Promotion of Research on Climate and Earth System Science ...

233
245:67893 Promotion of Research on Climate and Earth System Science by Advanced Aircraft Observations: Plans for the New Aircraft Program of Japan ; '$ < 2!15 The Aircraft Observation Planning Committee of the Meteorological Society of Japan &$%( & % ' ),+.-*-/ %'# &$%(

Transcript of Promotion of Research on Climate and Earth System Science ...

�����245��:��6789����3��

����"

"

Promotion of Research on Climate and Earth System Science by Advanced Aircraft Observations: Plans for the New Aircraft Program of Japan

����" �����" ;�"'$"�<"

�����2!15�� �"

"

The Aircraft Observation Planning Committee of the Meteorological Society of Japan

&$%(�"&� % ' ""

),+.-*-/"%'#"&$%("

P

( sP s

X m P ―

mQ s P

P

P m

mQ P X s mS

T s P ― P P s

m m Q

P

Q m

P

s Q m

P R s m P

s mQ

P P

Q P P

Q P A

P

P m s Q sP

P P P P s

Q m P ―

P ― Q

s

P Q s m

P R P 03

s m Q

-

40

5.7 1

5. .

m P R mn mQ

JAMSTEC

JAMSTEC

℃ JAMSTEC

JAXA EORC

NICT

(

!!

S T !

!

!

!

!

!

,!

,!

-!

-!

!

)!

)!

!

!

!

,!

,,!

- !

--!

!

!

!

) !

))!

) !

),!

!

m !

)!

!

,!

m m )!

)!

)

, !

- !

3 G - !

(!

!

!

!

m !

,!

5. . 9 . 6 !

2. !

(!

Exective summary !

S T

P

Q

P Q

m

s Q

P P

P

Q m P

― P ―

Q P 10

s P Q

P

P Q m

P ― Q

m sP R

Q

s Q

Xm ― s mP

Q

P P P P P

NICT s Q

P Q

m P s s

s Q

mP s

P Q

P

s Q P

Q P

Q P

sP P

s Q m

m P

s Q

GCOM PGOSATPGPMPEarthCARE

Q m s P

NICAM s Q

P s m

s Q s m P

m P

m Q

Q

PM2.5 X P s

m P s

Q m m P

m Q m P

s Q

PIPCC s mQ mP

s

Q s mm

s s Q m

P P

Q m

Q P P P 3 s

sP Q

P Q

P

Q

,

P X P s

s m 3 P s

Q

S T

S T

X P S T

X P

s Q m

2-3 s s Q

P P

QS T P —

m P s X

P QS T

P m s s i

s m P

X

Q mS T s s m P

s

P

Q

P P

s P

Q P

s P m

Q

P P

Q

s mQ 2014 s P2015

s mQ

P P P P P

P P P

-

8 X P P P

11 mQ P

P P

s Q m mn P

s mQ sP m

Q

ⅳ P

Q / JAXA/EORC

NICT P s

mQ P

Q

P

Q P

P

P XQ

S T S

T X Q S

TPS T

s Q

s S T

P S T S m T

s Q m P

S TPS TPS T

m P P

Q mS T S T s P

s

Q

mS T s X

s Q S

T PS T

Q m m ⅳ

P s

Q P

S T sP Q

PS T

P P Q

NM�"_M-[

w{zuuw|zuuwzzuuwxzuuwzuuwvzuuwvvzuwyzuwvyzuwvvyzuwvvvyz wvvvvyz

]U8aD³µ:�&´�%`3aD³s)S�i´

ª�°i³YhR´ ©�°i³��¡«´��²¯�¬ ¨

�HQ"�¤­��«�¦¢¶ª�°i³YhR´�Ib�����H±;���¡«�Ib�

]U8aD¶aDW)���������~��2��aDi�+���HQ"�2��O�

; �! ��°�¯ n±lV �? Sn k�cl �q F*�;� ;���

@> ,KG ©��°¨­�� � �? sE @< B dE tZ @? ;���

j�K.X ^ 7 5( ;���±0� 65 K.X�²¥� ;���

m< ,GIhR SmA Sm³'��´ <= <( ;���

��������HaD#L�]U8�$�~���L�]U8aD���~;�±�H��¡«Q"PT�reM�1g�

�HC4���~�HJ����p��

�HQ"��f����²¯�¬ ¨�o¶©�°i³��¡«´�/�\�Ib�~ª�°i³�§�® £±��²¯~YhR´�Ib���9�

}

�® £��²¯

�§±�® £��²¯

1.

�hW0e�]W��

• .K��OP����qg ´�+�Xj���@��T�DYµ• f`?kI�`V�´7:�;����o�¶�w]���imµ

���

H"�;A´�i�µ

A � £­�-a²©�³¥§¢�

��°¡®²z´8��\ i�µ

x�ny²�}´]W�±¨�¤µ

UQJ

v�Q1b§��¬ ²�=/�{²L&

FE,P²FB²Q1b

�NW*|

�A

]*|

Z��R

BC²B(

M#�tM²GM

7:�kI3h��T�¤¢ª¯«®�´7:�)�µ

����u���?����f`?kI�!6�

�OkI$R�f`?�%���10's�lSWkI²[_����S9W�2;�

f`?kI�p�����r>4W�d��O^����5��[_�<c��´�¦�³µ

~

�3G� ¹3^����3�����3?���Mº

3���.���F�Y��©¨¶­µ�h ¹y|xxmmsqrtº

C�©¨¶­µ¹�>¦ �ºl�©¨¶­µ¹�>¦�;º

©¨¶­µ���Q'nUº���²«¶e���k$�"��TK1���[8�S

¨¬¨�|zspu¹©¨¶­µº

©¨¶­µ��3�I�e¹�!W,[8º

• °´®«ª¸±·¹l�©¨¶­µº�¨¬¨�����[8��A�³¯µ0\ ¹y|xx sqrtº�

+/��LD�TK1[8)V

• y|xx� Zb��¥���7-�<_¹�:Dc�fº�BZ*�³¯µ�¢¤�>7-�¡64��%i��e��

[8�KC���¤¨¬¨����¢���3?��������¤�»�§�©¨¶­µ�¨¬¨�£�#4�5����¤��»h��%i» 64@&O��%i»

/EJ�N�¤��dY]j

²«¶e�[8�����PbH¦X=��2��*�³¯µ�gB�%i��e��

�3�£64��fR

{}���~mx���pomsqrvomsqrw

`��:a9� ������(

.

�����:B�Y

_�*< ¯<���w¨¦®��¬�¬���H°

0>��|~¯²°

DI�#¯qsei°32­1�­30 ¯32��w�:���H°

• �J30���­NSVC�[���0>��|~������!

• -�=�R5�� ����329;­��<9R5

• ª®�8����4~�R5

��O& ± _�*<��«®�©�MF- ± �y�)(���w)(�

���£�­GL 'Zc¤�«Z°

¤�«Z{/��]��XP�¡«���<�K�®���"Wxhg�\����T��}�{XPx

�¢®��3��MF-R5(Toyota et al., 2006)

��w�`w6� ¯�;��w@^��H°¯^7±.�§��°

,a­���£�

MF-R5±hggbsbu hbmsb�Q�w�:B��%�z?±�:B���§��¥� ��U�¡§�� �®¥���wAEY�+$��%Y�<

cklqlopbntblrfbighjd

v

(.

zE»AE ½:m����L���Uz���cFE���]¾

�KB2� ¦¨�$���¥|�n}����©�¡�'�q"���¥|�n} ¦©N��g����¡tp��^#¢,����©�.�$#��^#¢,�������

��»|�n}

���� ����"

����¡l!½��1y¾

�C^#�� ¢�Qu·¬³®¶¡j0¡w��©�s¥;e:��¡�µ­¹v¡d\8iC�&h�

6/5�~EgE�½����"�3¾@;�¥�MY¡|ZH<�Wk��©

�~»>=»?;»�UE�

D��D% �½����"�3¾�G {ª��:��Wk��©

�C^#��¡�£¡�XV[¥8 R H<«)+�©(fxQ ¦¨zE»AE oI�

½�7�¤����������4T�9*¾

-��²¹°´¯º±«xQ��P�¡��¡S¡��¡��#�§¡iC«�J½����� ����"¾�_aRiC ¦¨/5��P«¸¼²�

1�r O`-b

����"�����

). ―

��UY9�s�+>%YTZY82�;WVYD-q82����Rmkpgcn`n^��RNLPL4J

82!�B�,Y%� YD-

��3Y(�!YD-U�+>%,

�/F-0�7W(�! 1G E� �

'�.=$#oI6

heilpl]dp

82!Y��C,X[@)

Q

<��B,cn_pYD-q82!�Bfbgr

"��<��B]jpa�?YD-

MOK&�H:5A

q*�Y��<�S\YCO2>%[82!>%S\-�r

) P

Xm P

mQ P P

s Q P

Q m m

P5. .

s Q X P P m

s Q P m m P

P P P

Q m P P P P X

P P P P P 84

s Q P

P

Q X P m

s Q

X P) m P

s Q

s s P X i

s Q

― sP ―

P XQ mP

P

m Q

P P P P P

P P P P P

Q mP s P

sPJAXA Q

X P

P

P

s Q m

Q P X P

XQ m m s XP

Q

(

5. Q P

Q

PEUFAR European Facility For Airborne Research EU 15

43 P s Q

EUFAR m P

P Q

P s

Q P P P P

NICT s Q

― 10 P

Q m

XQ sP m

P Q

m S WGT P m

S WGT P

Q P JAXA

P s

Q

)

P P P

Q m

P R P P P

P P P

P P P P P

P P P Q

P

X P Q

s PG-IV QG-IV m

6500km 13km 3t s m P

Q m Q

sP R m X m

PG-IV P P

Q

10 155 Q s PG-IV P P

125 P P P 10 P

15 P P 5

Q

S23 T

s P s s Q

GEOSS m P

sP m

P P P P

s Q P

m s Q

JAXA s P

s Q m JAMSTEC s

s Q s

s P s s Q

m P P

P

Q mP3 m Q

s

!

!

!

( !

) !

s Q

!

P

P Q m

P Q m

P P s

s Q

m !

s P m P

s s Q NASA GTE Global

Tropospheric Experiment PNASA DC-8 P

1980 s

s m 1 Q P

P P

P

P s mQ NASA P

P m

s s s Q

P

s s Q

NASA DC-8 ER-2 m

s s P P s

s Q m NASA PNOAA PNCAR

PPNNL

s P ⅳ s s Q

PNCAR G-V s 2009 m HIPPO

P

P mQ m

s P DLR

R m s s Q

VOCALS P

P s Q

P

s s Q

s sP X

s Q X P s s Q

P Q

s P P

m Q1990 P

X

s s Q P

P Q m X

― P s s Q P

s P P X

ⅳ Q

1 mQ

P s mQ

P P s s

Q m X

Q ― P s Q

2 Q PIPCCP

UNEPPWMO s Q

1980 s m 2018

ⅴ s Q m P2012

sS T mQ2013 4 -8

P mQ2013 5

s P P

mQ2014 5 S

T P

,

mQ S

T P

s Q

P

Q

Q P

R s P s P

s Q X

X― Q iP

P m Q P

Q m IPCCPUNEP P

Q m s

P X

P s Q

m m P

X Q P m

P s Q m

sP Q sP Q

m P m Q m

P s

Q

-

1. NASA GTE

1.

NASA 29 DC-8, P-3, ER-2, Twin Otter, WB-57

NOAA 5 WP-3D Orion, G-IV, Gulfstream Commander 1000,

Twin Otter, Beechcraft

NCAR 2 GV (HIAPER), C-130

CIRPAS 3 Twin Otter, Pelican, UAV

NRL 1 P-3 Orion

1 King Air

DLR 5 Falcon, Dornier 228 2 , Gulfstream G550 (HALO), Cessna C-208

AWI 2 Basler BT-67 (POLAR 5), Basler BT-67 (POLAR 6),

FAAM (K Met Office & NERC) 1 BAe 146-301

NERC 2 Twin Otter, Dornier 228

1 Cessna 182J

CNRS 1 Fokker 27

SAFIRE 3 Falcon, ATR42, Piper

2.

ⅳ 1979-2013

2009-2013 (A-FORCE)

1990-2005

2001-2013

2009-2013

NASDA 1998-2004

NASA : 1998-2008

2012

GPMPGOSAT

2011

2017-2018

P

P s

mQ

sP

— CO2 P CH4 P N2O

P s mQ

s m P Q1970

CO2 Pⅳ s P

s Q m s CO2

P s Q

ⅳ CO2 s P

P m s Q

P

Q NASA P m

P P

— P— s mQ P

P P

sP

mQ s P m

m P s Q

P

Q — P 3

BC

s X P

PIPCC s mQ m

P

s mQ

P

s mQ

s

m P

Q 1980

P

s mQ m

P mQ

P

s P

s mQ

P

m Q

Q

P

T-PARC P

mQ X

X Q m

sP

mQ

5 IPCC AR5 2013 PS1750

— CO2 P

s T P X

s Q2015 m CO2

s P —

Q PIPCC AR5 S —

s X T X P s

mCO2 s ― s Q2017

m WMO PCO2

CH4 N2O m s s P

2016 257% 122% m s Q

m s P CO2

s Q

1 Q ― s

P s P s s

s Q — m

s P

s P m s

Stephens et al., 2007 Q

Q

s Q m s P

m Q

Q

1970 m

P s s Q 4km s

172 s P

s s

Q P 4km DC9

MD90, CR-J200 P s

s Q P P sP

E P D P D s mQ

(

m CO2 (Nakazawa et

al., 1993)Q s P

P i s CO2

s Q m X

m X ― Q

P CO2 s m

s Q m PCH4 N2O

CO2 CO2 O2 s P

s Patra et al., 2016, Umezawa et al., 2014, Ishidoya et al., 2012, Ishijima et al., 2010,

Nakazawa et al., 1993 Q

1. 1000m 9000m CO2

Xm P

s CO2 m

Tanaka et al., 1988 Q P1980 m CO2

m P s

mQ i m P

CO2 m s P

)

s (Nakazawa et al., 1991)Q

m 1985 m sP

P sⅳ ASE P1993

m Matsueda

et al., 2002 Q SJAL T m

s mQ CONTRAIL

sP CO2

s (Matsueda et al., 2015)Q —

s P mCO2 m

s s PCrevoisier et al., 2009PSaito et al.,

2017 QJAL CH4 — CO s P1997

m X

P s

(Matsueda et al., 1999)Q

m CO2

2000 JAL

P m CO2 CME mQ

2005 JAL sP ASE

CME mCONTRAIL m(Machida et al., 2008)Q

CME sCO2 m P mJAL

s CO2

s mQ CME m CO2

Q CO2 m

s P s P

m s

(Umezawa et al., 2018)Q

CO2

m P

Q CONTRAIL ASE m MSE

s mCO2P

CH4PN2O SF6 sP s

s m (Sawa et al., 2015)Q 4

s sP s

P s QCME

sP CO2 s

m s (Sawa et al.,

2008)P CH4PN2O SF6 s

s Q

/ mCO2PCH4PN2OPSF6

CONTRAIL m P CO2

(Niwa et al., 2012) P (Niwa et al., 2011)P(Sawa et al., 2008)P (Inoue et al., 2016) P

m s Q CONTRAIL 2018 dois s P s Q

1993 m

3 s s Q CH4

s P 1 CH4

s s Sasakawa et al., 2017 Q

2010 C-130 s

5-7 km s Q

CH4 P P

ⅳ s s Niwa et al., 2014 Q

,

5-7km s mCO2PCH4PCO N2O

Q m Q

Crevoisier, C., Chédin, A., Matsueda, H., Machida, T., Armante, R., and Scott, N.A. (2009), First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations, Atmos. Chem. Phys., 9, 4797-4810, doi:10.5194/acp-9-4797-2009.

Inoue, M., et al. (2016), Bias corrections of GOSAT SWIR XCO2 and XCH4 with TCCON data and their evaluation using aircraft measurement data, Atmos. Meas. Tech., 9, 3491-3512, doi:10.5194/amt-9-3491-2016.

Ishidoya, S., S. Aoki, D. Goto, T. Nakazawa, S. Taguchi and P. K. Patra (2012), Time and space variations of the O2/N2 ratio in the troposphere over Japan and estimation of global CO2 budget, Tellus, B64, 18964, http://dx.doi.org/10.3402/tellusb.v64i0.18964.

Ishijima, K., P. K. Patra , M. Takigawa ,T. Machida , H. Matsueda , Y. Sawa, P. Steele, P. Krummel, R. Langenfelds, S. Aoki and T. Nakazawa (2010), Stratospheric influence on the seasonal cycle of nitrous oxide in the troposphere as deduced from aircraft observations and model simulations, J. Geophys. Res., 115, D20308, doi:10.1029/2009JD013322.

Machida, T., H. Matsueda, Y. Sawa, Y. Nakagawa, K. Hirotani, N. Kondo, K. Goto, T. Nakazawa, K. Ishikawa and T. Ogawa, (2008), Worldwide measurements of atmospheric CO2 and other trace gas species using commercial airlines. J. Atmos. Oceanic. Technol. 25 (10), 1744-1754, DOI: 10.1175/2008JTECHA1082.1.

-

Matsueda, H., H. Y. Inoue, M. Ishii and Y. Tsutsumi, (1996) Large injection of carbon monoxide into the upper troposphere due to intense biomass burning in 1997. J. Geophys. Res., 104, 26867-26879.

Matsueda, H., H. Y. Inoue and M. Ishii, (2002) Aircraft observation of carbon dioxide at 8-13 km altitude over the western Pacific from 1993 to 1999. Tellus, 54B, 1-21.

Matsueda, H., T. Machida, Y. Sawa, and Y. Niwa (2015), Long-term change of CO2 latitudinal distribution in the upper troposphere, Geophys. Res. Lett., 42, doi:10.1002/2014GL062768.

Nakazawa, T., K. Miyashita, S. Aoki, and M. Tanaka, (1991) Temporal and spatial variations of upper tropospheric and lower stratospheric carbon dioxide. Tellus, 43B, 106-117.

Nakazawa, T., S. Morimoto, S. Aoki, and M. Tanaka, (1993), Time and space variations of the carbon isotopic ratio of tropospheric carbon dioxide over Japan. Tellus, 45B, 258-274.

Niwa, Y., P. K. Patra, Y. Sawa, T. Machida, H. Matsueda, D. Belikov, T. Maki, M. Ikegami, R. Imasu, S. Maksyutov, T. Oda, M. Satoh, and M. Takigawa, (2011), Three-dimensional variations of atmospheric CO2: aircraft measurements and multi-transport model simulations. Atmos. Chem. Phys., 11, 13359-13375, doi:10.5194/acp-11-13359-2011.

Niwa, Y., T. Machida, Y. Sawa, H. Matsueda, T.J. Schuck, C.A.M. Brenninkmeijer, R. Imasu, and M. Satoh, (2012) Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements, J. Geophys. Res. 117, D11303, doi:10.1029/2012JD017474.

Niwa, Y., K. Tsuboi, H. Matsueda, Y. Sawa, T. Machida, M. Nakamura, T. Kawasato, K. Saito, S. Takatsuji, K. Tsuji, H. Nishi, K. Dehara, Y. Baba, D. Kuboike, S. Iwatsubo, H. Ohmori, and Y. Hanamiya (2014), Seasonal variations of CO2, CH4, N2O and CO in the mid-troposphere over the western North Pacific observed using a C-130H cargo aircraft, J. Meteorol. Soc. Japan, 92(1), 50-70, doi:10.2151/jmsj.2014-104. !

Patra, P. K., T. Saeki, E. J. Dlugokencky, K. Ishijima, T. Umezawa, A. Ito, S. Aoki, S. Morimoto, E. A. Kort, A. Crotwell, K. Ravikumar, T. Nakazawa, (2016), Regional emission and loss budgets of atmospheric methane (2002-2012), J. Meteorol. Soc. Jpn., 94, 91-113, doi:10.2151/jmsj.2016-006.

Saitoh, N., S. Kimoto, R. Sugimura, R. Imasu, K. Shiomi, A. Kuze, Y. Niwa, T. Machida, Y. Sawa, and H. Matsueda (2017), Bias assessment of lower and middle tropospheric CO2 concentrations of GOSAT/TANSO-FTS TIR Version 1 product, Atmos. Meas. Tech., 10, 3877-3892, https://doi.org/10.5194/amt-10-3877-2017.

Sasakawa M., Machida T., Ishijima K., Arshinov M., Patra P. K., Ito A., Aoki S., Petrov V. (2017) Temporal characteristics of CH4 vertical profiles observed in the West Siberian Lowland over Surgut from 1993 to 2015 and Novosibirsk from 1997 to 2015. J. Geophys. Res., 122, 11,261–11,273. doi.org/10.1002/2017JD026836.

Sawa, Y., T. Machida, and H. Matsueda (2008), Seasonal variations of CO2 near the tropopause observed by commercial aircraft, J. Geophys. Res., 113, D23301, doi:10.1029/2008JD010568.

Sawa, Y., T. Machida, and H. Matsueda, (2012), Aircraft observation of the seasonal variation in the

transport of CO2 in the upper atmosphere, J. Geophys. Res., 117, D05305, doi:10.1029/2011JD016933.

