothness(flatness)ofthereflectingsurfaceisrequired.

    TheRayleighcriterionprovidesametricofsurfaceroughness. TheRayleighroughnessisderivedbasedontheterrainvariation(h)thatwillprovidea90-degreephaseshiftatthereceiverbetweenareflectionataterrainpeakversusareflectionfromaterrainvalleyatthesamedistance.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 25

  • 8/12/2019 Propagation Chapter III ALUMNO

    26/78

    SurfaceRoughness

    TheRayleighroughnessisderivedbasedontheterrainvariation(h)thatwillprovidea90-degreephaseshiftatthereceiverbetweenareflectionataterrainpeakversusareflectionfromaterrainvalleyatthesamedistance.

    TheRayleighcriterionisgivenby

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 26

  • 8/12/2019 Propagation Chapter III ALUMNO

    27/78

    SurfaceRoughness TheRayleighcriterioncanthenbeexpressedas

    Whentheextentoftheterrainfeatures,h,islessthanHR,thesurfacecanbetreatedasbeingsmooth.

    Whenareflectivesurfaceisrough,meaningthattheextentoftheterrainfeatures,h,ismuchlargerthanHR,thenthereflectionsfromthesurfacewillbediffuseandarecharacterizedasscatteringratherthanreflection.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 27

  • 8/12/2019 Propagation Chapter III ALUMNO

    28/78

    FresnelZones

    ThevectorTRisthelineofsightbetweenthetransmitterandthereceiverandthelinkdistanceisd1+d2.

    IfthereisadiffractionpointatP,thesignalTPRwillcombinewithTRatR.

    TPRtraversesaslightlygreaterdistancethanTRandthereforewillhaveadifferentphase.Thedirectandreflected/diffractedpathlengthscanbeexpressedas

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 28

  • 8/12/2019 Propagation Chapter III ALUMNO

    29/78

    FresnelZones

    Sothepath-lengthdifferenceis

    Ifh

  • 8/12/2019 Propagation Chapter III ALUMNO

    30/78

    FresnelZones Makingtheappropriatesubstitutionsintheequationfor,yields

    Thecorrespondingphasedifferenceis

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 30

  • 8/12/2019 Propagation Chapter III ALUMNO

    31/78

    FresnelZones TheFresnelKirchhoffdiffractionparameterisoftenusedtoshortenthenotationinFresnelzoneanalysesandisdefinedas

    Ifthedif fract ionpo in t isbelowthel ineo fs ight (LOS),thenhisnegat iveandvwi l l alsobenegative.

    WhenthediffractionpointislocatedontheLOS,handvarebothequaltozero.Iftheblockageisthehorizon,thenthehandvequalzerocasecorrespondstothemaximumLOSdistance.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 31

  • 8/12/2019 Propagation Chapter III ALUMNO

    32/78

    FresnelZones Thecaseswhere=n/2,wherenisaninteger,canbefoundbysetting=n,whichyieldsthefollowingequation:

    Thedestructivereflection/diffractionpointscanthenbeidentifiedbydefiningaterm,hn,suchthat

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 32

  • 8/12/2019 Propagation Chapter III ALUMNO

    33/78

    FresnelZonesReflectors/diffractionathn foroddvaluesofnwillcausedestructiveinterference.

    Since thedifference inpath lengths ison theorderof,thereflected/diffractedsignalmaybeasstrongasthedirectsignalandcausecancellation.

    Theequationforhndefinesasequenceofellipsoidswiththetransmitandreceiveantennasasthefoci.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 33

  • 8/12/2019 Propagation Chapter III ALUMNO

    34/78

    FresnelZones DiffractorsorreflectorsattheoddnumberedFresnelzoneboundarieswillcausedestructiveinterference.TheFigureshowsadiagramoftheFresnelzonesdefinedbyapoint-to-pointlink.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 34

  • 8/12/2019 Propagation Chapter III ALUMNO

    35/78

    FresnelZones Notethatthisdiagramistwo-dimensional,whereastheactualFresnelzonesarethreedimensionalellipsoids.

    Forlargehorsmalld1andd2,theantennapatternmayattenuatetheundesiredsignal.

    Foromnidirection(vertical)antennas,theremaybeattenuationoftheundesiredsignalinelevation,butnotinazimuth.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 35

  • 8/12/2019 Propagation Chapter III ALUMNO

    36/78

    FresnelZones Fromtheprecedinganalysis,itisclearthatanyreflectors/diffractorswithinthefieldofviewshouldnotbenearanoddFresenelzoneboundarytoavoidsignalloss.

    It isalso important that the firstFresnelzonebeclearofobstructionsbecausethiscanseriouslydegradetheavailablesignalenergy.

