Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title:...

18
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM System] Date Submitted: [September 2004] Revised: [] Source: [Sang-sung Choi, Sang-in Cho] Company [Electronics and Telecommunications Research Institute] Address [161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350 Korea] Voice : [+82-42-860-6722], FAX : [+82-42-860-5199], E-mail [[email protected]] Re: [Technical contribution] Abstract: [This presentation presents the implementation method of IFFT/FFT processor for MB-OFDM UWB system] Purpose: [Technical contribution to implement IFFT/FFT processor proposed for MB-OFDM UWB system] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual or organization. The material in this document is subject to change in form and content after further study. The contributor reserves the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15. September 2004 doc.: IEEE 802. 15-04- 0467-00-003a

Transcript of Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title:...

Page 1: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS)

Submission Title: [Implementation of High Speed FFT processor for MB-OFDM System]

Date Submitted: [September 2004]Revised: []

Source: [Sang-sung Choi, Sang-in Cho] Company [Electronics and Telecommunications Research Institute] Address [161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350 Korea] Voice : [+82-42-860-6722], FAX : [+82-42-860-5199], E-mail [[email protected]]

Re: [Technical contribution]

Abstract: [This presentation presents the implementation method of IFFT/FFT processor for MB-OFDM UWB system]

Purpose: [Technical contribution to implement IFFT/FFT processor proposed for MB-OFDM UWB system]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual or organization. The material in this document is subject to change in form and content after further study. The contributor reserves the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

September 2004 doc.: IEEE 802. 15-04-0467-00-003a

Page 2: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 2Submission

doc.: IEEE 802.15-04-0467-00-003a

Implementation of High Speed FFT processor

for MB-OFDM System

Sang-Sung Choi ([email protected])

Sang-In Cho ([email protected])

E T R I

www.etri.re.kr

Page 3: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 3Submission

doc.: IEEE 802.15-04-0467-00-003a

Introduction MB-OFDM UWB proposal requires high speed IFFT/FFT processors with

128-point computation.

Digital signals processed in IFFT processor change into analog signals

by DAC, and then pass through the sharp LPF to satisfy the transmitting

PSD mask.

- Transmitter using 128-point IFFT processor (DAC speed : 528MHz)

- LPF shape & Frequency spectrum of OFDM signal after DAC

128 point IFFT

S/P P/S

D/A LPF

128-pointComplex data

528Msps528Msps

1056 f [MHz]8.25

012.375

528

Conventional Filter shape

Desired Filter shape

Page 4: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 4Submission

doc.: IEEE 802.15-04-0467-00-003a

The TX LPF is very important to determine the transmit PSD mask of MB-OFDM UWB system, but the TX LPF design is not easy to satisfy the Transmit PSD mask of MB-OFDM.

Two methods are considered to design the TX LPF satisfying the transmit PSD mask.

1) fix 528MHz sampling rate of DAC , and design high order TX LPF

2) increase sampling rate of DAC, and reduce the order of TX LPF

Use 2 times over-sample rate at DAC to design the TX LPF.

- Reduce the order of TX LPF

- It has advantage of the performance compared to method 1).

Presented by DOC IEEE802.15-03/275r0

There are trade-offs between two methods for considering power

consumption and gate size etc.

ETRI is developing a prototype UWB system using 256-point IFFT

processor (DAC speed : 1056MHz)

Introduction

Page 5: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 5Submission

doc.: IEEE 802.15-04-0467-00-003a

Proposed IFFT Processor Approach For easy low pass filtering of 528MHz baseband signal after DAC, we

have to make space between OFDM signals that are repeated in frequency

spectrum, which is accomplished by 128-point zero-padding.

- Transmitter using 256-point IFFT processor (DAC speed : 1056MHz)

- LPF shape & Frequency spectrum of OFDM signal after DAC

256 point IFFT

S/P P/S

D/A LPF

128-point complex data+ 128 zeros

1056Msps528Msps

1056 f [MHz]8.25

012.375

Conventional Filter shape

Desired Filter shape

Page 6: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 6Submission

doc.: IEEE 802.15-04-0467-00-003a

Input data of FFT processor are QPSK modulated 128-point complex

data

Input data of IFFT processor become 256-point that consisted of QPSK

modulated 128-point complex data and 128-point zeros.