Sawa, Y., T. Machida, H. Matsueda, Y. Niwa, K. Tsuboi, S. Murayama, S. Morimoto, and S. Aoki (2015), Seasonal changes of CO2, CH4, N2O, and SF6 in the upper troposphere/lower stratosphere over the Eurasian continent observed by commercial airliner, Geophys. Res. Lett., 42, doi:10.1002/2014GL062734.

Stephens, B.B., K.R. Gurney, P.P. Tans, C. Sweeney, W.Peters, L. Bruhwiler, P. Ciais, M. Ramonet, P. Bousquet, T. Nakazawa, S. Aoki, T. Machida, G. Inoue, N. Vinnichenko, J. Lloyd, A. Jordan, M. Heimann, O. Shibistova, R. L. Langenfelds, L. P. Steele, R. J. Francey, A. S. Denning (2007), Weak Northern and Strong Tropical Land Carbon Uptake

from Vertical Profiles of Atmospheric CO2, Science 316, 1732-1735

doi:10.1126/science.1137004. Tanaka, M., T. Nakazawa, S. Aoki and H. Ohshima (1988), Aircraft measurements of

tropospheric carbon dioxide over the Japanese islands, Tellus 40B, 16–22. Umezawa, T., D. Goto, S. Aoki, K. Ishijima, P. K. Patra, S. Sugawara, S. Morimoto, T.

Nakazawa, (2014) Variations of tropospheric methane over Japan during 1988–2010, Tellus B 2014, 66, 23837.

Umezawa, T., H. Matsueda, Y. Sawa, Y. Niwa, T. Machida, and L. Zhou (2018), Seasonal evaluation of tropospheric CO2 over the Asia-Pacific region observed by the CONTRAIL commercial airliner measurements, Atmos. Chem. Phys., in press, doi.org/10.5194/acp-2018-519.

s P — P— m

P Q

s P Q m P

9.6Cm m

QIPCC P 0.4 W/m2

s P — P — P Q

P s Q

P R Q

P P R

m P

Q m2 PPM2.5

P P

s s Q

R s Pⅳ

m R P m

( ) P s

n Q P

R s s P ―

― s Q m

m P

Q P R

s P

s Q

sP

P X P

s mQ

mP s X P

m s s Q P

s m m

sP s Q

1)

1990 P

m P NASA, NCAR, NOAA DLR, Max-

Planck Institute m mQ

P

― m s P P

P X s s

X s Q NASA Global Tropospheric Experiment (GTE) sP

P m

Q 20 P P

P R s Q P

m

s P

s X mQ

GTE P P P

mQ

ⅳ sP P

s m P1990

m sP

P mQ P

m P Q mP

m P1) m

P 2) P3) 100-

200 m/s m P4)

m P P

m m m Q P

P m P

― Q P BIBLE

Biomass Burning and Lightning Experiment s P2

PJAXA/EORC P P m

s R sP m

P P

m ― P

mQ

ⅳ s P

International Strato/Tropospheric Air Chemistry (INSTAC) Pacific

Atmospheric Chemistry Experiment (PACE) QINSTAC 3 P

PACE 7 P

P R m

[Tsutsumi et al., 2003 ]Q P s

s m P

mQ P1994 P

1997 P 9-10

m s m

[Fujiwara et al., 1999, 2003; Kita et al., 2000; Kitada et al., 2001]Q1997 1998

mPACE-5 PACE-6 s P

P m

mQ haze P

— mQhaze

80ppb m P 20ppb P

i m

m [Tsutsumi et al.,1999]Q

1998-2000 PBiomass Burning and Lightning Experiment (BIBLE)

JAXA/EORC mQ IGBP/IGAC International Global

Atmospheric Chemistry QBIBLE Gulfstream II

(G-II) P P s Q

sP X

m P

P

QBIBLE-A,B,C 3 P

m

P m m

mQ

BIBLE 1 mQ m P2

Journal of Geophysical Research (JGR) special section P

s P Q

1998 mBIBLE-A P P P s

mQ mm

m iP 3 m

NOx(= NO + NO2) —

mQ

m [Kita et al., 2002]P m

[Koike et al., 2002]P P

X m s

mQ P

(

m 1.8 ppbv/day

m( 2)Q ⅵ [Kita et al., 2002; Ko

et al., 2002]Q

1999 mBIBLE-B P ― P P

s mQ

m m m P

ⅳ s mQ

P — 60% 2-3

s m m[Takegawa et al., 2003a]Q P

m P —

0.3 Gmol O3/day m

[Takegawa et al., 2003b]Q

2000 mBIBLE-C P s

P s NOx

mQ 11.5-14 km 1000 pptv NOx n P 620 x 140 km

X m s P

mQ m OTD TRMM/LIS P

m P3.1-35x1025 NO s

m[Koike et al., 2007]Q

2)

P

s s Q

m P s PM2.5

P

P P s

Q P s

iP mQ P ― m

P m P

P

s Q

(IGAC/APARE) s

1995 1998 s mPerturbation of East

Asian Continental Air Mass to Pacific Oceanic Troposphere (PEACAMPOT)

P mP

m Q m sP

)

s m P P

— s m[Hatakeyama et

al., 1995 ]Q

Pacific Exploration of Asian Continental Emission (PEACE) P

P

m PJAXA/EORC

PIGBP/IGAC ITCT Intercontinental Transport and Chemical Transformation )

sP2002 s

(PEACE-A) (PEACE-B) 2 s mQ P

NOAA ITCT-2K2 s mQ

Q

PEACE-A,B TRACE-P

P

P i

3 P m m s

m [Kondo et al., 2004]Q

P —

PPEACE-A

m 4 QNOx

1.2 ± 0.4 P s

P

m s m[Takegawa

et al., 2004]Q

PEACE-B P m

sP P

s s s

m [Oshima et al., 2004]Q

GEOS-CHEM sP

m mQITCT 2K2/PEACE-B P PAN

s s

mQ mP m

P s X m

[Hudman et al., 2004]Q

P s m

s mQ

P

sP P

P P

s Q

2016 4-6 NASA DC-8 mKORUS-AQ

mQ mP2018 3-4 P (DLR)

P HALO (High Altitude and Long Range

Research Aircraft) P m (EMeRGe-Asia) P

mQ X P

s Q

Fujiwara, M., K. Kita, S. Kawakami, T. Ogawa, N. Komala, S. Saraspriya, and A. Suripto, 1999: Tropospheric ozone enhancements during the Indonesian forest fire events in 1994 and in 1997 as revealed by ground-based observations, Geophys. Res. Lett., 26, 2417-2420.

Fujiwara, M., Y. Tomikawa, K. Kita, Y. Kondo, N. Komala, S. Saraspriya, T. Manik, A. Suripto, S. Kawakami, T. Ogawa, E. Kelana, B. Suhardi, S.W.B. Harijono, M. Kudsy, T. Sribimawati, M.D. Yamanaka, 2003: Ozonesonde soundings in the Indonesian maritime continent in September-October 1998 and in August-September 1999, Atmospheric Environment, 37, 353-362.

Hatakeyama, S, K. Murano, H. Bandow, F. Sakamaki, M. Yamato, S. Tanaka and H. Akimoto, 1995: The 1995 PEACAMPOT aircraft observation of ozone, NOx, and SO2 over the East China Sea, the Yellow Sea, and the Sea of Japan, J. Geophys. Res., 100, D11, 23143-23151.

Hudman, R. C., D. J. Jacob, O. C. Cooper, M. J. Evans, C. L. Heald, R. J. Park, F. Fehsenfeld, F. Flocke, J. Holloway, G. Hubler, K. Kita, M. Koike, Y. Kondo, A. Neuman, J. Nowak, S. Oltmans, D. Paarish, J. M. Roberts, and T. Ryerson, 2004: Ozoneproduction in transpacific Asian pollution plumes and implications for ozone air quality in California, J. Geophys. Res., 109, D23S05, doi:10.1029/2004JD004974.

Kita, K., M. Fujiwara, and S. Kawakami, 2000: Total ozone increase associated with extensive forest fires over the Indonesian region and its relation with El Niño-Southern Oscillation, Atmos. Environ., 34, 2681-2690.

Kita, K., S. Kawakami, Y. Miyazaki, Y. Higashi, Y. Kondo, N. Nishi, M. Koike, D.R. Blake, T. Machida, T. Sano, W. Hu, M. Ko, and T. Ogawa, 2002: Photochemical production of ozone in the upper troposphere in association with cumulus convection over Indonesia, J. Geophys. Res., 107, 8400, doi: 10.1029/2001JD000844.

Kitada, T., M. Nishizawa, G. Kurata, and Y. Kondo, 2001: Numerical simulation of the transport of biomass burning emissions in Southeast asia-September and October, 1994-, J. Global Environ. Engin., 7, 79-99.

Ko, M., HU. Wenjie, J. Rodriguez, Y. Kondo, M. Koike, K. Kita, S. Kawakami, D. Blake, and S. Liu, 2002: Photochemical ozone budget during the BIBLE-A and B campaigns, J. Geophys. Res., 107, 8404, doi: 10.1029/2001JD000800.

Koike, M., Y. Kondo, D. Akutagawa, K. Kita, N. Nishi, S.C. Liu, D.R. Blake, S. Kawakami, N. Takegawa, M. Ko, Y. Zhao, and T. Ogawa, 2002: Reactive nitrogen over the tropical Western Pacific: Influence from lightning and biomass burning, J. Geophys. Res., 107, 8403, doi: 10.1029/2001JD000823.

Koike, M., Y. Kondo, K. Kita, N. Takegawa, N. Nishi, B. Liley, T. Kashihara, S. Kudoh, S. Kawakami, D. Blake, T. Shirai, M. Ko, Y. Miyazaki, Z. Kawasaki, and T. Ogawa, 2007: Measurements of Reactive Nitrogen Produce by Tropical Thunderstorms during BIBLE-C, J. Geophys. Res., doi:10.1029/2006JD008193.

Kondo, Y., M. Ko, M. Koike, S. Kawakami, and T. Ogawa, 2002a: Preface to special section on Biomass Burning and Lightning Experiment (BIBLE), J. Geophys. Res., 107, 8397, doi:10.1029/2001JD002401

Kondo, Y., K. Nakamura, G. Chen, N. Takegawa, M. Koike, Y. Miyazaki, K. Kita, J. Crawford, M. Ko, D. R. Blake, S. Kawakami, T. Shirai, B. Liley, and T. Ogawa, 2004: Photochemistry of ozone over the western Pacific from winter to spring, J. Geophys. Res., 109, D23S02, doi:10.1029/2004JD004871.

Oshima, N., M. Koike, H. Nakamura, Y. Kondo, N. Takegawa, Y. Miyazaki, D.R. Blake, T. Shirai, K. Kita, S. Kawakami, and T. Ogawa, 2004: Asian chemical outflow to the Pacific in late spring observed during the PEACE-B aircraft mission, J. Geophys. Res., 109, D23S05, doi:10.1029/2004JD004976.

Takegawa, N., Y. Kondo, M. Koike, M. Ko, K. Kita, D. R. Blake, N. Nishi, W. Hu, J. B. Liley, S. Kawakami, T. Shirai, Y. Miyazaki, H. Ikeda, J. Russell-Smith, and T. Ogawa, 2003a: Removal of NOx and NOy in biomass burning plumes in the boundary layer over northern Australia, J. Geophys. Res., 108, doi:10.1029/2002JD002505.

Takegawa, N., Y. Kondo, M. Ko, M. Koike, K. Kita, D. R. Blake, W. Hu, C. Scott, S. Kawakami, J. Russell-Smith, and T. Ogawa, 2003b: Photochemical production of O3 in biomass burning plumes in the boundary layer over northern Australia, Geophys. Res. Lett., 30, doi:10.1029/2003GL017017.

Takegawa, N., Y. Kondo, M. Koike, G. Chen, T. Machida, T. Watai, D. R. Blake, D. G. Streets, J.-H. Woo, G. R. Carmichael, K. Kita, Y. Miyazaki, T. Shirai, J. B. Liley, and T. Ogawa, 2004: Removal of NOx and NOy in Asian outflow plumes: Aircraft measurements over the western Pacific in January 2002, J. Geophys. Res., 109, D23S04, doi:10.1029/2004JD004866.

Tsutsumi�Y., Y. Makino, J. B. Jensen, 2003: Vertical and latitudinal distributions of tropospheric ozone over the western Pasific: Case studies from the PACe aircraft missions, J. Geophys. Res., 108, D8, doi:10.1029/2001JD001384.

Tsutsumi, Y., Y. Sawa, Y. Makino, J. B. Jensen, J. L. Gras, B. F. Ryan, S. Dihato, and H. Harijanto, 1999: Aircraft measurements of ozone, NOx, CO, and aerosol concentrations in biomass burning smoke over Indonesia and Australia in October 1997: Depleted ozone layer at low altitude over Indonesia, Geophysical Research Letters,� 26(5), 595-598. DOI: 10.1029/1999GL900054.�

,

1. BIBLE-A, B [Kondo et al., 2002]

2. Q

PBIBLE-A NO

Q

-

3. PEACE-A, B 30-45oN

(

4. age PEACE-A Q

Q

(

m s

0.05

1µm

m

m

s

m m

mn 2.2.4

m

m

s s m

MILAGRO

BBOP

AFORCE2013 m

(ChArMEx) PAMARCMiP2018

m s m

s s m

m

R

s m m m

m s Adachi

and Buseck, 2008 m

s m( 1. Adachi et al., 2010)

m

X m

m

(

m n R

s s

s

s R

s s m

Adachi and Buseck, 2011; Sedlacek et al., 2018; 2) mP P

m s m Freney et al.,

2018

s s m Adachi et al., 2011, GRL

m m

s s m

X

X

s

s m

1. m

m

(Adachi et al., 2010)

2. m

Fig. 1 in Adachi and Buseck 2011).

(

m

m

m CCN

― n

s

CCN

s CCN

m

m

CCN

s HTDMA

s m

m

m Mochida et al., 2010; 2011 3

m s

m Mochida et al., 2008;

Kawana et al., 2014

m

m

s

s Kawana et al., 2017

CCN

Köhler

m ⅵ

CCN m m

m

CCN m m

m

m 4

m

s

s s

s X

s

(

CCN m

Kawana et al., 2016; Ogawa et al., 2017; Deng et al., 2018

s

X

X

s

s

n

HTDMA

HTDMA m

3. Mochida et al. (2010)

American Geophysical Union AGU Copyright 2010 AGU

(

4.

g Kawana et al. (2014) American Geophysical

Union (AGU) Copyright 2014 AGU

m

X in-

situ X m

s s

S T (Black Carbon: BC)

m

BC

CO2 s

s

s Bond et al., 2013 BC 1)

BC 2) 3) BC

BC m

BC

s m 5 R BC

3 m (Laser-

(

Induced Incandescence: LII ) s m LII R

BC Moteki

and Kondo 2010 PLII BC m

(Yoshida et al. 2016)Q R sLII m

m

BC

m

BC

BC

s s Goto et al. 2012

I ⅳ m

s BC

BC ⅳ m Moteki

et al. 2012 /

sCCN X m

J s BC

Ⅳ BC s s

m IPCC 5

BC

BC BC m BC BC

m BC

m BC m s

R LII BC

ⅳ s Moteki et al. 2014

s

m

L s P

BC 40% m Moteki et al.

2017 Q

M P—

BC BrC s m P BrC

m m(Moteki et al. 2017)Q

X BC

mm

((

m

5 BC

( ) m

iP

X ⅳ P

s Q

P Q

VOCs SOA

s Q m

P

s Q

P P

P P Q

P P

()

P ―

m s mQ

P

s mQ P —

m(Miyazaki et al.,

2010a)Q 1µm sP

s

s mQ P P

P P s m

m m

(Miyazaki et al., 2011)Q

6 P

s mQ P

s m(Miyazaki et al.,

2010b; 2014)Q

sP s mQ

P

ⅰ s m(Miyazaki

et al., 2018)Q P

a n P

s Q

P P

s P NOx

SOA SOA

s Q m P

s mQ

P

α- P

SOA s m

(Miyazaki et al., 2012a; 2012b; 2014b; Jung et al., 2013; Mochizuki et al., 2015)Q

— WSOC — P —

P VOCs OH

s mQ

P

s 7 mQ

(

P s P CCN

s m(Müller et al., 2017)Q

P s

m s Q

P P X ⅳ

Q P ⅳ

Q m ToFMS

P

Pⅳ

Q

6. s m

Q P a P

(a) (b) QMiyazaki et al. (2010)American Geophysical Union AGU Copyright 2010 AGU

(

7. WSON2-methyltetrols Pα- Pinic acid, 3-MBTCA

Q WSON 20-40 P

α- VOCs + N SOA s QMiyazaki et al. (2014b) Q

Adachi, K. and P.R .Buseck (2008), Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City, Atmos. Chem. Phys., 8, 6469-6481.

Adachi, K. et al.(2010), Shapes of soot aerosol particles and implications for their effects on climate, J. Geophys. Res. Atmos., 115, D15206.

Adachi, K. and P.R. Buseck (2011), Atmospheric tar balls from biomass burning in Mexico, J. Geophys. Res. Atmos., 116, doi:10.1029/2010JD015102.

Adachi, K. et al. (2011), Shapes of internally mixed hygroscopic aerosol particles after deliquescence, and their effect on light scattering, Geophys. Res. Lett., 38, L13804.

Bond T. C. et al. (2013), Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 1–173.

Deng, Y. et al. (2018), Hygroscopicity of organic aerosols and their contributions to CCN concentrations over a midlatitude forest in Japan, J. Geophys. Res. Atmos., 123, 9703-9723, doi:10.1029/2017JD027292.

Goto, D. et al. (2012), Impact of the aging process of black carbon aerosols on their spatial distribution, hygroscopicity, and radiative forcing in a global climate model, Atmos. Chem. Phys. Discuss., 12, 29801-29849.

Freney, E.et al. (2018), Aerosol composition and the contribution of SOA formation over Mediterranean forests, Atmos. Chem. Phys., 18, 7041-7056.

Jung, J. et al. (2013), Different characteristics of new particle formation between urban and deciduous forest sites in northern Japan during the summers of 2010‒2011, Atmos. Chem.

(,

Phys., 13, 51-68. Kawana K. et al. (2014), Assessment of cloud condensation nucleus activation of urban aerosol

particles with different hygroscopicity and the application to the cloud parcel model, J. Geophys. Res. Atmos., 119, 3352-3371, doi:10.1002/2013JD020827.

Kawana, K. et al. (2016), Hygroscopicity and CCN activity of atmospheric aerosol particles and their relation to organics: Characteristics of urban aerosols in Nagoya, Japan, J. Geophys. Res. Atmos., 121, 4100–4121, doi:10.1002/2015JD023213.

Kawana, K. et al. (2017), Hygroscopicity and cloud condensation nucleus activity of forest aerosol particles during summer in Wakayama, Japan, J. Geophys. Res. Atmos., 122, 3042–3064, doi:10.1002/2016JD025660.

Miyazaki, Y. et al. (2010a), Size distributions of organic nitrogen and carbon in remote marine aerosols: Evidence of marine biological origin based on their isotopic ratios, Geophys. Res. Lett., 37, L06803, doi:10.1029/2010GL042483.

Miyazaki, Y. et al. (2010b), Size distributions and chemical characterization of water-soluble organic aerosols over the western North Pacific in summer, J. Geophys. Res., 115, D23210, doi:10.1029/ 2010JD014439.

Miyazaki, Y. et al. (2011), Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific, Atmos. Chem. Phys., 11, 3037-3049.

Miyazaki, Y. et al. (2012a), Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest, Atmos. Chem. Phys., 12, 1367–1376.

Miyazaki, Y. et al. (2012b), Evidence of formation of submicrometer water-soluble organic aerosols at a deciduous forest site in northern Japan in summer, J. Geophys. Res., 117, D19213, doi:10.1029/ 2012JD018250.

Miyazaki, Y. et al. (2014a), Low-molecular-weight hydroxyacids in marine atmospheric aerosol: Evidence of a marine microbial origin, Biogeosciences, 11, 4407–4414, doi:10.5194/bg-11-4407-2014.

Miyazaki, Y. et al. (2014b), Seasonal cycles of water-soluble organic nitrogen aerosols in a deciduous broadleaf forest in northern Japan, J. Geophys. Res. Atmos., 119, 1440–1454, doi:10.1029/2013JD020713.

Miyazaki, Y. et al. (2018), Chemical transfer of dissolved organic matter from surface seawater to sea spray water-soluble organic aerosol in the marine atmosphere, Scientific Reports, 8, Article number: 14861.

Mochida, M. et al. (2008), Significant alteration in the hygroscopic properties of urban aerosol particles by the secondary formation of organics, Geophys. Res. Lett., 35, L02804, doi:10.1029/2007GL031310.

Mochida, M. et al. (2010), Size-segregated measurements of cloud condensation nucleus activity and hygroscopic growth for aerosols at Cape Hedo, Japan, in spring 2008, J. Geophys. Res., 115, D21207, doi:10.1029/2009JD013216.

Mochida, M. et al. (2011), Hygroscopicity and cloud condensation nucleus activity of marine aerosol particles over the western North Pacific, J Geophys. Res., 116, D06204,

(-

doi:10.1029/2010JD014759. Mochizuki, T. et al. (2015), Emissions of biogenic volatile organic compounds and subsequent

formation of secondary organic aerosols in a Larix kaempferi forest, Atmos. Chem. Phys. Discuss., 15, 10739–10771, doi:10.5194/acpd-15-10739-2015.