    If thefirstFresnelzone isnotclear,then free-space lossdoesnotapplyandanadjustmenttermmustbeincluded.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 36

  • 8/12/2019 Propagation Chapter III ALUMNO

    37/78

    FresnelZones Having60%offirstFresnelzoneclearissufficient. Atthe0.6hpoint,theFresnelKirchhoffdiffractionparameterisv=-0.8andtheresultingdiffractionlosswillbe0dB

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 37

  • 8/12/2019 Propagation Chapter III ALUMNO

    38/78

    FresnelZones Example:Considerapoint-to-pointcommunicationsystem,withd=1kmandf=28GHz.Ifthereisabuildingpresent,300mfromoneendofthe link,howfarmustitbe(inelevationorheight)fromtheLOStonotimpedetransmission?

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 38

  • 8/12/2019 Propagation Chapter III ALUMNO

    39/78

    DiffractionandHuygensPrinciple Diffractionisthephysicalphenomenonwherebyanelectromagneticwavecanpropagateoveroraroundobjectsthatobscurethelineofsight.

    Diffractionhastheeffectoffillinginshadows,sothatsomeamountofelectromagneticenergywillbepresentintheshadowedregion.

    Huygens

    Principle

    states

    that

    each

    point

    on

    a

    wavefront

    actsasthesourceofasecondarywaveletandallofthesewaveletscombinetoproduceanewwavefront inthedirectionofpropagation.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 39

  • 8/12/2019 Propagation Chapter III ALUMNO

    40/78

    DiffractionandHuygensPrinciple

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 40

  • 8/12/2019 Propagation Chapter III ALUMNO

    41/78

    QuantifyingDiffractionLoss TheeffectofaplanewaveincidentonaperpendicularconductivebarriercanbedividedintothreeshadowregionsasshowninFigure.

    RegionIcontainsdirect,reflected,anddiffractedrays,regionIIcontainsdirectanddiffractedraysonly,andregionIIIcontainsdiffractedraysonly.

    This

    explains

    why

    aknife

    edge

    that

    isbelow

    the

    line

    of

    sightmaystillaffectthereceivedwave.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 41

  • 8/12/2019 Propagation Chapter III ALUMNO

    42/78

    QuantifyingDiffractionLoss

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 42

  • 8/12/2019 Propagation Chapter III ALUMNO

    43/78

    QuantifyingDiffractionLoss Theanalysisinthissectionisbasedonaconductivebarrier.

    Theseresultsareoftenappliedtoscenarioswherethebarriersarenotconductive;however,theymaynotbeasprecise,dependinguponthereflectionpropertiesofthebarrier.

    The

    knife-edge

    diffracting

    point

    may

    be

    above,

    below,

    or

    directlyonthelineofsightbetweenthetransmitterandreceiver.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 43

  • 8/12/2019 Propagation Chapter III ALUMNO

    44/78

    QuantifyingDiffractionLoss Theelectricfieldduetothediffractedpathisgivenbythediffractionintegral,

    whereE0istheelectricfieldatthereceiverbasedonfree-spacelossonlyandvistheFresnelKirchhoffdiffractionparameterdefinedearlier.

    Evaluationofthediffractionintegralisusuallydonenumerically or graphically. Lee provides anapproximationtothediffractionintegral.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 44

  • 8/12/2019 Propagation Chapter III ALUMNO

    45/78

    QuantifyingDiffractionLoss

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 45

  • 8/12/2019 Propagation Chapter III ALUMNO

    46/78

    QuantifyingDiffractionLossExample:Consideracommunication linkcomprisedoftwo150MHzhand-heldradiosseparatedby1kmasshowninFigure. The barrier between the two radios runsperpendiculartothelineofsightandis5mbelowthelineofsight.

    Assume

    that

    the

    barrier

    isathin,

    solid

    fence

    that

    is

    200mfromoneendofthelink.Howmuchadditionalpathloss(beyondfree-spaceloss)canbeexpectedduetothediffractionfromthefence?

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 46

  • 8/12/2019 Propagation Chapter III ALUMNO

    47/78

    QuantifyingDiffractionLoss

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 47

  • 8/12/2019 Propagation Chapter III ALUMNO

    48/78

    QuantifyingDiffractionLoss Thediffractionfromaroundedhilltoporsurfaceisdeterminedbycomputingtheknife-edgediffractionfortheequivalentheight, h,and thencomputing theexcessdiffractionloss,Lex,duetotheroundedsurface.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 48

  • 8/12/2019 Propagation Chapter III ALUMNO

    49/78

    QuantifyingDiffractionLoss Thefirststep istodeterminetheradius,r,ofthecylinderthatcircumscribestheactualdiffractionpointsontheobstacle.