- Input data of original IFFT processor (128-point QPSK data)

- Input data of proposed IFFT processor (128-point QPSK data + 128-point zeros)

0 1 2 3 ……………………… 63 64 …………………… 126 127 -64 …………………… -3 -2 -1 0 1 2 3 ……………………… 63 -64 …………………… -3 -2 -1 0 1 2 3 ……………………… 63

f

Frequency Domain

0 1 2 3 ……………………… 63 64 …………………… 126 127 128 129 ……………………… 191 192 …………………… 254 255

-64 …………………… -3 -2 -1 0 1 2 3 ……………………… 63 -64 ………………… -3 -2 -1 0 1 2 3 ……………………… 63

f

Frequency Domain

0 1 2 3 …………………… 63 64 ………………………… 126 127

n128

128-point complex data

0

n128 256

256-point complex data

0

IFFT/FFT Processor Specification

Page 7: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 7Submission

doc.: IEEE 802.15-04-0467-00-003a

Proposed transceiver for MB-OFDM UWB PHY proposal

256-pointIFFT

128-pointFFT

AddZP,

Guardinterval

RemoveZP,

Guardinterval

Time DomainFreq. Domain Freq. Domain

DAC ADC

UWB Channel

TX LO RX LOClipping

Level

1056 MHz 528 MHz

Input : 4 samples/clock

Output : 8 samples/cloc

k Input : 4 samples/clock

Output : 4 samples/clock

Page 8: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 8Submission

doc.: IEEE 802.15-04-0467-00-003a

Characteristics of MultipliersMultiplier is one of the most dominant elements

in FFT/IFFT implementation– Standard 2’s Complement Multiplier

• (W-bit) x (W-bit) = (2W-1)-bit• Many DSP applications need only W-bit products

– Fixed-Width Multiplier• Quantization to W-bit by eliminating (W-1) Least

Significant Bits • Can reduce area by approximately 50% but Truncation

Error is introduced• Proper Error Compensation Bias needed

– Canonic Signed Digit Multiplier

• Constant coefficient• 33% fewer nonzero digits than 2’s complement numbers

– Modified Booth Multiplier• Variable coefficient• The number of partial products has been reduced to W/2• These multipliers can achieve about 40% reduction in area

and power consumption

Page 9: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 9Submission

doc.: IEEE 802.15-04-0467-00-003a

The radix-24 structure of FFT processor

Butterfly(1)

16 Delay TWF

Butterfly(2)

8 Delay TWF

Butterfly(3)

4 Delay TWF

Butterfly(4)

2 Delay TWF

Butterfly(5)

1 Delay TFW

1 2 3 4 52 4 8 16

1 2 3 4 52 4 8 16

N N N Nn n n n n n

k k k k k k

16

5 4 3 2 1

1 1 1 1 1

1 2 3 4 5 1 2 3 4 52 4 8 160 0 0 0 0

( 2 4 8 16 )

N

nkN N N NN

n n n n n

X k k k k k x n n n n n W

1

0

( ) ( )N

knN

n

X k x n W

DFT :

Butterfly(1)

16 Delay W32

Butterfly(2)

8 Delay - j

Butterfly(3)

4 Delay TWF

Butterfly(4)

2 Delay - j

Butterfly(5)

1 Delay W16

Radix-2 structure

Radix-24 structure

CSD multiplier

CSD multiplier

Modified Booth multiplier

Page 10: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 10Submission

doc.: IEEE 802.15-04-0467-00-003a

The structure of 256-point IFFT processor

32-point Radix-24 FFT – P5

32-point Radix-24 FFT – P6

32-point Radix-24 FFT – P7

32-point Radix-24 FFT – P8

S/P

Bit Reverse

P/S

InputData

Output Data

32-point Radix-24 FFT - P1

32-point Radix-24 FFT - P2

32-point Radix-24 FFT - P3

32-point Radix-24 FFT - P4

(124) . . . (8)(4)(0)

(125) . . . (9)(5)(1)

(126) . . . (10)(6)(2)

(127) . . . (11)(7)(3)

32-point Radix-24 FFT structure 8-level parallelism DIF (Decimation In Frequency), SDF (Single Delay Feedback) Fixed CSD & Modified Booth multipliers used

Page 11: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 11Submission

doc.: IEEE 802.15-04-0467-00-003a

The structure of 256-point IFFT processor

Butterfly(1)

16 Delay W32

Butterfly(2)

8 Delay - j

Butterfly(3)

4 Delay TWFROM

Butterfly(4)

2 Delay - j

Butterfly(5)

1 Delay W16

Butterfly(1)

16 Delay W32

Butterfly(2)

8 Delay - j

Butterfly(3)

4 Delay TWFROM

Butterfly(4)

2 Delay - j

Butterfly(5)

1 Delay

Butterfly(6)

W16

Butterfly(7)

Butterfly(1)

16 Delay W32

Butterfly(2)

8 Delay - j

Butterfly(3)

4 Delay TWFROM

Butterfly(4)

2 Delay - j

Butterfly(5)

1 Delay W16

Butterfly(1)

16 Delay W32

Butterfly(2)

8 Delay - j

Butterfly(3)

4 Delay TWFROM

Butterfly(4)

2 Delay - j

Butterfly(5)

1 Delay

Butterfly(6)

W16

- j

Butterfly(7)

Bit Reverse

Unit

Butterfly(1)