Moteki, N. et al. (2007), Evolution of mixing state of black carbon particles: Aircraft measurement over the western Pacific in March 2004, Geophys. Res. Lett., 34, L11803, doi:10.1029/2006GL028943.

Moteki, N., and Y. Kondo (2008), Method to measure time-dependent scattering cross section of particles evaporating in a laser beam, Journal of Aerosol Science, 39, 348-364.

Moteki, N. et al. (2010), Method to measure refractive indices of small nonspherical particles: Application to black carbon particles, Journal of Aerosol Science, 41, 513-521.

Moteki, N., and Y. Kondo (2010), Dependence of laser-induced incandescence on physical properties of black carbon aerosols: Measurements and theoretical interpretation, Aerosol Sci. Technol., 44, 663-675.

Moteki, N. et al. (2012), Size dependence of wet removal of black carbon aerosols during transport from the boundary layer to the free troposphere, Geophys. Res. Lett., 39, L13802, doi:10.1029/2012GL052034.

Moteki, N. et al. (2014), Identification by single-particle soot photometer of black carbon particles attached to other particles: Laboratory experiments and ground observations in Tokyo, J. Geophys. Res. Atmos., 119, 1031-1043.

Moteki, N. et al. (2017), Anthropogenic iron oxide aerosols enhance atmospheric heating, Nature Communications, 8, 15329.

Müller, A. et al. (2017), Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest, Scientific Reports, 7, 8452, doi:10.1038/s41598- 017-08112-9.

Ogawa, S., et al. (2016), Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer, J. Geophys. Res. Atmos., 121, 7215-7234, doi:10.1002/2015JD024636.

Oshima, N. et al. (2012), Wet removal od black carbon in Asian outflow: Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign, Journal of Geophysical Research, 117, D03204, doi:10.1029/2011JD016552.

Sedlacek et al. (2018), Formation and evolution of tar balls from northwestern US wildfires, Atmos. Chem. Phys., 18, 11289-11301.

Yoshida et al. (2016), Detection of light-absorbing iron oxide particles using a modified single-particle soot photometer, Aerosol Science and Technology, 50, 1-4.

)

s m P

Q P P s

Q X P

s P Q

5 IPCC AR5 2013

0.06 1.33 W m-2 P

P m 6 4 IPCC,

AR4 2007 0.3 1.8 W m-2 mQ

P s s Q

m P s m

P s

adjustment mS T

s Q P

m P

s P

Q m mixed-phase clouds P

Q

m

s s s Q

s Q

P

P IPCC AR5

s Q X s X

Q X

s Q

s P

s Q m sP

s m P

s s Q

P s

s s mQ P i

P s

m P s Q

m

)

1980 s mQ

s P P

mQ1980 S T 1986 1990

s C404P m

mQ m m

m S

T(1987 1990 ) s m mQ

i s mQ

1990 s m

m P S

T 1988 1992 P sP

B200T s γ

m Murakami et al. 2005; 2005a; 2005b Q P

S T 1991 1999

P sP s m

B200P m P

C404 P s m

m Asano et el.,2000 Q ― P

500 cm-3 P s P

mQ

S T 1998 2003 P

s P G-IIP

P m mQ m

β P

R m( 2005c;

2005d; 2005e; 2005fP )Q

2000 S

T 1997 2002 P

P

MU-2P B200P s mQ

P 100 -1 s P

m

(Murakami et al., 2007)Q S m

T 2006 2010 P

B200TP

P P P

)

P

mQ P s

m( 2015; 2015P )Q

UAE s m P

P

m s mQ mP

s P UAE

mQ

P R

P s

Tajiri et al. 2013 Q X P

m

Q s

P s

Q

mDAS GII

)

G-IIPVitatio-VP ― P

m X

0"

"

"

"

"

"

"

"

"

"

"

mDAS King Air

)(

m 1.0 m 0.7 CCNCCN m

6 m s-1

m

2001 mNASA TRACE-P PNASA ARCTAS

2008 PA-FORCE 2009, 2013W, 2013S P

m s mQ P

s BC

Koike et al., 2003; Oshima et al., 2012, 2013; Moteki et al., 2012 P

BC Matsui et al., 2011 s mQ

2009 mA-FORCE 2009 P

DMT CAPS s

mQA-FORCE 2009 P sP

P 7 9

mQ mACE-Asia m

m Adhikari et al. 2005 PA-FORCE 2009

P s

s m(Koike et al., 2012P )Q

m P s m

SST 950hPa SST-T950 P P

s mQ SST-T950

PSST s s P

P

mm Q P

!Na SST

))

!Nc !Nc/!Na mQ

SST mQSST-T950

SST s s m PSST-T950 SST

s mQA-FORCE m P

m m Q PSST s PSST-T950

PSST s Q

Q P

SST-T950 P mQSST-T950

P s mQ

P SST-T950

P P s

s m Q

m m PA-FORCE-2009 s

m 650 ± 240 cm-3

250 ± 170 cm-3 s mQ

m sP iP

s X

X mQ

s m Q

A-FORCE-2009 s

Twomey mQ

25°N-35°N 125°E-135°E

m 11.3 ± 0.5% P-4.7 ± 0.2 W m-2

s mQ

A-FORCE 2013S 2013 7 P s

P SST

mQ m P m s

mQ

P s s

P s X mQ m

m MODIS 3.7um m

s m P ⅵ s m Q

s P

s m P

Q

)

A-FORCE-2009 s m

10 nm P m Q2

100 cm s-1 10 cm s-1 Q

Q

P P

s Q

!Nc/!Na PSST Q SST

P P

s s Q

)

!

A-FORCE-2013S PMODIS

QMODIS P

JAXA Q

Adhikari, M., Y. Ishizaka, H. Minda, R. Kazaoka, J. B. Jensen, J. L. Gras, and T. Nakajima, Vertical distribution of cloud condensation nuclei concentrations and their effect on microphysical properties of clouds over the sea near the southwest islands of Japan, J. Geophys. Res., 110, D10203, doi:10.1029/2004JD004758, 2005.

Koike, M., Y. Kondo, K. Kita, N. Takegawa, Y. Masui, Y. Miyazaki, M. W. Ko, A. J. Weinheimer, F. Flocke, R. J. Weber, D. C. Thornton, G. W. Sachse, S. A. Vay, D. R. Blake, D. G. Streets, F. L. Eisele, S. T. Sandholm, H. B. Singh, and R. W. Talbot, Export of anthropogenic reactive nitrogen and sulfur compounds from the East Asia region in spring, J. Geophys. Res., 108(D20), 8789, doi:10.1029/2002JD003284, 2003.

Koike, M., N. Takegawa, N. Moteki, Y. Kondo, H. Nakamura, K. Kita, H. Matsui, N. Oshima, M. Kajino, and T. Y. Nakajima, Measurements of Regional-Scale Aerosol Impacts on Cloud Microphysics over the East China Sea: Possible Influences of Warm Sea Surface Temperature over the Kuroshio Ocean Current, J. Geophys. Res., 117, D17205, doi:10.1029/2011JD017324, 2012.

, 2015 IN S T

231 299-307.

),

Matsui, H., Y. Kondo, N. Moteki, N. Takegawa, L. K. Sahu, Y. Zhao, H. E. Fuelberg, W. R. Sessions,

G. Diskin, D. R. Blake, A. Wisthaler, and M. Koike, Seasonal variation of the transport of black carbon aerosol from the Asian continent to the Arctic during the ARCTAS aircraft campaign, J. Geophys. Res., 116, D05202, doi:10.1029/2010JD015067, 2011.

Moteki, N., Y. Kondo, N. Oshima, N. Takegawa, M. Koike, K. Kita, H. Matsui, and M. Kajino, Size dependence of wet removal of black carbon aerosols during transport from the boundary layer to the free troposphere, Geophys. Res. Lett., 39, L13802, doi:10.1029/2012GL052034, 2012.

Murakami, M., Y. Yamada, T. Matsuo, K. Iwanami, J.D. Marwitz and G. Gordon, 2003: The precipitation process in convective cells embedded in deep snow bands over the Sea of Japan. J. Meteor. Soc. Japan, 81, 515-531.

, 2005a

S

T 101-108.

, 2005b R R

R S

T 152-161.

, 2005c S

T 208 53-64.

, 2005d

S T 208

53-64.

, 2005e S T

208 53-64.

, 2005f X S T

208 53-64.

Murakami, M., N. Orikasa, M. Hoshimoto, K. Kusunoki, M. Seki, and A. Ikeda, 2007: Recent Japanese activities in weather modification research, 9th WMO Scientific Conference on Weather Modification, WMP-No.44.

, 2015 S

T

231, 290-298.

Oshima, N., Y. Kondo, N. Moteki, N. Takegawa, M. Koike, K. Kita, H. Matsui, M. Kajino, H. Nakamura, J. S. Jung, and Y. J. Kim, Wet removal of black carbon in Asian outflow: Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign, J. Geophys. Res., doi:10.1029/2011JD016552, 2012.

Oshima, N., M. Koike, Y. Kondo, H. Nakamura, N. Moteki, H. Matsui, N. Takegawa, and K. Kita, Vertical transport mechanisms of black carbon over East Asia in spring during the A-

)-

FORCE aircraft campaign, J. Geophys. Res. Atmos., 118, 13,175–13,198, doi:10.1002/2013JD020262, 2013.

Tajiri et al., A Novel diabatic-expansion-type cloud simulation chamber, J. Meteor. Soc. Japan, 91, 687-704, 2013.

!

s X P X

2 ― Q ― X

P Q m P

P P

Q mP 3

s Q

― Q

X s m s

P ― Q ―

s P ― s

Kato et al. 2003 Q P sP

m P Q

m P ― P

P Q P

Q ― s P P

1 P

X XS T s P

X s Q

P

P P Q

― P m Q

!

P m m

Q

WMO

2001 s

m Q s m P

Q

1. m Q P P

XQ

m s Q

2004 2005 s

m Q

Moteki et al. (2004a, b) mP

s mQ

X m (Moteki et al. 2004a)Q

P S

T X m m Q

P s 500 m

s P P Q P

12000m P

X 2 Q P P

m ( 3, Moteki et al. 2006, Maeda et al. 2008)Q P

X s

mQ mP s

mQ

2.. m

Q

3. 2004 6 27 m 500 m m

P P ― Moteki et al. 2006 Q

P P Cloud Resolving Storm

Simulator (CReSS: Tsuboki 2008) s P

sP mQ P

P sP

m s Q

P R X s

Q

2002 2010 sP

sP ℃ m

mQ ― sP

s X P

m Q

2002 12 2004 3 P S T ― P

m s ―

P

mQ P m

P m (Ushiyama et al. 2006)Q mP

P

mQ

P s m X

m P mQ sP P

X mQ

2005 6 P m P

P (Moteki

et al.2007) (Moteki et al. 2008) mQ

2008 6 2010 6 P s mQ

Nonhydrostatic ICosahedral Atmospheric Model (NICAM: Satoh et al.

2008) m m P

P mm P

mQ P

P m P mQ

P P

m P m

mQ P R

m P

Q

P P P

ⅳ P

m Q2015 9 P2 X

P mQ P

(

2013 m T1330 Haiyan X

s Q X P

P m P P

Q

P R s

2013 Q P s s P3 1000 km

s X Q

X P P

s (Yamaguchi et al. 2009)Q P m

sP P

X P s s Q

P XP

Q P

4, 2007 P m

sP1) s m

( ) P2) (

)P3) m m s XQ

s P

5 Q

m m PT-PARC (THORPEX Pacific

Asian Regional Campaign, Nakazawa et al. 2010, 2013) m

P2008 mQ

m P P

s m P m s

20 40 % mQ mP P

s (Yamashita et al. 2010)P

m P

mQ

T-PARC sP m P n

s Q

m P P

Q mP

P sP m

Q

)

4. P ( 2007)Q

.5. ( P2008)Q 2007 12 00UTC

m P s Q

m Q

Q ― Q

Kato, T., M. Yoshizaki, K. Bessho, T. Inoue, Y. Sato, and X-BAIU-01 observation group, 2003, Reason for the failure of the simulation of heavy rainfall during X-BAIU-01 -Importance of a vertical profile of water vapor for numerical simulations-. J. Meteor. Soc. Japan, 81, 993-1013.

Maeda, S., K. Tsuboki, Q. Moteki, T. Shinoda, H. Minda and H. Uyeda, 2008: Detailed structure of wind and moisture fields around the Baiu frontal zone over the East China Sea. Scientific Online Letters on the Atmosphere (SOLA), 4, 141-144.

Moteki, Q., H. Uyeda, T. Maesaka, T. Shinoda, M. Yoshizaki, and T. Kato, 2004a: Structure and development of two merged rainbands observed over the East China Sea during

X-BAIU-99 Part I: Meso-β-scale structure and development processes. J. Meteor. Soc. Japan, 82, 19-44.

Moteki, Q., H. Uyeda, T. Maesaka, T. Shinoda, M. Yoshizaki, and T. Kato, 2004b: Structure and development of two merged rainbands observed over the East China Sea during

X-BAIU-99 Part II: Meso-α-scale structure and build-up processes of convergence in the Baiu frontal region. J. Meteor. Soc. Japan, 82, 45-65.

Moteki, Q., T. Shinoda, S. Shimizu, S. Maeda, H. Minda, K. Tsuboki, and H. Uyeda, 2006: Multiple Frontal Structures in the Baiu Frontal Zone Observed by Aircraft on 27 June 2004. SOLA, 2, 132-135.

Moteki, Q., R. Shirooka, K. Yoneyama, B. Geng, M. Katsumata, T. Ushiyama, H. Yamada, K. Yasunaga, N. Sato, H. Kubota, K. K. Reddy, H. Tokinaga, A. Seiki, M. Fujita, Y. N. Takayabu, M. Yoshizaki, H. Uyeda, and T. Chuda, 2007: The impact of the assimilation of dropsonde observations during PALAU2005 in ALERA. SOLA, 3, 97-100.

Moteki, Q., R. Shirooka, H. Kubota, T. Ushiyama, K. K. Reddy, K. Yoneyama, M. Katsumata, N. Sato, K. Yasunaga, H. Yamada, B. Geng, M. Fujita, M. Yoshizaki, H. Uyeda and T. Chuda, 2008: Mechanism of the northward propagation of mesoscale convective systems observed on 15 June 2005 during PALAU2005. J. Geophys. Res., 113, D14126, doi:10.1029/2008JD009793.

Nakazawa, T., K. Bessho, S. Hoshino, T. Komori, K. Yamashita, Y. Ohta, and K. Sato, 2010: THORPEX – Pacific Asian Regional Campaign (T-PARC), RSMC Tokyo-Typhoon Center Technical Review, 12, 1-4.

, 2013: . ( ), 227, 1-14.

Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic isosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comp. Physics, 227, 3486-3514.

Tsuboki, K., 2008: High-resolution simulations of high-impact weather systems using the cloud-resolving model on the Earth Simulator. K. Hamilton and W. Ohfuchi, Eds., High Resolution Numerical Modelling of the Atmosphere and Ocean, Springer, 141–156.

Ushiyama, T., R. Shirooka, T. Chuda, H. Kubota, S. Iwasaki, J. Chen, K. Takeuchi, and H. Uyeda, 2006: An isolated cloud band around a typhoon in the western tropical Pacific. Geophys. Res. Lett., 33, L12808.

Yamaguchi, M., T. Iriguchi, T. Nakazawa, and C.-C. Wu, 2009: An observing system experiment for Typhoon CONSON (2004) using a singular vector method and DOTSTAR data. Mon. Wea. Rev., 137, 2801-2816.

Yamashita, K., Y. Ohta, K. Sato, and T. Nakazawa, 2010: Observing-system experiments using the operational NWP system of JMA, RSMC Tokyo-Typhoon Center Technical Review, 12, 29-44.

, 2013: . ( ), 227, 15-35.

, 2007: THORPEX ), , 54, 156-162.

, 2008:

, , 55, 117-126.

,

m s X P

m Moteki et al. 2005, Maeda

et al. 2007) s P S T

m s Q P2016 m

SS m

T P

m 2017 2018 s Q P

m m P X ⅴ m

P m Q

25 R s P

s s Ito 2016, 1 Q

sP

P Q P

Dvolak 1975, 1984,

1990 P s s

P s Q m P

s P 10 54 m/s

s 2 Q X

Xm P S PTropical cyclone-Pacific Asian

Research Campaign for Improvement of Intensity estimations/forecasts T-PARCII

2016 5 mQ P T-

PARCII

s XQ

T-PARCII P PDAS

Gulfstream-II PG-II, 3 sP

P P P P P

P

X m 4 Q mP s s

C P

ground-based velocity track display GBVTD

Lee et al. 1999, Shimada et al. 2016 s mQ

-

1 RSMC Tokyo (a) (b)

Q 24 P48 P72

P96 P120 QIto (2016) Q

2 10

54 m/s m

Q P

QN

P

JTWC m Q1987

m P

s Q

3 DAS G-II

s m Q

DAS

P X P s

Q m P

m Moteki et al. 2005, Maeda et al. 2007) P

m s Q m P

DAS PG-II s P

3 DAS m P s

X mQ

m P P

X

mQ

P P m PG-II

iP X mQ ―

P X ― P

Q

m

5 Q 2 Q P2

m P

m X Q2 P

m P X s

X m Q

4

m

Q P

(150 km m 250 km)

Q

P

s m m 6 Q G-II

m 80 mm s

P 110 g m i X

Q P GPS s P P

P P 2

Q P

P2017 T1721 Lan P2018 T1824 Trami

100 m PPTU 95% PGPS

85 90% P s

Q mP2018 P

X m s Q

s m Pⅳ P μ

s Q

m P2017 Flight Information Region FIR

mQ m P 21 s

X mQ2018

Science and Technology Research Partnership for Sustainable

Development (SATREPS) - Understanding Lightning and Thunderstorm (ULAT)

P 21 130 FIR 130

FIR P ⅳ mQ X

P s m

Q

5 G-II m2

Q

6 m

Q

m m G-II mm P2017 7

m mQ sP2017 7

27 G-II X P

mQ2010 G-II

m P

sP P i s

s mQ P m

s mQ

P P s

P 8 X 7 mQ mP

s 0,3 MHz P

mQ sP

m P

ⅳ mQ

2017 T1721 Lan m

2017 10 16 m T1721 Lan

s m P21 mQ sG-II

10 20 P21 s

mQ P 4 X 200 km

s X mQ P20

s PG-II

m 7 P DAS

sP mQ 2

m P

mQ 8 P m Q P

n P mQ P

P P

m X mQ

8 T1721 Lan m Q

P 13.0 km X

m X― Q P s

P 3 km Xm P

X Q

X P Stern and Nolan 2012

mQ mP

mQ

T1721 Lan P10 20 2 P 10 21 1

mQ

7 G-II

Q P P

P

P

s Q 4

Q

s

50 P100 Q

Q

(

2018 T1824 Trami m

2018 9 21 m T1824 Termi

s P24 28 20 P 130 m

P30 mQ sG-II 9 25 28

4 mQ T-PARCII SATREPS-

ULAT mQ PSATREPS-ULAT P 21

FIR FIR mm P

X mQ

9 25 PG-II P

P mQ

mQ P

915 hPa s P 60 km

T1721 Lan s mQ

9 26 P P

2 P s mQ

60 km s200 km P 950

hPa mQ m s

s P P 6 km 90

s mQ

9 27 P P 2

P s mQ

200 km P mQ m

s s m― P 10 km

X s mQ P

s mQ NHK

P s

mQ

9 28 P P s

m P s mQ

m P s

s m P

mQ

s

P2017 T1721 Lan 2018 T1824 Trami s 9

P mQ

)

s P s P

P X

mQ 13.0 km P

40F s Q

m P Q P

P

s X

mQ sP s

X Q

Global Telecommunication System GTS

s

2018 P m GTS

mQ s P

s m P GTS

s Q

m PGTS mQ P

RP

P mQ

P sP m

s Q s P

m P P X s

Q

2018 P n sP

s X mQ

8 X P

m P

m mQ P

s mQ mP

P

P P m s

X mQ

s

P

mQ2018

sP s m sP

3 5 m s P s

Q

2017 2018 s m

mQ m

s mP

XP s X mQ s

X P m

m Q

P P

s Xⅳ Q s

P P

P s s s

Q

s m P n P

GTS s s P m

Q m P

P s m P

s Q m P

P m

Q

m s P s

s m m Q

(16H06311 16H04053) s mQ

Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420-430.

Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Report NESDIS 11, 47pp.

Ito, K., 2016: Errors in tropical cyclone intensity forecast by RSMC Tokyo and statistical correction using environmental parameters, SOLA, 12.

, 1990: CI

. , 42, 59-67.

Lee, W.-C., B. J.-D. Jou, P.-L. Chang, S.-M. Deng, 1999: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Interpretation of Doppler velocity patterns and the GBVTD technique, Mon. Wea. Rev., 127, 2419-2439.

Maeda, S., K. Tsuboki, Q. Moteki, T. Shinoda, H. Minda and H. Uyeda, 2008: Detailed structure of wind and moisture fields around the Baiu frontal zone over the East China Sea. Scientific Online Letters on the Atmosphere (SOLA), 4, 141-144.

Moteki, Q., T. Shinoda, S. Shimizu, S. Maeda, H. Minda, K. Tsuboki, and H. Uyeda, 2006: Multiple Frontal Structures in the Baiu Frontal Zone Observed by Aircraft on 27 June 2004. SOLA, 2, 132-135.