    Thentheextentofthediffractionsurface,DS,canbefound.Theexpressionfortheexcessdiffractionlossis

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 49

  • 8/12/2019 Propagation Chapter III ALUMNO

    50/78

    QuantifyingDiffractionLossExample:Considerapoint-to-multipointcommunicationslinkoperatingat5GHzoveradistanceof1kmshowninFigure.Thereisapairofnarrowhilltopsinbetweenthetransmitter and receiver, located 300 m from the

    transmitter,find

    the

    total

    diffraction

    loss

    if

    the

    hilltops

    are

    10

    mapartand3mabovethelineofsight.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 50

  • 8/12/2019 Propagation Chapter III ALUMNO

    51/78

    QuantifyingDiffractionLoss

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 51

  • 8/12/2019 Propagation Chapter III ALUMNO

    52/78

    QuantifyingDiffractionLoss

    ThuscOCisanisosoliclestrianglewiththeequalsidesbeing

    of

    length

    r.

    Solving

    for

    ryields

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 52

  • 8/12/2019 Propagation Chapter III ALUMNO

    53/78

    QuantifyingDiffractionLoss

    wheremust,

    ofcourse,

    beexpressed

    inradians,

    thereforethesignalatthereceiverwillbeabout47.46dBlowerthanitwouldbefortheunobstructedcase.03/03/2011 Ing.EdgarOchoaFigueroa,MgT 53

  • 8/12/2019 Propagation Chapter III ALUMNO

    54/78

    DelaySpread Thedirectpath(ifoneexists)istheshortestpathbetweenthetransmitterandreceiver. Anymultipathswillhavetraveledgreaterdistancesandwillthereforebedelayedintimerelativetothedirectsignal.

    Thusthereflectedsignal(s)willnotalignwiththedirectsignal,

    and

    the

    cumulative

    signal

    will

    be

    smeared

    in

    time.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 54

  • 8/12/2019 Propagation Chapter III ALUMNO

    55/78

    DelaySpread

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 55

  • 8/12/2019 Propagation Chapter III ALUMNO

    56/78

    DelaySpread Itisdesirabletohavethemaximumdelayspreadtobesmallrelativetothesymbolintervalofadigitalcommunicationsignal.

    An analogous requirement is that the coherencebandwidthbegreaterthanthesignalbandwidth.

    Coherencebandwidthisdefinedasthebandwidthoverwhich

    the

    channel

    can

    beconsidered

    flat

    with

    linear

    phase.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 56

  • 8/12/2019 Propagation Chapter III ALUMNO

    57/78

    DelaySpread Flatfrequencyresponsewithlinearphaseimpliesnosignaldistortion. Thecoherencebandwidthisoftenapproximatedas

    dependingupontheflatnessrequiredandthechannelsspectralshape.

    Thermsdelayspreadisdenotedbyt

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 57

  • 8/12/2019 Propagation Chapter III ALUMNO

    58/78

    DelaySpread Ifthesignalbandwidthislessthanthecoherencebandwidth,B

  • 8/12/2019 Propagation Chapter III ALUMNO

    59/78

    DelaySpread Theremedyforflatfadingistodeterminetheallowableoutage timeand thenuse theRayleighpdf todeterminetherequiredfademargintomeettherequirement.

    Forselectivefading,somemodulationsarerelativelytolerantoffrequencydropouts,whereasinothercasesanequalizermaybeused.

    Anotherapproachissimplyconsiderthesymboltime,thentohaveadelayspreadthat issignificantly lessthanT,t

  • 8/12/2019 Propagation Chapter III ALUMNO

    60/78

    DelaySpreadExample:Givenadigitalcommunicationsystemwithasymbolrateof50,000symbolspersecond,whatisanacceptableamountofrmsdelayspread?

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 60

  • 8/12/2019 Propagation Chapter III ALUMNO

    61/78

    DelaySpreadExample:GiventhecommunicationsystemandtheenvironmentshowninFigure,ifallofthebuildingsaregoodreflectorsandboththetransmitterandreceiverareusingwide-angleantennas,what isthemaximumexpecteddelay

    spread

    value?

    Base

    on

    that

    value,

    what

    is

    the

    highest

    symbolratethatyouwouldrecommend?Assumethatthere isnoequalizerpresentand thatbothendsof the linkareatthesameheight.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 61

  • 8/12/2019 Propagation Chapter III ALUMNO

    62/78

    DelaySpread

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 62

  • 8/12/2019 Propagation Chapter III ALUMNO

    63/78

    DelaySpread

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 63

  • 8/12/2019 Propagation Chapter III ALUMNO

    64/78

    DopplerSpread RelativemotionbetweenthetransmitterandreceiverimpartsaDopplershiftonthesignal,wheretheentiresignalspectrumisshiftedinfrequency.

    Whenmultipathiscombinedwithrelativemotion,theelectromagneticwavemayexperiencebothpositiveandnegativeDopplershift,smearingorspreadingthesignalinfrequency.