16 Delay W32

Butterfly(2)

8 Delay - j

Butterfly(3)

4 Delay TWFROM

Butterfly(4)

2 Delay - j

Butterfly(5)

1 Delay W16-j

Butterfly(1)

16 Delay W32

Butterfly(2)

8 Delay - j

Butterfly(3)

4 Delay TWFROM

Butterfly(4)

2 Delay - j

Butterfly(5)

1 Delay W16-j

Butterfly(1)

16 Delay W32

Butterfly(2)

8 Delay - j

Butterfly(3)

4 Delay TWFROM

Butterfly(4)

2 Delay - j

Butterfly(5)

1 Delay W16-j

Butterfly(1)

16 Delay W32

Butterfly(2)

8 Delay - j

Butterfly(3)

4 Delay TWFROM

Butterfly(4)

2 Delay - j

Butterfly(5)

1 Delay W16-j

Butterfly(6)

Butterfly(7)

Butterfly(6)

- j

Butterfly(7)

…x(8)x(4)x(0)

…x(9)x(5)x(1)

…x(10)x(6)x(2)

…x(11)x(7)x(3)

…v(8)v(4)v(0)

…v(10)v(6)v(2)

…v(11)v(7)v(3)

…v(9)v(5)v(1)

…v`(8)v`(4)v`(0)

…v`(10)v`(6)v`(2)

…v`(11)v`(7)v`(3)

…v`(9)v`(5)v`(1)

…X(48)X(16)X(32)X(0)

…X(176)X(144)X(160)X(128)

…X(112)X(80)X(96)X(64)

…X(240)X(208)X(224)X(192)

…X(49)X(17)X(33)X(1)

…X(177)X(145)X(161)X(129)

…X(113)X(81)X(97)X(65)

…X(241)X(209)X(225)X(193)

Butterfly unit : 48 -j multiplier : 22 CSD multiplier : 16 Modified Booth Multiplier : 8

Page 12: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 12Submission

doc.: IEEE 802.15-04-0467-00-003a

The structure of 256-point IFFT processor

Butterfly(Type 1)

16 Delay W32

Butterfly(Type 1)

8 Delay

Butterfly(Type 2)

4 Delay TWFROM

Butterfly(Type 1)

2 Delay

Butterfly(Type 2)

1 Delay W16

Butterfly(Type 1)

16 Delay W32

Butterfly(Type 1)

8 Delay

Butterfly(Type 2)

4 Delay TWFROM

Butterfly(Type 1)

2 Delay

Butterfly(Type 2)

1 Delay

Butterfly(Type 1)

W16

Butterfly(Type 1)

Butterfly(Type 1)

16 Delay W32

Butterfly(Type 1)

8 Delay

Butterfly(Type 2)

4 Delay TWFROM

Butterfly(Type 1)

2 Delay

Butterfly(Type 2)

1 Delay W16

Butterfly(Type 1)

16 Delay W32

Butterfly(Type 1)

8 Delay

Butterfly(Type 2)

4 Delay TWFROM

Butterfly(Type 1)

2 Delay

Butterfly(Type 2)

1 Delay

Butterfly(Type 1)

W16

Butterfly(Type 2)

Bit Reverse

Unit

Butterfly(Type 2)

16 Delay W32

Butterfly(Type 1)

8 Delay

Butterfly(Type 2)

4 Delay TWFROM

Butterfly(Type 1)

2 Delay

Butterfly(Type 2)

1 Delay W16

Butterfly(Type 2)

16 Delay W32

Butterfly(Type 1)

8 Delay

Butterfly(Type 2)

4 Delay TWFROM

Butterfly(Type 1)

2 Delay

Butterfly(Type 2)

1 Delay W16

Butterfly(Type 2)

16 Delay W32

Butterfly(Type 1)

8 Delay

Butterfly(Type 2)

4 Delay TWFROM

Butterfly(Type 1)

2 Delay

Butterfly(Type 2)

1 Delay W16

Butterfly(Type 2)

16 Delay W32

Butterfly(Type 1)

8 Delay

Butterfly(Type 2)

4 Delay TWFROM

Butterfly(Type 1)

2 Delay

Butterfly(Type 2)

1 Delay W16

Butterfly(Type 1)

Butterfly(Type 1)

Butterfly(Type 1)

Butterfly(Type 2)

…x(8)x(4)x(0)

…x(9)x(5)x(1)

…x(10)x(6)x(2)

…x(11)x(7)x(3)

…v(8)v(4)v(0)

…v(10)v(6)v(2)

…v(11)v(7)v(3)

…v(9)v(5)v(1)

…v`(8)v`(4)v`(0)

…v`(10)v`(6)v`(2)

…v`(11)v`(7)v`(3)

…v`(9)v`(5)v`(1)

…X(48)X(16)X(32)X(0)