Shimada, U., M. Sawada, and H. Yamada, 2016: Evaluation of the accuracy and utility of tropical cyclone intensity estimation using single ground-based Doppler radar observations, Mon. Wea. Rev., 144, 1823-1840.

Stern, D. P. and D. S. Nolan 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 1657-1680.

,

!

P mP

i Q m P

Q P s P

s s Q X P

P

m s Q P 10

s Cavalieri and

Parkinson, 2012 1 P s Q P

10 1.5 s Parkinson

and Cavalieri, 2012 2 P s Q

1. m

2. m

-

P

Q s P

P

Q sP m

Q

P

P 1970

m Arctic Ice Dynamics Joint Experiment Hibler

(1979) P s mQ P

s m P i m

Q PIPCC s i

s (Rampal et al., 2011)P

Q

P R

s Q P X P

s P Q mP

s s P

P

R s s Q P

Q s P

m s Q

3. m Maqueda et al., 2004

,

P s

P

m 3 Q

Q

m P m Q

s n !

km P

P Q

s mQ m

sP s s

P P m s

mQ s

Q

P

m Q

m P s Q P

s P

Q Q X P

s m

s Nihashi et al., 2005 P

s

m Q sP

Q

s R s Q s

X P ⅳ

s Q P 100m

P s n s

mQ mP P X

s mQ P Q

P s m m P

20 40 m Toyota et al., 2006,

2011 Q ― s s

,

4. (Toyota et al., 2006)

(d) P (N) m R

QN = A d-α P m P

s Q

,

m m s P

Q

s L-band (SAR 24cm mQ

5 X m P

X X Q

P L band Q

s P 2 s L-band SAR

P P P

L-band SAR m Toyota et al., 2009 6 Q mP

s mQ PALOS2 s L-band SAR

s P Q

5.

6. m L-band SAR

Q

,

P

m P

P m Tamura

et al., 2008 7 Q P s

Q s s

mQ P mQ

7. s m

Cavalieri, D.J., and C.L. Parkinson: Arctic sea ice variability and trends, 1979-2010.The Cryosphere, 6, 881-889, 2012a.

Hibler, W. D., III: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815-846, 1979. Morales Maqueda, M.A., A.J. Willmott, and N.R.T. Biggs: Polynya dynamics: a review of observations and modeling. Rev. Geophys., 42, RG1004, doi:10.1029/2002RG000116, 2004.

Nihashi, S., K.I. Ohshima, M.O. Jeffries, and T. Kawamura: Sea-ice melting processes inferred from ice-upper ocean relationships in the Ross Sea, Antarctica. J. Geophys. Res., 110, C02002, doi:10.1029/2003JC002235, 2005.

Parkinson, C.L., and D.J. Cavalieri: Antarctic sea ice variability and trends, 1979-2010.The Cryosphere, 6, 871-880, 2012.

Rampal, P., J. Weiss, C. Dubois, and J.-M. Campin: IPCC climate models do not capture Arctic

,(

sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline.J. Geophys. Res., 116, C00D07, doi: 10.1029/2011JC007110, 2011.

Tamura, T., K.I. Ohshima, and S. Nihashi: Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett., 35, L07606, doi:10.1029/2007GL032903, 2008.

Toyota, T., S. Takatsuji, and M. Nakayama: Characteristics of sea ice floe size distribution in the seasonal ice zone. Geophys. Res. Lett, 33, L02616, doi:10.1029/2005GL024556, 2006.

Toyota, T., K. Nakamura, S. Uto, K.I. Ohshima, and N. Ebuchi: Retrieval of sea ice thickness distribution in the seasonal ice zone from airborne L-band SAR. Int. J. Remote Sensing, 30(12), 3171-3189, 2009.

Toyota, T., C. Haas, T. Tamura: Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late winter. Deep-Sea Res. II, 58, 1182-1193, 2011.

,)

s P

Q m

P i

Q mP ⅲ s m P

Q

P P m s s

(ex. Aviso+ Satelliete Altimetry Data: https://www.aviso.altimetry.fr/en/home.html)Q

P X P

s P

cm Q P R

s 8 s P P

P P s

Q

X P

m P s X

X [ , 2014]Q Jason-3 P

300kmP 10 Q

XP Q

mP m P

P m P

X Q

m P m P s X

km P P P

P Q

n P

Q mP s sP

P s

Q

!

P s X m P

m m [Hirobe et al., 2019] Q

P ( 1a)Q

GPS(GNSS) s m P s

P Q

Beechcraft King Air 200T X

,

ATSAR-X s m( 1b,c)QATSAR-X

(SAR) P SAR s iP ―

s mQ mP

― sGPS mQ

P 3 Jason-2 Jason-3

s10 s mQ 3 P 2016 6

29 2, A-B P 2 P 3 12 4 8

m( 2, C-D E-F)Q 8500mP

100m/s P s mQ

3 P A-B m

m Q 6km

m s Q m s P

32.5˚N 33.5˚N X 1m s

Q m Jason-2 ⅵ s Q

P33˚N sJason-2 P

s Q Jason-2 m

6cm mQ P m

s P Jason-3 10cm

mQ

1: (a) P(b) m

Beechcraft King Air 200TP(c) ⅱ m

X ATSAR-X

,

2: 2016 6 29 m ( A-B) 12 4

12 8 m ( C-D,

E-F)Q Jason-2 Jason-3 P

m2016 6 29 Q

3: 2016 6 29 ( 2, A-B) s m3

m ( ) Jason-2 m

( ) Q

,,

P m P

s

P Q

30cm s Q P

P

m Q mP 2 m P

Q mP

P2

Q P X P

P

s Q

.

PJAXA L SAR NICT X SAR

s P1993 PI–SAR sgulf stream II s s Q

X PI-SAR 1.5 m m P

X s R m

mQPI-SAR PI-SAR X2 30cm m

― P m P

P P m P

s s Q X P

s

P P Q

JAXA L SAR ALOS SAR m P 2.5m

Q PI-SAR ALOS2 PI-SAR L2 sP2012

s P 1.76 m PPI-SAR L2 SAR (

)Q PPI-SAR L2 P Gulfstream II s

s Q

,-

1 JAXA L PI-SAR PI-SAR L2 (Watanabe et al. 2016 )

-

s s Q

X m P — XQIPCC

(2013) P —

X P4 s Q P

X — P s Q

IPCC (2013) P n 450 650PgC P

— Q P P

(BVOC Biogenic Volatile

Organic Compound) Q P

s n XQ P sP

P s Q

X m P X

Q sP

s mQ MODIS(MODerate resolution Imaging

Spectroradiometer) P s

(m PTateishi et al., 2011)Q mP

s P 1980

s mQ

m P 1982 2006 s

s (Wang et al., 2011)Q P 1980 1990

s m P1990 2000

s (Piao et al., 2011)Q mP

P m

X m m(m PSuzuki et al., 2003; Nagai et al., 2015)Q

P (

m ) s (m PKobayashi et al.,

2010)Q P ALOS(Advanced Land Observing Satellite)

PALSAR(Phased Array L-band Synthetic Aperture Radar)

sP s ( PAvtar et al., 2013; Suzuki et al., 2013)Q

X P m sP

P 100

P X s Q 1 QuickBird

mQQuickBird P Q

-

P P R ( )

P Q mP

Q m P m

P P P

Q

1 . QuickBird Q 35km

2009 8 27 Q

2. 2000 s m P

m m Q(Suzuki et al., 2011)

-

m 100 150m m

2 mQ X i

s P Q mP

R Q2000 4 24

P P Q

m m m Q 2

P Q

m X P — P

sP s Q P

P m P

s Q s P

m P n XQ mP

P

X Q mP P

Q

X P P

3 s P m (

) sP

Q P

s Q 2 (BRDF:

Bidirectional Reflectance Distribution Function) Q s

P s P 2

P 3

n XQ P m

Q mP P

P

iP m P

(m PHayashi et al., 2013)Q

-

P

S IPBES:

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services T 2012

4 mQIPCC P m IPBES

QIPCC

PIPBES Q

IPBES X P s

X P Xm

s mQ

P m P

m s s ( P2015)Q

(GEO: Group on Earth Observations) m

(GEO BON GEO Biodiversity Observation Network)( P2008) P

s 6 P

( P ) P

X 7 Q mP

(APBON: Asia-Pacific BON) (JBON: Japan BON)

P

s (Muraoka et al., 2012)Q

3. sP 10

m s m Q2011 11 29 Q 4

m sP s Q

-(

Nagendra (2001) P

Q

Ⅳ m Q

Q

s

s m P

Q

X PS2T S3T (m P

)

P s

Q PS1T R ( R ) m X P

Pm QuickBird X s P

Q sPi

QS1T P P

P P m

Q

4. sP m

s m ( ) (

)Q 430mP 400m Q(Inoue et al., 2014)

-)

P s P1cm

Q 3 Inoue et al. (2014) m

sP 10 m

mQ n m P s Q mP

P Q

P (DEM: Digital Elevation Model)

mQ X m P P

n Q

1990 P

s mQ

s s P 100

P Q

m P

n Q

sP (NASA) 1991 1992 s m

ACCP (Accelerated Canopy Chemistry Program)

http://daac.ornl.gov/ACCP//accp.shtmlP2015 9 17 )Q Ⅳ

s QACCP

LOPEX93 (Leaf Optical Properties Experiment 93) (Hosgood et al. 1994)P

P50

mQ

5. Carnegie Airborne Observatory (CAO) s Q

http://cao.stanford.edu/?page=cao_systems (2014 11 17 )

-

X m P P P— m X

s mQ

P G. Asner P m

n

m(http://cao.stanford.edu/P2015 9 17 )Q 5

s mQ P

s (400–2500nm) P

m(Asner and Martin, 2008)Q mP P

P P P P

P P P m(Asner et al.P 2011)Q P 6

m X P

s P 17 m

s QAsner m P

P mQ

m X n XQ

6. Carnegie Airborne Observatory-Alpha s m

m Nanawale 17 Q(Féret and Asner, 2012)

-

Asner, G.P., Martin, R.E., Knapp, D.E., Tupayachi, R., Anderson, C., Carranza, L., Paola, M., Houcheime, M., Sinca, F., and Weiss, P. (2011): Spectroscopy of canopy chemicals in humid tropical forests. Remote Sensing of Environment, 115, 3587-3598.

Asner, G.P. and Martin, R.E. (2008): Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels. Remote Sensing of Environment, 112, 3958-3970.

Avtar, R., Suzuki, R., Takeuchi, W., and Sawada, H. (2013): PALSAR 50m mosaic data based national level biomass estimation in Cambodia for implementation of REDD+ mechanism. PLoS ONE, 8: e74807.

Féret, J.-B., Asner, G.P. (2012): Tree species discrimination in tropical forests using airborne imaging spectroscopy. IEEE Transactions on Geoscience and Remote Sensing, 51, 73–84.

Hayashi, M., Yamagata, Y., Borjigin, H., Bagan, H., Suzuki, R, and Saigusa, N. (2013): Forest biomass mapping with airborne LiDAR in Yokohama City. Journal of the Japan Society of Photogrametry and Remote Sensing, 52, 306-315.

Hosgood, B., Jacquemoud, S., Andreoli, G., Verdebout, J., Pedrini, G., and Schmuck, G. (1994): Leaf Optical Properties Experiment 93 (LOPEX93). European Commission, Luxembourg.

Inoue, T., Nagai, S., Yamashita, S., Fadaei, H., Ishii, R., Okabe, K., Taki, H., Honda, H., Kajiwara, K., and Suzuki, R. (2014) Unmanned Aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan. PLoS ONE, 9, doi:10.1371/journal.pone.0109881.

IPCC (2013): Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis, Summary for Policymakers. http://www.ipcc.ch/.

Muraoka, H., Ishii, R., Nagai, S., Suzuki, R., Motohka, T., Noda, H.M., Hirota, M., Nasahara, K.N., Oguma, H., and Muramatsu, K. (2012): Linking remote sensing and in situ ecosystem/biodiversity observations by “Satellite Ecology.” In: The biodiversity observation network in the Asia-Pacific region (eds. Nakano, S., Yahara, T., Nakashizuka, T.), 227-308, Springer, Tokyo, Heidelberg, New York, Dordrecht, London.

Nagai, S., Saitoh, T.M., Nasahara, K.N., and Suzuki, R. (2015): Spatio-temporal distribution of the timing of start and end of growing season along vertical and horizontal gradients in Japan. International Journal of Biometeorology, 59. 47-54.

Nagai S, Saitoh TM, Kajiwara K, Yoshitake S, Honda Y. (2018) Investigation of the potential of drone observations for detection of forest disturbance caused by heavy snow damage in a Japanese cedar (*Cryptomeria japonica*) forest. Journal of Agricultural Meteorology, 74(3):123-127.

Nagendra, H. (2001): Using remote sensing to assess biodiversity. International Journal of Remote Sensing, 22, 2377-2400.

Piao, S., X. Wang, P. Ciais, B. Zhu, T. Wang, and J. Liu (2011): Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17, 3228-3239.

Suzuki, R., Kim, Y., and Ishii, R. (2013): Sensitivity of the backscatter intensity of ALOS/PALSAR to the above-ground biomass and other biophysical parameters of boreal forest in Alaska. Polar Science, 7, 100-112.

-,

Suzuki, R., Kobayashi, H., Delbart, N., Asanuma, J., and Hiyama, T. (2011): NDVI responses to the forest canopy and floor from spring to summer observed by airborne spectrometer in eastern Siberia. Remote Sensing of Environment, 115, 3615–3624.

Suzuki, R., T. Nomaki, and T. Yasunari (2003): West-east contrast of phenology and climate in northern Asia revealed using a remotely sensed vegetation index. International Journal of Biometeorology, 47, 126-138.

Tateishi, R., Uriyangqai, B., Al-Bilbisi, H., Ghar, M.A., Tsend-Ayush, J., Kobayashi, T., Kasimu, A., Hoan, N.T., Shalaby, A., Alsaaideh, B., Enkhzaya, T., Gegentana, and Sato, H.P. (2011) Production of global land cover data ‒ GLCNMO. International Journal of Digital Earth, 4:22-49.

Wang, X., Piao, S., Ciais, P., Li, J., Friedlingstein, P., Koven, C., and Chen, A. (2011): Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006, PNAS, 108, 1240-1245.

(2015)

65 125-134

(2008) GEO BON

S

T , https://www.kahaku.go.jp/research/symposium/img/yahara.pdf

--

P Cessna A185F 1974 15

P P P Q

Pilatus PC6 1979 21 P

P P Yamanouchi and

Wada, 1992 P PCO2 mQ

P 8 km PCO2

mQ P P m i

P s

mQ m

P s s CO2 P

CO2 s

s m Murayama et al., 1995 Q

s PS T mQ

1997 38 3 12 7 P

0.3 �m S1 cmM S

X30 cm-3 Yamanouchi et al.,

1999 2000 41 2 S

Hara et al., 2006

S bS

S 45 2004

S S

Osada et al., 2006

S AWI Ⅱ

Antarctic flight missions at Syowa region: Airborne Geophysi- cal, Glaciological, and

Atmospheric Research in East Antarctica: ANTSYO S 47

48 S2006 2007 Ⅱ

Herber et al., 2006 AWI Dornier 228 Polar-4 S

22 S

] 15

S S S 3

S S

S ]

b S

S S

b 2017

] S S

] S

S

S

Gulfstream-II: G-II; S

S

V 1995M98

V Ⅱ Arctic Airborne Measurement Program 1998:

AAMP98 1998 3 Shiobara et al., 1999 2002

2002 Inomata et al., 2003

S AWI SAWI

Ⅱ Dornier 228 Polar-4 SV

Arctic Study of Tropospheric Aerosol and Radiation: ASTAR 2000

1999M2004 2000 3 X4 S

S S S

S AWI

S V

Yamanouchi et al.,

2005; Hara et al., 2002, 2003; Treffeisen et al., 2004 S

S S

S

S

BC S

Thomason et al., 2003 S S

SBC

Treffeisen et al., 2005

2002 3 S Ⅱ AAMP 02 S

AWI 1998 SAWI

S S

Yamanouchi et al., 2003 S S

Treffeisen et al., 2006 S S

Morimoto et al., 2003; Ishidoya et al., 2008 SG-II Ⅱ

S

2004 5M6 AWI S Ⅱ Dornier 228 2

VASTAR 2004 19

S ASTAR 2000 3M4

S SBC

S

] , 2010 S S

Yamagata et al., 2009

S S 2 ]aSASTAR 2007

IPY 2007-2008 2007 4 S

Ⅱ S

Hoffmann et al., 2009 Ⅱ PANARCMIP

Moore, G. W. K., 2002

Ⅱ 46 243 260

Hara, K. Osada, C. Nishita, S. Yamagata, T. Yamanocuhi, A. Herber, K. Matsunaga, Y. Iwasaka, M. Nagatani, and H. Nakada., 2002: Vertical variations of sea-salt modification in the boundary layer of spring Arctic during the ASTAR 2000 campaign, Tellus 54B, 361-376.

Hara, K., S. Yamagata, T. Yamanouchi, K. Sato, A. Herber, Y. Iwasaka, M. Nagatani and H. Nakata, 2003: Mixing states of individual aerosol particles in spring Arctic troposphere during ASTAR 2000 campaign. J. Geophys. Res., 108 (D7), 4209, doi:10.1029/2002JD002513.

Hara, K., Y. Iwasaka, M. Wada, T. Ihara, H. Shiba, K. Osada and T. Yamanouchi, 2006: Aerosol constituents and their spatial distribution in the free troposphere of coastal Antarctic regions. J. Geophys. Res., 111, D15216, doi: 10.1029/2005JD006591.

A. Herber, 2010 X

54 845-867.

Herber, A., H. Gernandt, W. Jokat, U. Nixdorf, D. Steinhage, H. Miller, R. Treffeisen, T. Yamanouchi, K. Shiraishi, Y. Nogi, K. Shibuya and M. Wada, 2006: Joint AWI-NIPR airborne operations in the past and the future. Polar Meteorol. Glaciol., 20, 40-52.

, 2017 V

17 233

287M295

Hoffmann, A., C. Ritter, M. Stock, M. Shiobara, A. Lampert, M. Maturilli, T. Orgis, R. Neuber and A. Herber, 2009: Ground-based lidar measurements from Ny-Ålesund during ASTAR 2007. Atmos. Chem. Phys., 9, 9059-9081.

Inomata, Y., Y. Iwasaka, S. Morimoto, M. Shiobara, T. Machida and S. Sugawara, 2003: Carbonyl sulfide concentration in the Arctic lowermost stratosphere – troposphere transport. J. Meteorol. Soc. Jpn, 81, 1471-1484.

Ishidoya, S., S. Morimoto, S. Sugawara, T. Watai, T. Machida, S. Aoki, T. Nakazawa, and T.

Yamanouchi, 2008: Gravitational separation suggested by O2/N2, C15N of N2, C18O of

O2, Ar/N2 observed in the lowermost part of the stratosphere at northern middle and high latitudes in the early spring of 2002, Geophys. Res. Lett., 35, L03812, doi:10.1029/ 2007GL031526.

Morimoto, S., T. Watai, T. Machida, M. Wada and T. Yamanouchi, 2003: In-situ measurement of the ozone concentration in the Arctic Airborne Measurement Program 2002 (AAMP 02). Polar Meteorol. Glaciol., 17, 81-93.

Murayama, S., Nakazawa, T., Yamazaki, K., Aoki, S., Makino, Y., Shiobara, M., Fukabori, M., Yamanouchi, T., Shimizu, A., Hayashi, M., Kawaguchi, S. and Tanaka, M., 1995: Concentration variation of atmospheric CO2 over Syowa Station, Antarctica and their interpretation. Tellus, 47B, 375-390.

2002 Ⅱ AAMP 98 46 1A , 286p.

Osada, K., K. Hara, M. Wada, T. Yamanouchi and K. Matsunaga, 2006: Lower Tropospheric Vertical Distribution of Aerosol Particles over Syowa Station, Antarctica from Spring to Summer in 2004.Polar Meteorol. Glaciol., 20, 16-27.

Shiobara, M., Y. Fujii, S. Morimoto, Y. Asuma, S. Yamagata, S. Sugawara, Y. Inomata, M. Watanabe and T. Machida, 1999: An overview and preliminary results from the Arctic Airborne Measurement Program 1998 cmpaign. Polar Meteorol. Glaciol., 13, 99-110.

Thomason, L. W., A. B. Herber, K. Sato and T. Yamanouchi, 2003: Arctic Study on Tropospheric Aerosol and Radiation: Comparison of tropospheric aerosol extinction profiles measured by airborne photometer and SAGE II. Geophys. Res. Lett., 30 (6), 1328, doi: 10.1029/2002 GL016453.

Treffeisen, R., A. Herber, J. Ström, M. Shiobara, T. Yamanouchi, S. Yamagata, K. Holmen, M. Kriews and O Schrems, 2004: Interpretation of Arctic aerosol properties using cluster analysis applied to observations in the Svalbard area. Tellus 56B, 457-476.

Treffeisen, R., A. Rinke, M. Fortmann, K. Dethloff, A. Herber and T. Yamanouchi, 2005: An estimation on the radiative effects of Arctic aerosols using two different aerosol data sets: A case study for March 2000. Atmospheric Environment, 39 (5), 899-911.