    ThiseffectiscalledDopplerspread

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 64

  • 8/12/2019 Propagation Chapter III ALUMNO

    65/78

  • 8/12/2019 Propagation Chapter III ALUMNO

    66/78

  • 8/12/2019 Propagation Chapter III ALUMNO

    67/78

    DopplerSpreadandvRelisthemaximumrelativevelocity.

    Thecoherencetimeissometimestakentobe

    IfthesignalbandwidthismuchlargerthantwicethemaximumDopplershift,thechanneliscalledaslowfadingchannelandtheeffectsofDopplerspreadarenegligible.Asimilarrequirementis

    thesymboltimeislessthanthecoherencetimeofthechannel.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 67

  • 8/12/2019 Propagation Chapter III ALUMNO

    68/78

    IndoorPropagationModeling Indoorpropagationofelectromagneticwavesiscentralto theoperationofwirelessLANs,cordlessphones,andany other indoor systems that rely on RFcommunications.

    Modeling indoorpropagation iscomplicatedby the largevariabilityinbuildinglayoutandconstructionmaterials.

    Inaddition, theenvironmentcanchange radicallyby thesimplemovementofpeople,closingofdoors,andsoon.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 68

  • 8/12/2019 Propagation Chapter III ALUMNO

    69/78

    IndoorPropagationModeling While an understanding of indoor propagation isessential,anotherimportantelementofindoorwirelessoperationthatshouldbeconsideredisinterference.

    Unlikeoutdoorenvironments,wheretheoperatingdistancesaregreater,inanindoorenvironment,itispossible,andinfactcommon,tohaveaninterferingsystemoperatingwithinafewfeetorlessofagivensystem.

    AclassicexampleisthedesktopcomputerwithawirelessLANcardthatalsoemploysawirelesskeyboardand/ormouse.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 69

  • 8/12/2019 Propagation Chapter III ALUMNO

    70/78

    IndoorPropagationModeling ThewirelesskeyboardandmousearelikelytousetheBluetoothstandard,whichusesfrequencyhoppinginthe2.4-GHzISMband.

    IfthewirelessLANcardisan802.11borg[directsequence spread spectrum (DSSS) or orthogonalfrequencydivisionmultiplexing(OFDM)]system,thenitwillbeoperatinginthesamefrequencybandandthepotentialforinterferenceexists.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 70

  • 8/12/2019 Propagation Chapter III ALUMNO

    71/78

    TheITUIndoorPathLossModel TheITUmodelforsite-generalindoorpropagationpathlosspredictionis

    Where

    NisthedistancepowerlosscoefficientfisthefrequencyinMHzdisthedistanceinmeters(d>1m)Lf(n)isthefloorpenetrationlossfactornisthenumberoffloorsbetweenthetransmitterandthereceiver

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 71

  • 8/12/2019 Propagation Chapter III ALUMNO

    72/78

  • 8/12/2019 Propagation Chapter III ALUMNO

    73/78

    Valuesforthefloorpenetrationlossfactor.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 73

  • 8/12/2019 Propagation Chapter III ALUMNO

    74/78

    IndoorPropagationModeling TheITUmodelcanbeshowntobeequivalenttotheequationforfreespacelosswiththedistancepowerbeingN=20(whennottraversingfloors).

    ThustheITUmodelisessentiallyamodifiedpowerlawmodel. Thiscanbeseenasfollows:Theexpressionforfree-spacelossexpressedindBisgivenby

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 74

  • 8/12/2019 Propagation Chapter III ALUMNO

    75/78

    IndoorPropagationModeling whenN=20.Thefirsttermontheright-handsidecanbeexpressedas

    Usingthefactthat theexpressionforthepathlosssimplifiesto

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 75

  • 8/12/2019 Propagation Chapter III ALUMNO

    76/78

    IndoorPropagationModeling ApowerlosscoefficientvalueofN=20correspondstofree-spaceloss,andthiswillusuallyapplyinopenareas.

    CorridorsmaychannelRFenergy,resultinginapowerlosscoefficientofN=18.(slightlylessthanfree-spaceloss).

    Inthecaseofpropagationaroundcornersorthroughwalls,N=40isused.

    Forlongpaths,thereflectedpath(s)mayinterfere,resultinginN=40beingusedhereaswell.

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 76

  • 8/12/2019 Propagation Chapter III ALUMNO

    77/78

    IndoorPropagationModelingExample:Considerapplicationofa5.2-GHzwirelessLANinanofficebuilding. If the longest link is100m,what is themaximumpathloss?Howmuchadditionalpathlosswillexistbetweenfloors?Istheinterfloorlosssufficienttopermitfrequencyre-use?

    03/03/2011 Ing.EdgarOchoaFigueroa,MgT 77

  • 8/12/2019 Propagation Chapter III ALUMNO

    78/78

    IndoorPropagationModeling

    03/03/2011 Ing Edgar Ochoa Figueroa MgT 78