Treffeisen, R. E., L. W. Thomason, J. Strom, A. Herber, S. P. Burton and T. Yamanouchi, 2006: Stratospheric Aerosol and Gas Experiment (SAGE) II and III aerosol extinction measurements in the Arctic middle and upper troposphere. J. Geophys. Res., 111, D17203, doi: 10.1029/2005JD006271.

Yamagata, S., D. Kobayashi, S. Ohta, N. Murao, M. Shiobara, M. Wada, M. Yabuki, H. Konishi, and T. Yamanouchi, 2009: Properties of aerosols and their wet deposition in the arctic spring during ASTAR2004 at Ny-Ålesund, Svalbard. Atmos. Chem. Phys., 9, 261-270.

Yamanouchi, T. and M. Wada, 1992: Microwave signiture of polar firn and sea ice in the Antarctic from airborne observations. Proc. NIPR. Symp. Polar Meteorol. Glaciol., 6, 16-35.

Yamanouchi, T., M. Wada, T. Fukatsu, M. Hayashi, K. Osada, M. Nagatani, A. Nakada and Y. Iwasaka, 1999: Airborne observation of water vapor and aerosols along Mizuho route, Antarctica. Polar Meteorol. Glaciol., 13, 22-37.

Yamanouchi, T., M. Wada, M. Shiobara, S. Morimoto, Y. Asuma, S. Yamagata and others, 2003: Preliminary report of the “Arctic Airborne Measurement Program 2002” (AAMP 02). Polar Meteorol. Glaciol., 17, 103-115.

Yamanouchi, T., Treffeisen, R., Herber, A., Shiobara, M., Yamagata, S., Hara, K., Sato, K., Yabuki, M., Tomikawa, Y., Rinke, A., Neuber, R., Schumachter, R., Kriews, M., Strom, J., Schrems, O. and Gernandt, H., 2005: Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study. Tellus 57B, 141-152.

. ASTAR 2000Ⅱ S(a) 2000

23 S S(b) 3 26 S S 12:00 UT ]

S(c) 3 23 S −S(d) 3

26 S Yamanouchi et al., 2005

(

. ASTAR 2000Ⅱ S (a), (b)

Treffeisen et al., 2005 A 0.85

0.19

. AAMP 02 Ⅱ Yamanouchi et al.,

2003 AAMP 98

)

. AAMP 02 A

SP SE S

Yamanouchi et al., 2003

. AAMP 02Ⅱ

SAGE-III Treffeisen et al., 2006

Ⅱ S

S Ⅱ

S

S10 S S

Ⅱ S

Ⅱ S S

S S

S

S

CO2 S CH4 S N2O

S ]

S S

CO2 O2

S

CO2

CO2 Ⅱ

b S

Ⅱ SCO2

— ] S

b S

SⅡ

2-4

] S S

b S

S S

] S

S S S

Ⅱ S

HOx OHSHO2 S

ⅱ b S

] S

Ⅱ HOx

SHOx SHOx

S

S

— S

S(J) U

S( ) S

S(L)

b ]

] S

BC

S

−]

SⅡ BC CO2S/2( 3

S BC

] SBC

3 BC

S

S

S

SⅡ

S

S — ] S

S

S(i)

S(ii)

S (iii)

mixed-phase cloud

(i) S

SⅡ

SⅡ

(i)-(iii) S

— S

S

Ⅱ S

— b

S b

U S

S

S

Ⅱ S

S] ⅱ

-

SⅡ

S S S ⅲ S

S

S − ]

] S

ⅲ S

5

S10 S

Ⅱ S

S b

Ⅱ bS Ⅱ

S

Ⅱ S

U S

S — b

S

b

S S

SⅡ S

S

b

SⅡ S

S

S S

S b

S SⅡ S S

S

!

CO2 S /2( S

N2O S

] S

] S

S

CO2 O2

S S

S S

S Ⅱ

!

U S Ⅱ

S 1 2

CME

CONTRAIL Ⅱ

] S

S S

CO2

ASE

CME CONTRAIL S

CO2

S 12

MME

] Ⅱ

SCO2 /2(] O2 N2O

CO S CO2

Ⅱ S 2

S 7

ASE S b

S ] S

Ⅱ S ]

O2

SⅡ S

S3-4

!

]

] — S

− ⅱ Ⅱ SCO2

SCH4 N2O S

S S

S Ⅱ

S

S Ⅱ b

S

S

4

a S

]S

S S

b ]b

SCMESMMESASE]

SCMESMME

S

S

S CO

Warm

Conveyer Belt S ]

S Ⅱ

HIPPO CO2 HIPPO

HIPPO SHIPPO

S S

bS

b

HIPPO Ⅱ CO2 ―

(

S

4

outflow S

CMESMMESASE]

S

bS

CO2 SSF6 SCH4 SN2O

S CO2 SF6 age SⅡ

S C15N

C18O SO2/N2 SAr/N2

S

SCO2 SF6

SBrewer-Dobson U S

S

S ]

b

CME] MME Ⅱ S

CO2, S

S

S

(NOx, S ) S ]

3 S

b

ⅱ b S ] S

S S

)

S HOx (OH,

HO2 ) ( 1) bS

Ⅱ ] S

S

S

OH,!HO2! !

OH, HO2

S S

SNOx

S

bS OH

1pptv S 1 − S

S Ⅱ S

(Kanaya et al., 2007 )

b SOH 2

S ( )

(Patra et al., 2014 ) S HOx

S S S ,

NOx/NOy, ⅲ SJ S S S

S S

OH OH

HOx 3

S S

HOx 2000

(CO) S

SOH S

1 SVOC bSNOx

] HOx bS

S

NOx VOC

S S VOC S S —

b SV

S

S

S

S BrO, IO

S 3

(Saiz-Lopez and von Glasow, 2012)

S SHOx

Ⅱ S S −

Baidar et al., 2013

− SⅡ −

2 SNO2, HCHO,

CHOCHO, BrO, IO

S S OH

S bV

Robinson et al., 2007 S

S

S

!S

b S

S b S

S

] S

S]

S

!

bS

CO2 V

(Sitch et al., 2007) S

S

S ( )

S

!

S ]

S S

S

Ⅱ S

MAX-DOAS NO2,

S Ⅱ

S V S

S

S S SⅡ

NO2 S

S

S

S S b

Baidar, S., Oetjen, H., Coburn, S., Dix, B., Ortega, I., Sinreich, R., and Volkamer, R.: The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases, Atmos. Meas. Tech., 6, 719-739, doi:10.5194/amt-6-719-2013, 2013.

Kanaya, Y., R. Cao, H. Akimoto, M. Fukuda, Y. Komazaki, Y. Yokouchi, M. Koike, H. Tanimoto, N. Takegawa, Y. Kondo, Urban photochemistry in central Tokyo: 1. Observed and modeled OH and HO2 radical concentrations during the winter and summer of 2004, J. Geophys. Res., 112, D21312, doi:10.1029/2007JD008670 (2007).

Patra, P. K., M. C. Krol, S. A. Montzka, T. Arnold, E. L. Atlas, B. R. Lintner, B. B. Stephens, B. Xiang, J. W. Elkins, P. J. Fraser, A. Ghosh, E. J. Hintsa, D. F. Hurst, K. Ishijima, P. B. Krummel,

B. R. Miller, K. Miyazaki, F. L. Moore, J. Mühle, S. O’Doherty, R. G. Prinn, L. P. Steele, M. Takigawa, H. J. Wang, R. F. Weiss, S. C. Wofsy, D. Young, Observational evidence for interhemispheric hydroxyl parity, Nature, 513, 219-223, 2014.

Robinson, A. L., N. M. Donahue, M. K. Shrivastava, E. A. Weitkamp, A. M. Sage, A. P. Grieshop, T.

E. Lane, J. R. Pierce, and S. N. Pandis, Rethinking organic aerosols: Semivolatile emissions and

photochemical aging, Science, 315, 1259-1262, 2007. Saiz-Lopez, A. and R. von Glasow, Reactive halogen chemistry in the troposphere, Chem. Soc. Rev., 41, 6448–6472, 2012.

Sitch, S., P. M. Cox, W. J. Collins, and C. Huntingford, Indirect radiative forcing of climate change

through ozone effects on the land-carbon sink, Nature, 448, 791-794, 2007Ƅž

ž

ž

ž

ž

ž

!

!

1. OH, HO2 S

] S

-

2. Ⅱ NO2 S

(J) CCN IN U

( ) CCN IN

(L) b ]

S S

− Ⅱ

U ] Ⅱ 3.4.

Ⅱ U

O CCN

IN P

(BC )

ⅲ ]

O CCN IN

] CCN IN

Humidity Tandem Differential Mobility Analyzer(HTDMA) CCN −

U

CCN

Counterflow Virtual Impactor (CVI)

P

BC

] BC

] BC BC

LII Ⅱ

]

BC

Q

S S 1µm S

S

S

]

S

S S S

. !

b

b

]

Ⅱ U

( 1) Ⅱ

U

b

b

1 2

1 U

1. A-B

.! CCN! IN! !

Ⅱ ⅤⅣ

]

]

ⅤⅣ

HTDMA b HTDMA Ⅱ

Kaku et al., 2006; Shinozuka et al., 2009

Hegg et al., 2006; Sorooshian

et al. 2008 HTDMA

2

HTDMA HTDMA

HDMA

DMA DMA 1

]

b Santarpia et al., 2011

CCN

ⅤⅣ CCN

]

] CVI

CCN CCN

]

]

(

2. CCN IN

! !

Black Carbon(BC)

U

Ⅱ in-situ

3

BC

BC

)

BC

BC LII

]

BC BC

]

BC ,

b U

3 Ⅱ

!

- — NOx, NH3 S

] BVOCs

S

Ⅱ S S

S S S

Primary Organic

Aerosol: POA BVOCs SOA

S

BVOCs — S

SBVOCs SOA

S — V

Ⅱ S ToF-MS

SⅤⅣ

Hegg, D. A. et al. (2006), Measurements of aerosol size-resolved hygroscopicity at sub and supermicron sizes, Geophys. Res. Lett., 33, L21808, doi:10.1029/2006GL026747.

Kaku, K. C., et al. (2006), Organics in the Northeastern Pacific and their impacts on aerosol hygroscopicity in the subsatrated and supersaturated regimes, Atmos. Chem. Phys., 6, 4101-4115.

Santarpia, J. L. et al. (2011), Estimates of aqueous-phase sulfate production from tandem differential mobility analysis,

Shinozuka, Y. et al. (2009), Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B, Atmos. Chem. Phys., 9, 6727-6742.

Sorooshian, A. et al. (2008), Rapid, size-resolved aerosol hygroscopic growth measurements: Differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP), Aerosol Sci.

Technol., 42, 445-464.

!

mixed-phase cloud

S

S S

— S

S

b S

S ]

S

]

— b

b

U

SⅡ ]

SⅡ

Ⅱ S S

!

S b

S /

S ⅲ

1 i Ⅱ S

S

S

S S

S S

] S

S b

S

1.

] S

S

-

-38F ]

] S

S S

]

S

S

S

!

S

b 2

bS b ]

S ]

S ] i

S bS

S S

S

2.

! !

b S

S

SⅡ

b S

S SⅡ

S S

S

S Ⅱ ] S

( 3) ]

Ⅱ Ⅱ

S ]

S U

S i

Ⅱ SⅡ

S

b

S GMP CloudSAT

] S NICAM

S

S Ⅱ

Ⅱ S

] S

S

S Ⅱ

in situ Ⅱ

S

] SⅡ S

S S

SⅡ S

3. Ⅱ

Wang et al., 2012

!

10 S ]

] S

S GII ]

S MRJ S

MRJ

S S

SGII

S

b S Ⅱ

S

TSI CPC S DMT UHSAS S

S DMT CASSSPEC FFSSP S

DMT CIP] PIPSSPEC 2D-S] CPI S

hot-wire S S Nevzorov S SEA

WCM-2000 S Aventech AIMMS-20 S S

S S SRH

X-, Ka-, Ku-, W –band S

S S

S

[ ]! !

b S ]

S

— b S S

CWP S

S S

S

S b

] S S

]

S S

2013

King Air S 44NS150E

2013 S 100

/cm3 —

300 m S S

(

S

S S

S S

S

4. 7 ISCCP IPCC AR5

)

5.

S

]

1450 ] 1700 km SⅡ 4000 km GII MRJ 8

S S km

S

S S

2-4 5 S 1-2km S

S10-15 50-75

— b

S

b S

S S

S S

S S S S ⅲ

S

characterization Ⅱ ]

S

LES

S S S S S

S S

S

S

LES

S

[ ]

!

S ]

ⅱ — S

i

S

S S

S S

] S

S

S

S

S S S

S

G-II MRJ S S

b

S S

S

S DAS

60

S S

2-4 S

6. CloudSat/CALIPSO S ]

IPCCAR5

7. 2013 3 1 9

CO 1550m ] S

SCVI Counterflow Virtual Impactor

S S

S SBC

S

S

S

-

[ ] Ⅱ

!

S Ⅱ

S

S

(

Ⅱ S

S] ⅱ

S

S Ⅱ

Ⅱ b

S Ⅱ

G-II b G-IV Ⅱ

3.6.1

3.6.1 Ⅱ

Ⅱ G-II G-IV

Ⅱ 4,260 km 6,500 7,000 km

13,106 m 43,000 ft 13,716 m 45,000 ft

2 t 3 t

4.5 kVA 8 kVA

S Ⅱ 3.6.2

S

U S

SⅡ Ⅱ

S Ⅱ b

S

S ] S Ⅱ

b

(

3.6.2 Ⅱ

(DAS)

Cloud Droplet Probe (2D-C: 25-800µm

PMS, Inc.

Precipitation Probe (2D-P: 200-6400µm)

PMS, Inc.

FSSP

2-47µm PMS, Inc.

CAPS Probe (0.5-50µm, 25-1550µm

DMT

PIP Probe

(100-6400µm DMT

CPI Probe (2-2000µm)

King LWC Proce PMS, Inc.

Gerber PVM Probe Gerber Scientific, Inc.

Nevzov LWC probe

Nevzov TWC probe

TAT Probe Rosemount

Lyman-Alpha Hygrometer AIR, Inc.

Aircraft Hygrometer System EG&G International, Inc.

CCN counter CCN

SSw)

PCASP CCN

SMPS DMA+CPC CCN

IN counter IN SSi

OPC IN

3

UHF DAS DAS, DM Inc.

4

(

S

R

S

S S

Ⅱ ]

R

S Murakami and Matsuo 1990

S S S S

S S

S

] S

S

S

S ]

S

] 20

(Murakami et al. 1994) S U

1680 MHz

S

S S 400

MHz Cloud

Particle Sensor CPS: Fujiwara et al. 2016, 2017 S

CPS

S S

] S 2019 b 2020

] S

RⅡ ⅲ

S

S ⅲ

S ⅲ

S ] 100 km S

1 2 S ⅲ −

(

S ⅲ

S b

S ] ⅲ S b

S ] ⅲ Ⅱ

SⅡ differential absorption lidar (DIAL), Browell et al.

1997) S ⅲ

S ]

International H2O Project (IHOP_2002), Weckwerth et al.

2004) ] S Ⅱ DIAL S

ⅲ 1 SDIAL Ⅱ

S ] ⅲ

] Ⅱ DIAL ] Uchino et al.

1995, Nagasawa et al. 1995 S ] ⅲ

S

1 IHOP 2002 6 20 Ⅱ DIAL

ⅲ ⅲ

Weckwerth et al. 2004

RⅡ

P-3 C130 ] S b

3

((

S S −

Vortical Hot Tower, VHT (Houze et al. 2009) MJO

(Guy and Jorgensen

2014) Ⅱ

3 S

S

Ⅱ 3

S SGuimond et al.

2014 b

RⅡ

Ⅱ bS

S ]

(W.-C. Lee et al. )

Ⅱ S

S 10 b

RⅡ

Airborne eXpendable BathyThermograph (AXBT)S

Airborne eXpendable Conductivity, Temperature,

and Depth probe (AXCTD) S

2010 International

Typhoon Observation over the Pacific Ocean (ITOP: D'Asaro et al. 2014, Lin et al. 2013) S

3 AXBT 200 S

S

S

SⅡ ]

AXBT b AXCTD

S

S

S

S

S AXBT b AXCTD

b S S S S

()

S

b S

SⅡ

S S

S b S

b

SⅡ S S S

S

R

S

S S

1 S

SGTS

S S

b S S

S S

] S

] T-PARCII

b S S

S ]

b

S −

S

S −

S − S

AXBT AXCTD b

S

S

R ] ⅲ

S ] ⅲ

(

] S S ⅲ

DIAL Ⅱ S

S ⅲ S S

S

b ⅲ S

]

S ]

2 ⅲ

] S ] ⅲ bS

500 2000 m ] S

S ] S ⅲ S

S km km ⅲ ⅲ

SDIAL Ⅱ S Ⅱ

b S 10 km DIAL ⅲ

ⅲ S

2 ] ⅲ Ⅱ

S ] S ⅲ S

ⅲ S ⅲ

S ⅲ

(

]

S Ⅱ

bSⅡ

Browell, E. V., and Coauthors, 1997: LASE validation experiment. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, Eds., Springer Verlag, 289-295.

D'Asaro, E. A., P. G. Black, L. R. Centurioni, Y.-T. Chang, S. S. Chen, R. C. Foster, H. C. Graber, P. Harr, V. Hormann, R.-C. Lien, I.-I. Lin, T. B. Sanford, T. Y. Tang, and C.-C. Wu, 2014: Impact of typhoon on the Ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 1405-1418.

Fujiwara, M., T. Sugidachi, T. Arai, K. Shimizu, M. Hayashi, Y. Noma, H. Kawagita, K. Sagara, T. Nakagawa, S. Okumura, Y. Inai, T. Shibata, S. Iwasaki, and A. Shimizu, 2016: Development of a cloud particle sensor for radiosonde sounding. Atmos. Meas. Tech., 9, 5911-5931.

, 2017 , , 56(5), 348-354.

Guimond, S. R., L. Tian, G. M. Heymsfield, and S. J. Frasier, 2014: Wind retrieval algorithms for the IWRAP and HIWRAP airborne Doppler radars with applications to hurricanes. J. Atmos. Oceanic Technol., 31, 1189-1215.

Guy, N., and D. P. Jorgensen, 2014: Kinematic and precipitation characteristics of convective systems observed by airborne Doppler radar during the life cycle of a Madden-Julian oscillation in the Indian Ocean. Mon. Wea. Rev., 142, 1385-1402.

Houze, R. A. Jr., W.-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 2778-2800.

Lin, I.-I., P. Black, J. F. Price, C.-Y. Yang, S. S. Chen, C.-C. Lien, P. Harr, N.-H. Chi, C.-C. Wu, and E. A. D'Asaro, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 1878-1882.

Murakami, M., and T. Matsuo, 1990: Development of hydrometeor videosonde (HYVIS). J. Atmos. Ocean Technol., 7, 613-620.

Murakami, M., T. Matsuo, H. Mizuno, and Y. Yamada, 1994: Mesoscale and microscale structures of snow clouds over the Sea of Japan Part I: Evolution of microphysical structures in short-lived convective snow clouds. J. Meteor. Soc. Japan, 72, 671-694.

Nagasawa, C., M. Abo, T. Sugisaki, and O. Uchino, 1995: Simulation for atmospheric water vapor measurements from spaceborne DIAL, SPIE, 2581, 161-167.

Uchino, O., T. Nagai, T. Fujimoto, C. Nagasawa, M. Abo, T. Moriyama, T. Y. Nakajima, N. Murate, K. Tatumi, and Y. Hirano, 1995: Diode-pumped solid state laser for spaceborne water vapor DIAL. SPIE, 2581, 154-160.

Weckwerth, T. M., D. B. Parsons, S. E. Koch, J. A. Moore, M. A. LeMone, B. B. Demoz, C.

(

Flamant, B. Geerts, J. Wang, and W. F. Feltz, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights., Bull. Amer. Meteor. Soc., 85, 253-277.

(-

] S

S

S

S Ⅱ

] S S

Ⅱ SⅡ

S b

S

S S

!

S

S

S2009 6 1

Ⅱ Ⅱ

S

1

− S

S

S

)

S S Ⅱ NASA S Ⅱ FAA

VHigh Ice Water Content (HIWC) S Ⅱ

EASA VHigh Altitude Ice Crystals HAIC S U

S

2014 1-3 2015 5

S −

S S

S S

S ]

S

] SⅡ

] S

S

b S

S

S Ⅱ S

Ⅱ Ⅱ S Ⅱ

SⅡ

S S

Ⅱ b

S

S Ⅱ S

S S

S

S

S S

)

SⅡ

S

!

Ka-band

S S

S

S ]

S S

S S

S S

S

S 8

Ka-band

S Isokinetic Total Water Content ProbeS

]

)

1 Ⅱ !

Ⅱ S

km

S

S

Ⅱ S

b S b

2

] ] −

S S

S b

b

S

!

S2017 10 2019 9 WMO Polar Prediction Project

Year of Polar Projection (YOPP)SIASC Multidisciplinary drifting Observatory

for the Study of Arctic Climate (MOSAiC) 2019 10 2020 9

S S

S

http://www.polarprediction.net/yopp/yopp-summit-presentations.html

S ⅤVPolarstern (Alfred Wegener Institute)

U S

(http://www.mosaicobservatory.org/ )

S Ⅱ

S

)

!

Ⅱ S

S1) S2) ridging

S3) S4)

S5) S

]

S ]

1) GPSS2)

Riegl-Japan S3) S4)

S5)

S 170mS

2 km

S S

EEZ

1 S

S

S

1.

S

)(

!

SⅡ Ⅱ

S SⅡ 10cm

S

S ( cm) bS

GPS S

S Ⅱ

] S Ⅱ

S Ⅱ b

S Ⅱ S S

Ⅱ Ⅱ

S

℃ S S

b

(2014) 21 . , 23, 13-27.

Hirobe, T., Niwa, Y., Endoh, T., Mulia, I.E., Yoshida, T., Tatehata, H., Nadai, A., Waseda, T. and Hibiya, T. (2019) Observation of sea surface height using airborne radar altimetry: A new approach for large offshore tsunami detection, in preparation.

))

. 83 .

NICT S2019 PI-SAR X3 PI-SAR X3

PI-SAR X2 30 cm) 15 cm PI-SAR X2

S S

S S S S

S S S S S S S

] S

Web ]SPI-SAR X3

Gulfstream IV

NICT PI-SAR, PI-SAR X2, PI-SAR X3

)

1 JAXA L PI-SAR PI-SAR L2 (Watanabe et al. 2016 )

Watanabe, M., R. B. Thapa, and M. Shimada, 2016: Pi-SAR-L2 Observation of the Landslide Caused by Typhoon Wipha on Izu Oshima Island, Remote Sens. 2016, 8, 282

)

SⅡ S 3

S Ⅱ

S b S

Nagai et al. 2018 S S

bⅡ

S S

S

S S

S b

S

SⅡ S

S

S Ⅱ

IPBES

SⅡ

Ⅱ S

S

S

S S S

S

a S S S

Ⅱ S

S S

S

)

] SⅡ

Ⅱ S

] Ⅱ

1964 SⅡ

1948 Ⅱ

S

Ⅱ S

SAniya, 2017 S SAR Ⅱ

bS SFuruya et al.,

2017 S

Ⅱ S NASA Operation IceBridge

https://www.nasa.gov/mission_pages/icebridge/index.html

2003-2009 Ice, Cloud and Land Elevation Satellite (ICESat)

S ICESat-2 2018 9

S S

b Ⅱ

S U S

ice radar/radio echo

sounding Ⅱ

S S ]

Ⅱ Karlsson et al. 2018 S

NASDA JAXA Ⅱ Airborne Multi-Spectral

Scanner (AMSS) , 2002 Advanced Earth Observing

Satellite- II (ADEOS-II) Global Imager (GLI) S

S

AMSS Ⅱ S

Tanikawa et al., 2002 ]

, 2001

S Aoki

et al., 2000 S BRDF Ⅱ

SⅡ S

Ⅱ S Ⅱ

)-

BRDF

S Ⅱ

AMSS Ⅱ Airborne Microwave

Radiometer (AMR) ADEOS-II Advanced Microwave Scanning Radiometer (AMSR)

AMR Ⅱ

, 2000 S S

6 GHz Ⅱ

Alimasi et al., 2016

S km~ 10 km bS

S b SⅡ

S

Ⅱ ] S

Ⅱ S S S S

b

S Wiscombe and Warren, 1980, Warren and

Wiscombe, 1980 U

S S S S

S X S

SⅡ

S b

Ⅱ S

S

Operation IceBridge Ⅱ

] S S 3

S

Ⅱ ] S

S U

S S S

S S

Ⅱ S S

] U S

] S

!!

Alimasi, N., H. Enomoto, J. Cherry, L. Hinzman, and T. Kameda, (2016): Winter-spring transition of ground conditions over Alaska derived by airborne 6 GHz microwave and infrared

observations. , 78, 365-382.

Aniya., M., (2017): Glacier variations of Hielo Patagónico Norte, Chile, over 70 years from 1945 to 2015. Bull. Glaciol. Res., 35, 19-38, doi.org/10.5331/bgr.17R01.

Aoki, T., T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, (2000): Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface. J.

Geophys. Res., 105, 10219-10236, doi:10.1029/2003JD003506.

, 1964: Ⅱ . , 26, 1.

Furuya, M., K. Fukui, H. Iida, S. Kojima, and T. Matsuoka, (2017): Experimental Observations of Two Mountain Glaciers on the Eastern Slope of Mt. Tsurugi by Pi-SAR2 Airborne SAR. Bull.

Glaciol. Res., 35, 7-17, doi:10.5331/bgr.16R04. Karlsson, N. B., T. Binder, G. Eagles, V. Helm, F. Pattyn, B. Van Liefferinge, and O. Eisen, (2018):

Glaciological characteristics in the Dome Fuji region and new assessment for “Oldest Ice”. The Cryosphere, 12, 2413-2424, doi:10.5194/tc-12-2413-2018.

, , , , , 2001: b

1998 Ⅱ (AMSS) .

, 14, 239-245.

, , , , , 2002: Ⅱ AMSS

. , 22, 299-305.

, , , , , , 2000:

. , 62, 523-535.

Tanikawa, T., T. Aoki and F. Nishio, 2002: Remote sensing of snow grain-size and impurities from Airborne Mulitspectral Scanner data using a snow bidirectional reflectance distribution function model. Ann. Glaciol., 34, 74-80.

Warren, S. G., and W. J. Wiscombe, (1980): A model for the spectral albedo of snow, II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 2734-2745.

Wiscombe, W. J., and S. G. Warren, (1980): A model for the spectral albedo of snow, I: Pure snow. J. Atmos. Sci., 37, 2712-2733.

S S

S ]

S — S

S S

IPCC ] S

] S S

S]

b

10 km 1000 km

S ]

S

S b ]

S

] S

1. −

S

S

S

] S

Rayleigh S

Rayleigh Mie

1 S RGB

b S b

2

2.

S b

S

S •

S ]

] S

] 1 S

S

S ]

S − ]

S b − S

]

S 500 m 1 km

] S S

(mixed pixel) S

Ⅱ S ] S

] SⅡ

] S] Ⅱ

S S ]

− 3

S Ⅱ

S S

S

] S

]S

Ⅱ SⅡ S

S b

3.

(

] Ⅱ

S

S —

S S

] — S

]

S S

b SⅡ

SⅡ

S

Ⅱ S

Ⅱ b

Ⅱ ] Ⅱ

S

SⅡ S SⅡ

S −

S S

Ⅱ S

S

S S

1

SⅡ S Ⅱ

b

Ⅱ S

S

S

S ] S

S S

S

)

1. Ⅱ

]

S bS

O3 S

S b S

S − S

S O3S NO2 S CO2 S CH4 S

CO

S S

S S

S O3 ,

CO2, CH4 S

S

S

S SⅡ

10-20nm

9

MODIS, GCOM-C/SGLI

1.6 13.3 µm 12 MODIS, 8

350-1100nmS5nm Hyperion, HISUI GOSAT,

TBD OCO-2ƾ TANSAT, ROPOMI, GOSAT-2, OCO-3

532nm, 1064nm, �" 355nm

CALIPSO EarthCARE/ATLID

355nm ADM/Aeolus

95GHz Cloudsat, EarthCare/CPR

in-situ ADOESSASEOS-II

S S S

S S

S

GOSAT

S

S

ⅱ S

b NASAS

DLR Ⅱ

S

Ⅱ S S S

GOSAT Ⅱ ] Egrett

NASA S

S α―JET

CO2, CH4 S ER-2

Ⅱ GOSAT

S Ⅱ

S GOES-16 S

ER-2Ⅱ

S S

S

1 ]

S b S

km

S

S

S S Ⅱ

S ]

S S ] Ⅱ

] S

] S

S Ⅱ ⅤⅣ bS

Ⅱ S

] S S S

bS Ⅱ

S S

S S

SCO2 S S

S S S

Ⅱ S

] S

S

S S

S Ⅱ S Ⅱ

b

1 GCOM C

EarthCARE ATLID ]

S S

S S

Sin-situ

]b SⅡ in-situ

Ⅱ S i

Ⅱ S S

S S

S

S

S Ⅱ

S Ⅱ

S

S S

S

S S

Ⅱ Grid Point Value (GPV;

) S

S

S S

S bS

SⅡ Ⅱ

S

Ⅱ S

S

S

S b S

S ] S

S

-

Ⅱ S S

S S

S S

bS S

S S

S

Ⅱ S S

S

SⅡ ]

S ] S S S S

S

S

] Ⅱ

] S

S

S

] S ⅱ S

S

S bS Ⅱ S

S S 2009S2013

A-FORCE09/13 (Koike et al. 2012; Oshima et al. 2012, 2013)S

2007 (Ohtake et al. 2014) S

NASA/Precpitation Measurement Missions (PMM) Mid-latitude Continental Convective

Clouds Experiment(MC3E; http://pmm.nasa.gov/node/301) S GCPeX

(http://pmm.nasa.gov/GCPEx)SOLYMPEX: A Ground Validation Campaign on the Olympic

Peninsula in the Pacific Northwest (2015 11 2016 2 ) Ⅱ

]

Ⅱ SRoh and Satoh (2014) S

Field et al. (2007) Ⅱ S

] S

Heymsfield et al. (2013) S S

S SⅡ

b Ohtake et al. (2014) S2007

] 2

S 3 Hashimoto et al. (2014)

S

SSeiki et al. (2014) SⅡ S ]

S

S S

Iguchi et al.(2012) Canadian CloudSat/CALIPSO

validation project (C3VP) ] S

S

S S

S

S S

S S

S

ⅱ S

bS S

S

S ]b S

S

b S

S

S S b

S

S

S S

S

Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 1997–2017.

Hashimoto, A., H. Ohtake, and M. Murakami, 2014: Improvement of bulk microphysics model based on airborne and ground-based observation data: Part 2. Japan Meteorological Society Meeting 2004 Spring, P304 (in Japanese).

Heymsfield, , A. J., Schmitt, C., Bansemer, A., 2013: Ice Cloud Particle Size Distributions and Pressure-Dependent Terminal Velocities from In Situ Observations at Temperatures from 0°to 86°C. J. Atmos. Sci., 70, 4123-4154.

Ohtake, H., M. Murakami, N. Orikasa, A. Hashimoto, A. Saito, and T. Kato, 2014: Statistical Validation of a Cloud Resolving Model Using Aircraft Observations of Orographic Snow Clouds. J. Meteorol. Soc. Japan, 92, 287-304.

Koike, M., N. Takegawa, N. Moteki, Y. Kondo, H. Nakamura, K. Kita, H. Matsui, N. Oshima, M. Kajino, and T. Y. Nakajima, 2012: Measurements of regional-scale aerosol impacts on cloud microphysics over the East China Sea: Possible influences of warm sea surface temperature over the Kuroshio ocean current. J. Geophys. Res., 117, D17205, doi:10.1029/2011JD017324.

Oshima, N., Y. Kondo, N. Moteki, N. Takegawa, M. Koike, K. Kita, H. Matsui, M. Kajino, H. Nakamura, J. S. Jung, and Y. J. Kim, 2012: Wet removal of black carbon in Asian outflow: Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign, J. Geophys. Res., 117, D03204, doi:10.1029/2011JD016552.

Oshima, N., M. Koike, Y. Kondo, H. Nakamura, N. Moteki, H. Matsui, N. Takegawa, and K. Kita, 2013: Vertical transport mechanisms of black carbon over East Asia in spring during the A-FORCE aircraft campaign, J. Geophys. Res. Atmos., 118, 13175–13198.

Roh, W., and Satoh, M., 2014: Evaluation of precipitating hydrometeor parameterizations in a single-moment bulk microphysics scheme for deep convective systems over the tropical open ocean. J. Atmos. Sci., 71, 2654-2673.

Seiki, T., Satoh, M., Tomita, H., Nakajima, T., 2014: Simultaneous evaluation of ice cloud microphysics and non-sphericity of the cloud optical properties using hydrometeor video sonde and radiometer sonde in-situ observations. J. Geophys. Res. Atmos., 119, 6681-6701, doi:10.1002/2013JD021086.

1. Heymsfield et al. (2013) ] SⅡ

1. S ] Heymsfiled et

al. (2013)

2. Ohtake et al. (2014) 5km S

1km S

(

3. Ohtake et al. (2014) S

S ]

)

Ⅱ S S S

S

S S S Ⅱ

SⅡ ] S

S Ⅱ

S Ⅱ S

i S

S SⅡ

S S

] S Ⅱ S

S S

S Ⅱ

℃ S

(1) UARMS

S ] S

JAXA

UARMS (Unmanned Airplane for Radiation Monitoring SystemS

) S2013~2015 JAXA] JAEA(

1] 1

S

6 Ⅱ

100km/hr S

S

(

S 1mm

S JAXA] S

( , 2016

ž

ž

ž

1. UARMS(

. 6

ŵĆ �Ĩ

ňş/¦ō 55 kg / 3�5kgȠ«lĢÍ)Jȡ

�ŕȞŹĮ

¸Ţ ǬǹȘȜǩȜǵȜȢ6¸Ţ (²�)

ŹĮŒ� 90Ȭ126km/hȠ25�35m/sȡ

ũĉŧŊ

ũ 200Ȭ300m

ŹĮŻ� 150mÁå (ĪĒÜǗ�Ǒǐ�)

¨Ĥ ũĉŧ�3ȢȌțǯȗȑŹĮ, P�Ő�

c# Ħ ȇȗǴȕȟȁȢÑ��ËȠȗǼȟǗǟǢǶȉȜȡȢĩ

3{�ȓȟȂ(RTB), �¸ĉȓȟȂȠèĒȡ

c#Ļĸ ÏœĻĸȞ��ĿźȢǴǶǿȑ'š6ǗǟǢ 2¬

ŨļgȢȈȟǻ�LjȉȁȟǖǕ

ÕŅÃ� ²�,mŪ,ŸŒ<15 m/sȢűĉ×ÕŅ÷�

ž

ž

(2) VTOL SQTW

S S

2) S S

S S

S 100m

15X20

SVTOL(

3S 3 ] JAXA SQTW 4

VTOL S

S

!! S (

!! S ]

!!

2019 2 S (

)2kg 30 (Ⅱ 50km S

/

S / b

] S U

ò

ò

ž

2. ( DJI MATRICE 200S

2. (DJI MATRICE200

iÜ 0.9 x 0.9 x 0.4m

Şş/¦ō ¼]6kg / ¦ō2kg

�ŕ Ů3ȓȟǻx4

ŹĮŒ� ¼]61�83km/hr

ŹĮ¸Ţ 13�24*(ȎǧțȟȂ¦ō¸ȡ

ž

ž

3. QTW: 4 VTOL S25kg

3. QTW

iÜ #š1.7m #| 2.3m

Şş/¦ō ¼]25kg / ¦ō2kg

�ŕ Ů3ȓȟǻȠMdȉǾǽȌțȎȗȡ

ŹĮŒ� 0 (VTOLȓȟȂȡ� 100km/hr (ŹĮÑȓȟȂ)

ĪĠŊũ 50kmĈ�

¨Ĥ ȌțǯȗȑŹĮÑĨ(ĩ3)Ǥ¾Ǎ

ž

ž

ž

4. QTW

ž

" ] ", 54

JSASS-2016-5172, (2016).

Ⅱ "

", JAXA-RR-06-023, (2007).

"4 VTOL Ⅱ ", 55

JSASS-2017-5197, (2017).

(3) Ⅱ

�ññR��:��²�wěğ

S

S S Ⅱ

S U ]

S Ⅱ S

S

] S

-

15km V Ⅱ S

S S

U U

S

S

S

S S

S S ⅤS

ⅤS S

S b S Ⅱ

S S

S S U S

ž

4. Ⅱ Ⅱ

ž

ž

�����

S Ⅱ RQ-4

Global Hawk Global Hawk S

SⅡ

S AeroVironment Boeing

5 10

] S 2011 S2013

S

S Ⅱ Ⅱ

S ] ℃ IT

] SAirbus Zephyr 29

S Ⅱ S

b

Ⅱ JAXA S Ⅱ

/ S 25 28

V Ⅱ

S S

V2

/ ] 24

365 5S 6 S

S S Ⅱ

ž

ž

5. ] /Ⅱ

5. ŵĆ ĴØ� ĻdÈ�Ė

ŖþŻ� 55kft�� "! P�ÕŅǘ�ŴTǤLŚ

"! ĪĒŋǔǘ}áǤLŚ

uĪŒ� 150kt�� "! ŖþŻ�ǗDžljǢŸüZǤ4É

"! SARĶãǗ�ĴǖjPŒ�ǤČ�

éĒ¸Ţ 72hr�� "! 2Ñ »ǗǟǢŔĠéĒǗ�ĴǖĪĠ¸Ţ

"! ŕ)/{�¸Ţ;ǚŹĮWÕŅÃ�Ǥ4É

ž

ž

6.

ž

> >A

50 4 2 3 /

>

71 6

���½�

S S Ⅱ / Ⅱ

S Ⅱ

Ⅱ WG ] S ]

S Ⅱ

S Ⅱ S

S

S S

℃ S2020

ž

ž

7. Ⅱ

6.

ž

ž

ž

]

Ⅱ SⅡ Ⅱ

S ]

S ℃

(1)

S bS

S Ⅱ

S

����! ��

����)*&+,%

���$#'(�

������ ������������

����"�

��

HALE:&High&Altitude&Long&EnduranceHAPS:&High&Altitude&Platform&System

/&High&Altitude&Pseudo;SatelliteVTOL:&Vertical&Take;Off&and&Landing

�� ���

" " " "! " "" " "# " "$ " "% " "& " "' " "( " ") " #

�����������0����

�����45790����<����0��?�������=����-,+*��>/23� .��864:;10�

?����

Ⅱ S

1

S

S

S b ] S

S SⅡ

S

mm

S

S bS

2 S S

ž

1.

ž

ž

2.

(2)

Ⅱ S Ⅱ SⅡ

S Ⅱ Ⅱ

S]] 1,000 20,000 S S

60,000 100,000 Ⅱ SⅡ

S Ⅱ S ]

Ⅱ SⅡ

Ⅱ Ⅱ

S S

U S

S

S

S δ S

Ⅱ S Ⅱ S

S

3

SⅡ Ⅱ Ⅱ b

ž

3.

ž

Ⅱ ] S

S S

90%

S S

] S b S

S b Ⅱ

Ⅱ S

b S S

b S

S b

S S

S

S

b S

(

S Ⅱ S S

4

S S S b

S S

5

ž

4.

ž

5.

(3)

Ⅱ S

S

] Ⅱ 50

S 2 S S b

b S Ⅱ

Ⅱ S Ⅱ S

S S

S S

CFRP S

S U CFRPⅡ

S S Ⅱ

)

S b

S] S

S

SCFRP ] S

S S

Ⅱ S b

S Ⅱ

S

Ⅱ S

Ⅱ 6

ž

6.

(4) K�{}ÄķŜĽŜ\¶

�O�èĝØÒĐāñ�RĞ�O�ı/ĄÎIJĕ=+ĝķŜĽŜĉ'ČĮSëıáTđĮ

ĞğIiĚĜċāE�Vĝ�ĆĮSëĉ@AĚăĮĔĨā�O�èğ4ÙĐęÔ²đĮĎěĉ

K¢ĞA$�ěĜĖęĄĮĂ�fāhPв�wÔ²ĝćČĮ�>Ī�p�ÅşCMAS

şCalciumā Magnesiumā Aluminum and SiliconŠı.ħŠĞ/ÎĦğāīĭÞm�ĜŁĶŒľĹŞ

řĚāÚ1Ğ�L0 ĝėĜĉĮĺľņ�ĞÂíěĜĖęĄĮĂĎĞīąĝā�O�Ī�>Ğ/

ÎĦğā²�wĞE�Vŝ�ìVĝ�ċàİĮ2íĚăĮĂ

ķŜĽŜ��Ğ2íĩā�>ŝ�O�Ğ/ÎĦě,uĝā²�wĞE��ܹĜÂíĚăĮĂ

�ĝ�jğāķŜĽŜ�ÚĞ��·ê�RĝīĖęā�jĞ´¼�ā��©ıÇĎĐāĺĴ

ķŜĽŜĞ�ÚĥĚSëı%Ĥđ=+ĉăĮĂ�jĞD9đĮ�âñRğ47,000ŋĵŞņěā

Õ�#~Ğ�âñR22,000ŋĵŞņıAQĝÈĆęćĭāw���Ěğ2íěĜĬĜĄñRĚ

ķŜĽŜĝ2íı�ĆĮ(±VĉăĮĂʼnĶśŃņкÁVĩWĄĂĎįĬĞĎěĈĬā�jĞ/

ÎĦ2íĉlĩç¼Ĝ2íěĐę&ĭ�čĬįĮĎěĉ@ĄĂ

ēĎĚā�O�¡Ğ/ĄÎĦĝīĮķŜĽŜĢĞSëıË�đĮĔĨĝā°ķśŞĽŖŜV

Ī°ŅŐĽļŖŜVıñĨĮ\¶ĝ-ČęāÀð\¶Īe�ļőŔŚŞļŖŜ\¶Ğß�ıÑ

ĨęĄĮĂĥĔā�y�¯¾½ĪŊŞńĵŜĸĝīĮáã�ŋijŜ\¶Ğß�ıÑĨęĄĮş7

7ŠĂ

ž

7.

ž

(5) ŗĶłŞ

gHwĞ�c$5ğā"e�ĉ�}�ĝà�ĐęĄĮĂĎĞĔĨJAXAĚğāŇŃōŗŞŗ

ĶłŞı�ĄęÖä}�ı»�ĐęāēĞ}�X<ıĩěĝ�}��cıázđĮ\¶Ğ�

 ı�]ĐęĄĮĂnŇŃōŗŞŗĶłŞğāÆ?­ŚŞĻıA}�ĝbMĐęāA}�ĝ�Ó

đĮķĴśŀř¦CĝīĮd�ı'�đĮĎěĝīĭāŇŃōŗŞ�oĝ;ĘĊÖfĞ}�ı»

�đĮ¸®ĚăĮĂĐĔĉĖęānŇŃōŗŞŗĶłŞĞ»�±�ğA}�ĞķĴśŀř¦CĞ

Ýĝ�DđĮĂnŇŃōŗŞŗĶłŞıG� đĮĔĨĝğāv��Ĝ»�±�ı¿�đĮU

¹ĉăĭā²Ê�ĞķĴśŀř¦CĞJR¡ı»�ĐęŅŞŁŎŞľđĮĎěĉxĈĒĜĄĂ

ò

ž

8. JAXA

ž

9.

ďĬĝānŇŃōŗŞŗĶłŞĞw±-�qěĐęā�O�Ī�jĞr�[�ĉ��ďįęĄ

ĮĂ�O�Ī�jĝàđĮ�cğā«KeĎēNĜĄĩĞĞA�cĝĜĮ(±VĉñċāĥĔ

ēĞ�cı4ÙđĮĔĨĞÔ²�âğ³AĜ¨�_BıĩĔĬđĎěĉăĮĂA}�ÓĞ�Å

^FĞĔĨĝğā'�§ĉŤ§ªU¹ĚăĮĉāŇŃōŗŞŗĶłŞG� Ğåğā}ÄŚŞł

ě,uĝŤÜ ĉYFďįĮĔĨā710ĝ�đtZĝđįĠ|Ì�¥�ĝ�Å^Fw±Ğ

�ĉĚĊĮĂ

ž

10. S S

ž

S

S Ⅱ

(6)

Ⅱ S

S

Kikuchi, 2017

S

11 Ⅱ

11a S 20

S b ] S

11b

ž

ž

11.

ž

Ⅱ S Ⅱ

S

U Clear Air TurbulenceS CAT

S

S

Misaka, et al., 2008 12

SⅡ

S

ž

A

-

ž

12. b

ž

Ⅱ S

Ⅱ S

S

S

S

b

Ⅱ S

13 Ⅱ Ⅱ

S

S

Misaka, et al., 2008 14 −

Misaka, et al., 2012 S Ⅱ

ž

ž ž

13. 14.

-

Inokuchi, H., Tanaka, H., Ando, T., Development of an Onboard Doppler Lidar for Flight Safety, Journal of Aircraft, Vol.46, pp. 1411-1415, 2009.

Kikuchi, R., Real-Time Prediction of Wind Conditions and Atmospheric Turbulence for Safe and Efficient Aircraft Operation, Ph.D Dissertation, Tohoku University, 2017.

Misaka, T., Obayashi, S., Endo, E., Measurement-Integrated Simulation of Clear Air Turbulence Using a Four-dimensional Variational Method, Journal of Aircraft, Vol. 45, No. 4, pp. 1217-1229, 2008.

Misaka, T., Ogasawara, T., Obayashi, S., Yamada, I., Okuno, Y., Assimilation Experiment of Lidar Measurements for Wake Turbulence, JSME Journal of Fluid Science and Technology, Vol. 3, No. 4, pp. 512-518, 2008.

Misaka, T., Holzäpfel, F., Hennemann, I., Gerz, T., Manhart, M., Schwertfirm, F., Vortex bursting and tracer transport of a counter-rotating vortex pair, Physics of Fluids, Vol. 24, pp. (025104-1)-(025104-21), 2012.

ž

-

1 H

Ⅱ S H G-H

ò

ò7ţ÷òòüöĀò?»ò

G-H S G(G-G

S S

G-G S S S δ SⅡ

G-G S S S (DAS : Diamond Air

Service, inc.) SG-G S

S

DAS SG-G G-H S S S

S G-G S S Ⅱ S

Ⅱ SG-H Ⅱ

-

ò

ò7Ťšò üöÿò?»ò

S Ⅱ DLR : Deutsches Zentrum für Luft-und Raumfahrt SⅡ

I(G-I)

ò

ò

-

G-H G-G S

ò·ţò üöĀěüöÿĞw�Ã�òò

G - lV G - ll

Rolls-Royce Tay Mark 611-8 Rolls-Royce Spey Mark 511-8

6,282 kg (13,850 lbs) 5,171 kg (11,400 lbs)

26.92 m (88 ft 4 in) 24.36 m (79 ft 11 in)

23.72 m (77 ft 10 in) 20.98 m (68 ft 10 in) 7.45 m (24 ft 5-1/8 in) 7.47 m (24 ft 6 in)

10 8 A 0.9 m (W) x 1.6 m (H) (36 in x 62 in) 0.9 m (W) x 1.6 m (H) (36 in x 62 in)

2.23 m (7.3 ft) 2.23 m (7.3 ft)

13.75 m (45.1 ft) ( : 8.2 m (321.6 in))

11.98 m (39.3 ft) ( : 6.5 m (255.5 in))

1.88 m (6.17 ft) 1.86 m (6.1 ft)

Mach 0.88 Mach 0.85

926 km/hr (500 kt) 907 km/hr (490 kt)

852 km/hr (460 kt) 815 km/hr (440 kt)

833 km/hr (450 kt) 796 km/hr (430 kt)

13,716 m (45,000 ft) 13,106 m (43,000 ft) 13.716 m (45,000 ft) ( )

6,500 7,000 km (3,500 3,800 nm) 3,700 4,000 km (2,000 2200 nm)

1,800 m (5,900 ft) 1,800 m (5,900 ft) 16,542 ℓ (4,370 US gal) 13,128 ℓ (3,468 US gal)

33,838 kg (74,600 lbs) 28,123 kg (62,000 lbs)

29,937 kg (66,000 lbs) 26,535 kg (58,500 lbs) 3,000 kg (6,600 lbs) 2,475 kg (5,460 lbs)

28 VDC 200 A 115 VAC 60 Hz / 400 Hz 8 kVA

28 VDC 160 A 115 VAC 60 Hz / 400 Hz 7 kVA

üöĀğāşüöÿĝ|ģŠÏRõñRõ²¬Éæ¡ĞV±ĉñċākĝāw�ľŏŞľõŏĶśŞŇõŕ

ŞĻ��(±é�ĩAĊĄĞĚāīĭ²�w»�ĝ×ĐĔw�ĚăĮĂò

ò

Ⅱ S

S S

Ⅱ SⅡ

S SⅡ

S , ,Ⅱ S S

-(

S b ,

, S

G-H S S Ⅱ

, b SDAS S G-G ] S ,

S , , , , , ,

S G-H S

S G-G

S G-H S G-H Ⅱ

ò

ò

ò7ť÷òòüöÿw�»�ļľńŒ`Í?»7òò

ò ò

-)

ò

ò

ò

ò

ò 7Ŧ÷ò üöÿ}Ä»�w3s¹òşţøŤŠòò

-

ò

ò

ò

ò

ò

ò

ò

ò

ò 7ŧšüöÿ}Ä»�w3s¹òşŤøŤŠòò

ò ò

-

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò7Ũ÷ò üöĀw�ľŏŞľěw3Û®òò

1.88mž

2.23mž

1.24mž

0.43mž 0.37mž

1.05mž 0.55mž

ěƎƄƈưž

ƈƄƈƉưž

ƇƄƎƎưž

ž

ž

ž8.2m

ž   7 + 7 )ž

0.72mž

0.58mž

ž

ž

1.05mž

ž

ž

ž   10 4 ž

ž

0.58m× 0.72m× 1.24m

( ) ž ( ) ž

-

ò

ò

ò7ũ÷òüöĀaÐĶœŞĽòóùøúòŇśŃōŀŜŅļŔŞŁŞôòò

ò

ò

ò7Ū÷òüöĀaÐĶœŞĽòóŤøŦò@��ŐŃŇôòò

ò

G-lV V

G-lV

--

ò

ò

ò7ū÷òüöĀaÐĶœŞĽòóťøŦò»�ōśŞŌôòò

ò

ò

ò

ò

ò

ò

ò

ò7ţŢ÷ò òüöĀaÐĶœŞĽòóúøúò A}&�ňĿřôòò

ò

G-lV

G-lV

G-H S S S

] S S

( )

S b S b

S S

ò

G-G S , , , ,

S S b G-H

] SG-G

S S S S U

S

S ] S S

S S b

S S S

S

S

]

S 124 S

S S

21 SⅡ 21

S

S S

-H Ⅱ G-H G-G

1.75 Ⅱ S S S

S S

ò

ò

ò7ţţšò)î»�ĝćČĮ*��Ğ�®à�òò

ò ò

��� ��

��21�

��

124�

����

�����

��� ��

������ �����

�����

������

������

ò

7ţŤšò üöÿĝīĮ²�w»�ĉ��(±Ĝ�8Ğ��ò

G-lV

G-

lV

ò7ţťšòïµX<!óûýþô%ġ£�¤6òò

ò

7ţŦšòüöĀïµ(±ķŘĴò

FIR : Flight Information Region ACC : Area Control Center

FIR

+

- +

G#lV ( ) E A +!-E A +!

( , A )

A

AB

I

��

IA

V

W

(

2015 10 S

Ⅱ 3S 1

] S S

S S S ⅰ S S NICT

S

S Ⅴ

50 JAXAⅡ

S Ⅱ

S Ⅱ SⅡ

S

S S S S S

S S S S S

SⅡ S Ⅱ

SJAXA Ⅱ

1. Ⅱ ] S

)

S S

S

S Ⅱ

S b

S S Ⅱ b

S SⅡ

SⅡ

S

10 Ⅱ

S S

b S

SEUFAR European Facility For Airborne Research EU 15

43 Ⅱ S

EUFAR S Ⅱ S

2. ]

S

ƿž

ž ž

 

S

S S ⅰ S S

NICT

10 S

S

S 2

V WG SⅡ

VⅡ WG S

WG SⅡ

− Ⅱ

S

Ⅱ S Ⅱ

Ⅱ Ⅱ

S S S

10 S

S S Ⅱ

b S i

Ⅱ S U

NASDA/JAXA Ⅱ

S S SⅡ

S S S S

S S S S

S S

Ⅱ ]

Ⅱ !

(1) Ⅱ

2021 2030 Ⅱ Ⅱ S /

S Ⅱ S

Ⅱ S S S

S

SⅡ Ⅱ

S S S S

S PMS S

Ⅱ SⅡ

U S Ⅱ

Ⅱ S S

(2) Ⅱ

Ⅱ Ⅱ

Ⅱ S Ⅱ

S

!

Ⅱ S

S Ⅱ

S S

-

ž

žž

ȭ&ÍĹž

ȞÑĨČŁž

e±ĸāº��ž

ĶãkþĪĒÑǗǟǢĶãŹĮe±Ȋțȟž

ž

ĶãŹĮe±ǗFlj©¤�5nƀƘƠƕǖǕȡƾÑ�ŖþȞ�į©¤ĞĥȠƓƐƠǖǕȡƾȖȟdzȟƀĊđħȡǘ�0*�ž

ž

ž

©¤�5nž Ñ�ŖþȞ�į©¤Ğĥž ȖȟdzȟȠ#NǘĊđħȡž

ž

Ń®žž

žž

ž

ıĦ?>ž ıĦ¥)ž

ž

ĶãĔ�ǃž

ž

ıĦ¥)

žıĦ?>ÐçȀȟǻ>��Vž

ž

¢)žž

ž

Ķãe±ĸāºȧĪĒÑĶãǘ%gƾıĦƾĶãe±�ŶǤĺōnjǐU¯ºžǧȜǻȊǨȟǶŃ®�ńȧĶãıĦǗĪĒÑǘ.ěƀĶãıĦȯȰȱȮȯƾŮæĖȡǤ<¶NjǎĪĒÑĶãǗřnjǐž

ıĦǤIJ�ǍǢç ǔnjǒȖȟdzȟȤ©¤�5nȤÑ�ŖþȞ�į©¤Ğĥǘ�ħǓĮDŽžǧȜǻȊǨȟǶČŁ�ȧIJ�NjǣǐĶãıĦǘ3�ǤČŁnjƾdnjǐ²¸ǗĶãLJǓLjǢdžȖȟdzȟȤ©¤�5nȤžžžžž

Ñ�ŖþȞ�į©¤ĞĥLJČŁȞ+dǍǢǐǝǗĮDŽž

ž

3. Ⅱ

/ (1)

!

SⅡ Ⅱ

ž

ž

ĶãǘŀĝǶǰǵȕȟșČdž

ǧȜǻȊǨȟǶŃ®�ńȠĶãȥȝ½/žȩ©¤�5nȡž

�V¢�Ȟ�į©¤ž

ĶãǶǰǵȕȟșǘĕ�ÒŃ®ž

ĶãŒV��ž

�ÆVHº��ž

ȀȟǻȍȟǶ6ž

ȞĶãe±ĸāºž

ž

ž

ĶãŹĮž

ȭç žȞĶãŹĮžȞô�ljž

��NjǣǐĊđłŷƅĶãy¿Ã�Ė¢čžĶãkþĪĒÑǔĶãÑJǔǘž

S

Ⅱ S S (2)

ADCSTATSPOS

(3)

Ⅱ S

Gulfstream IV G-IV

Ⅱ MRJ Mitsubishi Regional Jet S

S G-IV

G -IV S

SMRJ Ⅱ 7000km ] S

2 S 8

80-100

2 S 200

SⅡ S

S S S

S S S10 155

S

S

S Ⅱ S S

S S b

S

S

S Ⅱ S S

S S b

2. G-IV 200

10 S 155 1A / 3

52 4 S 3

2 3 2 5 3

2 3

2 3

86

5 .2 13 0

4S 2786 5 3

0 09

.

H D

(

3. Ⅱ 1 3

]

Ⅱ Ⅱ S

JAXAⅡ ] Ⅱ

S S ]

S ] S

S

S S

JAXAⅡ Ⅱ ]

S

00

( 0 79

G d ,

8 7 88 7 8 7

8 7

(  

  $$.15 $ $ $$$.15H $H $ 0

a a H 0 $  

H $n /1625463H$ $ ni H ,$ Mn

gH$ n

H $ $l

 

Ⅱ Ⅱ

òzž

ǐǢe±Ñţ

ĶãǭȔȜȎȟȜ

¸ÀȞW�ž

ĪĒÑǔǖãdŵĆž Ĵǖ�Æž

ÕŅĊ

ƞƐƒƔƃƊž

ƇƏƏƍž�žƇž½žǯǥȑž

ƠƸƪƧƳƭƱƬƪƱžƛƪƳƯƭƱƪƃƽž

ǩǥțǺșƾǪǺȜž

�òzTǘ�mę`Šć*

xǤãdž

ÕŅĊƾƒƠƗƟƝž

ƞƐƒƔƃƋſƌž

ƇƏƏƍž�žƏƃƇƆž½ƾƇƏƏƎž�žƏƃƇƆž

½žǪȟǶȁȗȘǥƃǫȘȐȜǻ

Ȝž

ƕƲƮƮƪƳƃƕƈƍž

ǩǥțǺșƾǪǺȜƾȪȫž

ǫȘȐȜǻȜÌÅìíǗǟǢñ

ůę`ǘĞ�ķ´ž

ƜƐƠƓƐƂžE@o]b

ƑƗƑƚƔƃƐž

ƇƏƏƎž�žƏƃƇƆž½žǧȜȂȅǴǥž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

ǪǺȜƾēĜŝ6õž

ŭǓý�njǐƜƝƹžLJòzǘǪ

ǺȜǤý�njǒǃǢNJǔǤĄĵž

ƜƐƠƓƐƂžE@o]b

ƑƗƑƚƔƃƑž

ƇƏƏƏž�žƎƃƏž½žǪȟǶȁȗȘǥž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

ǪǺȜƾēĜŝ6õž

7śǪȟǶȁȗȘǥǘȆǧǪȐ

ǶóðǘǪǺȜý�Ǜǘ�Ŵž

Ǥľ�ž

ƜƐƠƓƐƂžÄ�]b

ƑƗƑƚƔƃƒž

ƈƆƆƆž�žƇƈž½žǪȟǶȁȗȘǥž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

ǪǺȜƾēĜŝ6õž

òzǘŭǘ9�ȊȗǾǴȕǂ

ǐǡǘēĜŝ6õǘý�şǤž

�dž

ƘƐƛƠơƔƒȢƒƟƚȢƜƗƔƠž

ƞƐƚƐƢƈƆƆƈž

ƈƆƆƈž�žƇƈž½ž

ij^~Þž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

ȂțǾȌǺȜȀƾŬȚȟǼƾȗǧ

Ǽž

ĊđīǀǜǠǃǁǔǘDÀǗǟ

ǢòzàÞ�ǘZĂp[3

ǘ�£ž

ƘƐƛƠơƔƒȢƒƟƚȢƜƗƔƠž

ƞƐƚƐƢƈƆƆƊž

ƈƆƆƊž�žƉž½ž

ij^~Þž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

ȂțǾȌǺȜȀƾŬȚȟǼƾȗǧ

Ǽž

ĊđīǀǜǠǃǁǔǘDÀǗǟ

ǢťÖǴǶǿȑüZWǘ�£ž

(

ž

ƘƐƛƠơƔƒž ƖƶƯƫƴƵƳƪƧưƃƗƗž P�ȚȟǼǔǘDÀǗǟǢťž

ƞƐƚƐƢƈƆƆƋž ȂțǾȌǺȜȀž ÖǴǶǿȑüZWǘ�£;ǚž

ƈƆƆƋž�žƌž½ž Ñ3ąĶãȀȟǻD6ǧȜȇž

ij^~Þž ǮȁǘòzdžǠ�ģ�Ǜǘ�ž

§ž

ƘƐƛƠơƔƒž ƖƶƯƫƴƵƳƪƧưƃƗƗž ĊđīǀǜǠǃǁǔǘDÀǗǟž

ƞƐƚƐƢƈƆƆƎž ȂțǾȌǺȜȀž ǢȒǹjßĚüZWǘ�£ž

ƈƆƆƎž�žƌž½ž ij^~Þž

ÕŅĊž ƓƚƟžƕƧƯƩƲƱž BŸ¼řĶãÜǘ¾2�ǘž

ơƃƞƐƟƒƈƆƆƎžƀĎĊŇǀĪž ȂțǾȌǺȜȀž ľ�ž

ĒÑǤþǃǐ1bȞò1bž ȗǧǼȟž Wǘć�ĶãǗǟǢBŸǘž ãAĨ�ǗţǍǢĊđǁƁž ƈƆƆƎž�žƎƃƏž½ž ij^~Þž ƘƐƛƠơƔƒž ƖƶƯƫƴƵƳƪƧưƃƗƗž #úűŰ1Ŭķ!ȓȀșž

ƞƐƚƐƢƈƆƇƆž ȂțǾȌǺȜȀž ȠƜƗƒƐƛȡǗǟǢçȘǥșǻǧž

ƈƆƇƆž�žƌž½ž ȑVeźǔǘÔŌÍĽž

ij^~Þž

ž

�ģ�ž

ĶãǭȔȜȎȟȜž

¸ÀȞW�ž

ĪĒÑǔǖãdŵĆž Ĵǖ�Æž

ƜƐƠƓƐƂžÄ�]b

ƞƔƐƒƔƃƐž

ƈƆƆƈž�žƇž½ž²Âŏàž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

ǪǺȜƾēĜŝ6õž

(aǘǥǵǥ]ŧdžǠǘÙÇž

]ÕǘŎőğŋȞ*xǔǪǺ

Ȝý�Ǜǘ�Ŵľ�ž

ƜƐƠƓƐƂžÄ�]b

ƞƔƐƒƔƃƑž

ƈƆƆƈž�žƊƃƋž½ž²Âŏàž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

ǪǺȜƾēĜŝ6õž

·aǘǥǵǥ]ŧ�ǘÙÇõ

ňǘĩĀjßOǛǘŎőǔǪž

ǺȜý�Ǜǘ�Ŵľ�ž

ƘƐƥƐƂžÄ�]b

ƞƔƐƒƔƃƒž

ƈƆƆƊž�žƉž½ž²Âŏàž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

ǩǥțǺșƾǪǺȜž

]Õ�ǓǘȋȗǾǮǫȟȏȜǘ

[ňŗďǘķ´ž

Ä7]bž

]ÕǘdÀDzȜȌȘȜǯž

ƇƏƍƏž�ƃž

²Â�Ēž

mRÑȠǸǶȃȨȡDžǟǚžƛƓƃž

ȦȨž

âf2ÆÕ�ž

ƒƝƈžǤ_ǝǔǍǢâf2ÆÕ

�DžǟǚǏǘD��ǘŻ�,

ǘ¸Ţ[3ƿƒƝƈžǘĪĒÑĶž

ãǓǙ�Ă¼šȚDZȟȂƿž

)

ž

ÕŅĊž

Ď�ŇǀťūÑÏǁž

ƇƏƏƉž�žƇž½ž²Âàž

ƑƈƆƆơž

Ŭõûž

²Âà�ǗĄýǍǢťūŬǘ

ťÖÑÏǔ�vŃėǘAĨ�ž

Ǥľ�ž

ÕŅĊ

ƘƐƒƒƠž

ƇƏƏƋž�ȬƈƆƆƆž�h�Àž

²ÂàƾÄǴȃàž

ƑƈƆƆƂžƒƊƆƊž

Ŭõûƾ«lž

Ŭǘ%śÏœǔǏǘ«lö�

Ǥľ�ž

ÕŅĊž ƛƢƃƈƂžƑƈƆƆž qr�ťūŬǘťÖÑÏǘž

-ÈǼȑ$DĊđǀqr�ťž Ŭõûž ķ´ǔ�vťūǘAĨ�ľ�ž

ūŬǁž ƇƏƏƎž�ȬƈƆƆƈž�h�Àž Ât�śž ÕŅĊƾE@o]bƾƜƗƒơƾž ƑƈƆƆƾƖƃƗƗƾƒƭƵƧƵƭƲƱžƣž (aaėŸ¸DžǟǚÊŪÀǗž

ŤíĎĊž ŬõûƾŬȚȟǼƾȂțǾȌǺž )ùǍǢĞĥ6njǐjßŬǘž

�ăǀȒǹjßĚǁž ȜȀƾȐǧǮțÝ«lĸž %śÏœǘķ´ž

ƇƏƏƏž�ȬƈƆƆƉž�h�ÀȠ²Âž àȡȞ¹�ÀȠÄǴȃàȡž

ÕŅĊž ƑƈƆƆơƾƛƢƃƈƾƛƪƳƯƭƱƃƊž qr�ťūŬǘťÖÑÏǘž

Ď�Ňǀ�vťŪȞťūǁž ŬõûƾǩǥțǺșƾǴȟȀǦž ķ´ǔ�vťū�įǘŻ�6ž

ƈƆƆƍž�ȬƈƆƇƆž�h�ÀȠÂtž Ȝǯž Džǟǚ¹�ÀKN�ĒǗdždžž

�śȡȞ¹�ÀȠKNȡž ǢŬǘťÖÑÏǔ�vťŪǘž

AĨ�ľ�ž

Ä�]bȞĬS]bȞųNž ƙƭƱƬžƐƭƳž ·aǘǥǵǥ]ŧdžǠǘ�ïž

ƖƗƠơž ǩǥțǺșƾŬõûƾ�şÕž ʼnæǩǥțǺșǘŎőȞŦ:ž

ƐƃƕƝƟƒƔƃƈƆƆƏž �ž ŗďǔǏǘŬõû�Ŵľ�ž

ƈƆƆƏž�žƊž½žÄǴȃàȞżàž Ä�]bȞĬS]bȞÕŅĊž ƙƭƱƬžƐƭƳž (aȞ³·aǘǥǵǥ]ŧdžž

đ�ž ǩǥțǺșƾŬõûƾ�şÕž Ǡǘ�ïʼnæǩǥțǺșǘŎž

ƐƃƕƝƟƒƔƃƈƆƇƉƤž �ž őȞŦ:ŗďǔǏǘŬõû�ž

ƈƆƇƉž�žƈƃƉž½žÄǴȃàȞżž Ŵľ�ž

àž Ä�]bȞĬS]bȞÕŅĊž ƙƭƱƬžƐƭƳž \aǘŽêĠßTDžǟǚ7ijž

đ�ž ǩǥțǺșƾŬõûƾ�şÕž ^~Þǘ�pŬǔǩǥțǺșž

ƐƃƕƝƟƒƔƃƈƆƇƉƠž �ž ǘ�Ŵľ�ž

ƈƆƇƉž�žƍž½ž�BÚȞ7àŘž Ä°Úž

ž

Żģ�Ξ

ĶãǭȔȜȎȟȜž

¸ÀȞW�ž

ĪĒÑǔǖãdŵĆž Ĵǖ�Æž

NĔÎPĊđ�ž

ƐƐƛƞž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

NĔÎPĊđ�ž

ƐƐƛƞƃƈž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

ž

NĔüZĊđ�ž ƗƚƃƇƎž ǴȍȘǥäPzǞǬǶÿdžǠž

ǴȍȘǥâf2ÆÕ�Ķãǭž âf2ÆÕ�ƾD��ƾǪǺž ǘȒǻȜĄýşǘ�dǞĄýž

ȔȜȎȟȜž Ȝž æödƿÌÅǘžCO2žG=ƿž

ƇƏƏƈƃƇƏƏƊžǘ\až ǴȍȘǥ#Tž NĔüZĊđ�ž ƐƱƃƈƊƂžƐƱƃƉƆƂžƐƱƃƈƂžƚƃƊƇƆƂž âf2ÆÕ�ǘŻ�,aėž

ǴȍȘǥâf2ÆÕ�dÀĶž ơƶƃƇƉƊž [3Ǟğ�[3ƾǖǠǚǗ]ž

ãž âf2ÆÕ�ƾD��ž ŧǔÛsTǘwǤ´ǠdžǗnjž

ƇƏƏƉƃž ǐƿž

ƠƶƳƬƶƵƂžƜƲƷƲƴƭƨƭƳƴƮƂžƦƧƮƶƵƴƮž

ž

ǯțȟȆșž

ĶãǭȔȜȎȟȜ

¸ÀȞW�ž

ĪĒÑǔǖãdŵĆž Ĵǖ�Æž

ÕŅĊ

ƗƜƠơƐƒƃƇž

ƇƏƎƏž�Ɖž½ž²ÂƼǧȜȂȅǴ

ǥž

ƠƸƪƧƳƭƱƬƪƱžƛƪƳƯƭƱƪƃƽž

ǩǥțǺșƾȒǻȜƾƜƝƾǪǺ

Ȝž

�śjßOȠŻ�žƊƄƋƮưȡǘǩ

ǥțǺșĞ�ǘģ�*xǤã

ÕŅĊ

ƗƜƠơƐƒƃƈž

ƇƏƏƆž�žƈƃƉž½ž7ģžƌƋƻƃ8ž

ģžƌƋž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

ǩǥțǺșƾǪǺȜž

àYę`ǘ�śjßOǛǘ

ŎőǤĄĵž

ÕŅĊ

ƗƜƠơƐƒƃƉž

ƇƏƏƇž�žƈž½ž7ģžƌƋƻƃ8ģž

ƌƋƻž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

ǩǥțǺșƾǪǺȜž

�ś�pOȞ�śjßOǓǘ

ǩǥțǺș*xǘãdž

ÕŅĊƾƒƠƗƟƝž

ƞƐƒƔƃƇƃƉž

ƇƏƏƊž�žƇž½ƃƇƏƏƌž�žƍž½ž

ȒșȏșȜƃ�Bž

ƕƲƮƮƪƳƃƕƈƍž

ǩǥțǺșƾǪǺȜƾƒƝž

ij^~ÞTĩĀjßOƀŻ�

ƋƃƌƮưƁǘǩǥțǺșę`ë

�ȞĞ�*xǤaė,Ǘãdž

ÕŅĊ

ƞƐƒƔƃƍž

ƈƆƆƆž�ƈž½E@oƃǥȜǫȚǵž

ƃǯǥȑž

ƖƶƯƫƴƵƳƪƧưƃƗƗž

ǩǥțǺșƾǪǺȜƾƒƝž

OĂŲ�ŏǘžƒƝȞǩǥțǺș

Ǥãdž

ÕŅĊđ�ž

ƘƐƚžĶã

ƇƏƏƉƃƈƆƆƋž

²ÂƃņtŢž

ƑƲƪƭƱƬƍƊƍž

âf2ÆÕ�ž

�ĒǗDžljǢģ�,ǘâf2

ÆÕ�ĶãǓǙ�Ă¼šƿî

Ĝ�üƾÌÅìíƾİµÍĽž

ǖǕǘ�Æƿž

NĔüZĊđ�ƾÕŅĊđ�

ƒƝƜơƟƐƗƚž

ƈƆƆƋƃž

²ÂȣÓtƾǥǵǥƾǪǸǥȄ

ǥƾ7�ĘŢž

ƑƲƪƭƱƬƍƊƍƃƊƆƆž

ƑƲƪƭƱƬƍƍƍƃƈƆƆž

âf2ÆÕ�ƾD��ž

îĜ�üķ´ƾȓȀșǘÍ

Ľƾ]ÕŎőȒǫȄǷȑǘķ

´ƾݵĶãǘÍĽƿž

òzž

ǐǢe±Ñţ

ĶãǭȔȜȎȟȜž

¸ÀȞW�ž

ĪĒÑǔǖãdŵĆž Ĵǖ�Æž

ƓƝơƠơƐƟž ƐƠơƟƐžƠƞƥž ȂțǾȌǺȜȀǘĶãȀȟǻǤž

ƈƆƆƉž�ǟǡž ȂțǾȌǺȜȀž �þǍǢNJǔǗǟǡÕŅ�ǘž

ij^~Þž #úȓȀșǗǟǢBŸŕŋž

ãLJªInjǐƿž

ž

�ģ�ž

ĶãǭȔȜȎȟȜž

¸ÀȞW�ž

ĪĒÑǔǖãdŵĆž ²ÂǘĊđħǗǟǢĴǖ�ž

Æž

ƜƐƠƐžƞƔƛƃƤƪƴƵžƐž

ƇƏƏƇž�žƇƆž½ij^~Þž

ƜƐƠƐȤƓƒƃƎž

ǪǺȜƾēĜŝ6õž

]ŧ�ƾ�ģ�àÞ�ƾòzž

�ǘCĐĒÕX�ǓǘēĜ

ŝ6õǘ~Qą¡!Ǥķ´ž

ƜƐƠƐžƞƔƛƃƤƪƴƵžƑž

ƇƏƏƊž�žƈƃƉž½ij^~Þž

ƜƐƠƐȤƓƒƃƎž

ǪǺȜƾēĜŝ6õž

ġ<��ēĜŝ6õžƜƝƺžǘž

Ï�ÔøǤķ´ž

ƜƐƠƐžƠƝƜƔƥž

ƇƏƏƍž�žƇƆƃƇƇž½7]ijÞž

ƜƐƠƐȤƓƒƃƎž

ǪǺȜƾēĜŝ6õž

ĪĒÑǘ�ÕǬǶǗǟǢ]Õž

�ǘēĜŝ6õǞ�ę`­

ë�Ǜǘ�ŴǤľ�ž

ƜƐƠƐžơƟƐƒƔƃƞž

ƈƆƆƇž�žƈƃƊž½ij^~Þž

ƜƐƠƐȤƞƃƉƑž

ǪǺȜƾēĜŝ6õƾǩǥțǺ

șž

ēĜŝ6õǞċżŝ6õǘ

]ŧdžǠǘŎő2øǤdş6ž

ž

Żģ�Ξ

ĶãǭȔȜȎȟȜž

¸ÀȞW�ž

ĪĒÑǔǖãdŵĆž Ĵǖ�Æž

ƜƐƠƐžƠƝƚƣƔž

ƇƏƏƏž�žƇƈž½ƃƈƆƆƆž�žƇž½ž

7ÎOž

ƜƐƠƐȤƓƒƃƎž

ǪǺȜƾēĜŝ6õž

Î�pOŬǘ��ǔĭ�Ǘǟ

Ǣ�pOēĜŝ6õǘŻ�ž

°Fǘ&*Ŝŗďǘķ´ž

ƜƐƠƐžƐƟƒơƐƠž

ƈƆƆƎž�žƊž½Džǟǚžƌƃƍž½ž

ƜƐƠƐȤƞƃƉƑž

ȋȗǾǮǫȟȏȜǖǕž

ǴȍȘǥǘȆǧǪȐǶóðǞ

ǥǵǥǘ�ïʼnæǩǥțǺșž

ǘ7ÎTǛǘ�Ŵľ�ž

ž

-

4. . Ⅱ 8 . 5

JAXA Ⅱ Pi-SAR-L2

JAXA/EORC HP http://www.eorc.jaxa.jp/ALOS/ra/jra5_mem_pisarl2.htm

�QÊZs �Q�*A)Ë�

JGI%�c^]�c� ¨¢£®Zs

izV�>�;\©�o¦71Gf[©

½¸ÃƱ�

c*Ê �@L �cf[=� %�S|dc*¨¢£®Pi#SAR#L2!! ¦ �ÅȹBË� ¯j¡¥��g§?xDC;\©�o�

SA9�����(PolSARE�»� ���{L2SARl�¯j¡¥_.y>�¨�¤���Ä _.y>�Ë� ®qt�

SARh����(I!nSAR°Ä²Ã¶� $�]SAR»È¸¯j¡¥8w4 �#�A);ÁË� \©�o�

SARh�� (I!nSAR°Ä²Ã¶� Pi#SAR#!2»È¸¯j¡¥ �DEMºÈ¸¬ W#ÁË� �¯>�¤®¥«©�K;\©P��

�Q�(PolSARE�»ÄÌ��Q�*A)Ë� ^]¨­®"*� P�;\©PÉ+�

2054! �- 6� �~��\�ÃÂȼÇ��QÊm� PolSARl��� Pi#SAR#L2¨­®m�e�� ©��¢­ª��·Æ´Æ±<�·Æ¸È�Ë� f[=B¨�¤®qt�

c�Ê�0R�©#�>� �� Pi#SAR#!L2»È¸¯j¡¥0� ©Â»Ä�¦|&� ·! DSM»È v¦©��Ë� dc*©=B�

SARI�����(l!nSAR°Ä²Ã¶� Pi#!SAR#L2! 1J!¿È¼¾µ3`¨­® W#��©ÁË� P�{�©���

2058!!83!X�U�� '(}uqt�oTR�

� �jÇ� ��(!PolSAR!l��� �&·!DSM»È¸v¦©��Ë�

/��{SAR¦�&·Æ³»È¸¯j¡¥� ����v¨�¤®qt�

2048! � J�%&�

2049!�

�k�b�

��v,�&N�

2050!�

������

2051!�

p!�1��

��%&�

205!2!�

%��Fn�

Exehs!VI!S!O5r�

2053!�

a��&�

205!5! � 3M%&�

2056!�

HÀ :��

GI�YO5r�

0.9 b

Q

A S S

S

] Ⅱ S

S Ⅱ

S Ⅱ

Q Ⅱ JAXA Ⅱ

MuPAL

A JAXA MuPAL S

S ] S

MuPAL Ⅱ 1000km

•bS

SJAXA S

S

] SJAXA EORC

Ⅱ S b

SJAXA

NASA SJAXA Ⅱ

EORC S

S b

Q .Ⅱ i Ⅱ

S Ⅱ S

A ] S

S

S

S

S

Ⅱ G-IV

] S U

S S S

S

Q S

A S

S

S Ⅱ

] S 9 .

] S S

S b

9 . ] S

Q S − S

SⅡ

A S

SⅡ

b

S S

(

S S S S

S

S

S S S

S

S S S S S

S S S S S

S

S

S S S

S

S

S S S

S

S S S S S

S

S

S S S

)

G-IV

S S S S

S S S

Exective summary !

Promotion of Research on Climate and Earth System Science by Advanced Aircraft Observations:

Plans for the New Aircraft Program of Japan

Summary of the report of the Aircraft Observation Planning Committee

of the Meteorological Society of Japan (MSJ)

Toshiki Iwasaki (President of MSJ) and Makoto Koike (Chair of the

Committee)

February 14, 2019

1.! Background

The Earth’s environment has been changing rapidly, particularly as manifested by global

warming, and the changes are imposing large impacts on the fundamental structures of our

lives, including socio-economic activities and supplies of water and food. It is critically

important to fully understand the current status of the changes and to investigate the

controlling processes, in order to predict future changes and protect human society and

ecosystems from serious damage. At present, direct atmospheric observations by aircraft

are lacking in important geographical regions; they are needed for understanding

greenhouse gases, aerosol-cloud interactions, and the hydrologic cycle, including

predictions of typhoons and torrential downpours. Japan lacks an aircraft dedicated to

scientific measurements, so Japanese scientists have been obliged to charter commercial

aircraft for their experiments. Therefore it has been difficult to plan and conduct systematic

aircraft experiments, which are indispensable for studies of climate and Earth system

science.

2 Aims of the Program

The purpose of this program is promoting atmospheric and climate research as well as

Earth system science as a whole by introducing aircraft platforms for Earth observations.

We plan to acquire a dedicated aircraft and outfit it with an observation system that will be

designed and utilized by scientists from a variety of fields and institutions on a long-term

basis. Our aim is to enable the systematic planning of next-generation Earth observations

and research activities by operating instrumented aircraft platforms on a long-term basis

and attaining the highest levels of scientific outcome and impacts. We plan to provide

today’s scientists and the next generation of scientists with exciting opportunities to use

aircraft platforms to pursue new scientific ideas and to develop and use new technologies

and methodologies. It is also planned to extend these new research opportunities to foreign

scientists so that this Japanese system serves as a center of research and promotes Earth

observations throughout Asia. The basic scientific knowledge obtained by this program will

be made public in order to contribute to the welfare of world societies. All the processes

involved in this research plan, including organizing scientists and activities, selection and

scheduling of instruments, soliciting proposals, making field measurements, data archiving,

and using the data, will be transparent to all scientific communities.

3 Needs for Aircraft Observations

Japanese scientific communities are successfully conducting Earth observations using

satellite platforms (e.g., GCOM, GOSAT, GPM, and EarthCARE) and successfully

developing and using large complex numerical models of the atmosphere and ocean

supported by large-scale computing systems. However, Japanese aircraft observation

systems are far behind the international standard set by the USA and Europe due to the lack

of dedicated aircraft and the number of suitable payload instruments. Direct atmospheric

observations of gases and aerosols from aircraft using in-situ and remote sensing

instruments are essential to complement those made on larger scales from satellites. For

example, microphysical properties of aerosols, clouds, and precipitation, which can be

measured adequately only by direct aircraft observations, are critical parameters for studies

of the global environment and climate change. Processes critical for reliable predictions of

climate change strongly depend on these parameters. At the initial stage of this proposed

program, we will stress the need for accurate and systematic observations of microphysical

quantities, including the chemical and physical properties of aerosols, the size distributions

of cloud and precipitating particles, and the distribution of greenhouse gases on small to

large spatial scales, in order to yield insights into key processes and ultimately to achieve

scientific breakthroughs. Having more precise, accurate and abundant atmospheric

observations from aircraft will facilitate improvements in satellite remote sensing methods

and contribute to advances in model predictions of global change through improved

understanding of basic processes and more comprehensive comparisons with observations.

4. Important research areas for climate

A.! We consider three areas as priorities for climate science research with instrumented

aircraft platforms:

a)! Greenhouse gases, which drive global warming;

b)! Aerosol, clouds, and precipitation, which are some of the most uncertain factors for

estimating global radiative forcing and the climate response;

c)! Typhoons and torrential downpours, which may have strong impacts on societies as

climate changes proceed further;

These areas have been studied for a long time by Japanese scientists, making strong

links with satellite observations and modeling studies.

B.! Earth system science and disaster prevention Earth observations by instrumented aircraft will promote the wider study of climate

and Earth system science, including the biosphere (terrestrial and marine ecosystems)

and the physics and chemistry of the ocean and sea ice, for which the lack of sufficient

observations by aircraft is limiting scientific advances. Direct observations of

microscale properties, such as vegetation types and the extent and distribution of sea ice,

will enable insightful interpretations of macroscopic properties observed by satellites

and will contribute to improved understanding of basic processes needed for model

development.

Aircraft observation systems (e.g., synthetic aperture radar and gas and aerosol

detectors) will be used to make observations that will help minimize damage from

natural disasters such as earthquakes, volcanic eruptions, tsunamis, floods, fires, and

severe storms, and prevent serious accidents such as pollution of marine ecosystems and

accidents in nuclear power plants.

C. New aeronautical technology for weather observation

Considering that the future aircraft observation of weather, development of the

-

Unmanned Aerial Vehicles (UAV) technology is desired in terms of flight area,

frequency and cost. In collaboration with the Japan Society for Aeronautical and Space

Sciences, UAV observation technology for weather observation/monitoring is planned.

5 Organizations and operations

The Institute for Space-Earth Environmental Research of Nagoya University has established the “Center for Orbital and Suborbital Observations” in order to play a central role in aircraft observations. This center will organize and manage activities related to aircraft observations in close cooperation with scientists from several institutions in Japan, such as the University of Tokyo, Chiba University, the Meteorological Research Institute, the National Institute for Environmental Studies, the National Institute of Polar Research, and the National Institute of Information and Communications Technology.

Operations related to aircraft observations will be supported by companies and

foundations, such as Diamond Air Service Inc. and Japan Space Forum, which are fully

experienced with the operations and management and support necessary to conduct

successful aircraft observation studies. We can receive advice and support aeronautical

section of JAXA on determination of test plan and flight conditions in the flight test to

realize more efficient and safety flight experiment.

6. Planned Aircraft

We plan to use the Gulfstream IV type aircraft as rental from a private company such

as Diamond Air Service. This is the major change from the previous plan issued in

2015: Mitsubishi Regional Jet (MRJ) is the proposed aircraft in the previous plan. The

advantages to introduce Gulfstream IV are longer flight range about 6500 km that is

about 1.5 times longer range than MRJ, and rental cost is much cheaper than the

procurement and maintenance cost of MRJ.