…X(176)X(144)X(160)X(128)

…X(112)X(80)X(96)X(64)

…X(240)X(208)X(224)X(192)

…X(49)X(17)X(33)X(1)

…X(177)X(145)X(161)X(129)

…X(113)X(81)X(97)X(65)

…X(241)X(209)X(225)X(193)

…x(8)x(4)x(0)

…x(9)x(5)x(1)

…x(10)x(6)x(2)

…x(11)x(7)x(3)

CSD multiplier

Modified Booth

multiplier

CSD multiplier

Page 13: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 13Submission

doc.: IEEE 802.15-04-0467-00-003a

The structure of 128-point FFT processor

32-point Radix-24 FFT - P1

32-point Radix-24 FFT - P2

32-point Radix-24 FFT - P3

32-point Radix-24 FFT - P4S/P

Bit Reverse

P/SInput

DataOutput Data

(124) . . . (8)(4)(0)

(125) . . . (9)(5)(1)

(126) . . . (10)(6)(2)

(127) . . . (11)(7)(3)

32-point Radix-24 FFT structure 4-level parallelism DIF (Decimation In Frequency), SDF (Single Delay Feedback) Fixed CSD & Modified Booth multipliers used

Page 14: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 14Submission

doc.: IEEE 802.15-04-0467-00-003a

The structure of 128-point FFT processor

Butterfly(Type 1)

16 Delay W16

Butterfly(Type 1)

8 Delay

Butterfly(Type 2)

4 Delay TWFROM

Butterfly(Type 1)

2 Delay

Butterfly(Type 2)

1 Delay W16

Butterfly(Type 1)

16 Delay W16

Butterfly(Type 1)

8 Delay

Butterfly(Type 2)

4 Delay TWFROM

Butterfly(Type 1)

2 Delay

Butterfly(Type 2)

1 Delay

Butterfly(Type 1)

W16

Butterfly(Type 1)

Butterfly(Type 2)

16 Delay W16

Butterfly(Type 1)

8 Delay

Butterfly(Type 2)

4 Delay TWFROM

Butterfly(Type 1)

2 Delay

Butterfly(Type 2)

1 Delay W16

Butterfly(Type 2)

16 Delay W16

Butterfly(Type 1)

8 Delay

Butterfly(Type 2)

4 Delay TWFROM

Butterfly(Type 1)

2 Delay

Butterfly(Type 2)

1 Delay

Butterfly(Type 1)

W16

Butterfly(Type 2)

Bit Reverse

Unit

…x(8)x(4)x(0)

…x(9)x(5)x(1)

…x(10)x(6)x(2)

…x(11)x(7)x(3)

…v(8)v(4)v(0)

…v(10)v(6)v(2)

…v(11)v(7)v(3)

…v(9)v(5)v(1)

…X(8)X(16)X(0)

…X(72)X(80)X(64)

…X(40)X(48)X(32)

…X(104)X(112)X(96)

CSD multiplier

Modified Booth

multiplier

CSD multiplier

Butterfly unit : 24 -j multiplier : 11 CSD multiplier : 8 Modified Booth Multiplier : 4

Page 15: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 15Submission

doc.: IEEE 802.15-04-0467-00-003a

Simulation result of 256-point IFFT processor

128-point QPSK modulated data

+128-point ‘0’

Decimation (2)

MATLAB FunctionFFT(128)

256-point IFFTRadix-24 DIF SDF

(Fixed point)

SQNR calculation

Input Bit resolution : 3 Output bit resolution : 20 Multiplier coefficient bit : 10 SQNR : 52dB

Input Bit resolution : 3 Output bit resolution : 11 Multiplier coefficient bit : 8 SQNR : 30dB

Constellation

Page 16: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 16Submission

doc.: IEEE 802.15-04-0467-00-003a

Simulation result of 128-point FFT processor

128-point QPSK modulated data

+128-point ‘0’

Decimation (2)

128-point FFTRadix-24 DIF SDF

(Fixed point)

MATLAB FunctionIFFT(256)

SQNR calculation

Input Bit resolution : 10 Output bit resolution : 20 Multiplier coefficient bit : 10 SQNR : 52dB

Input Bit resolution : 10 Output bit resolution : 12 Multiplier coefficient bit : 8 SQNR : 30dB

Constellation

Page 17: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 17Submission

doc.: IEEE 802.15-04-0467-00-003a

Summary of simulations

Points Parallel level SQNR (dB) Gate Count

2568 52 about 100k

8 30 about 80k

Points Parallel level SQNR (dB) Gate Count

1284 52 about 50k

4 30 about 40k

FFT processor

IFFT processor

Page 18: Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Implementation of High Speed FFT processor for MB-OFDM.

September 2004

ETRISlide 18Submission

doc.: IEEE 802.15-04-0467-00-003a

Conclusion

256-point IFFT processing for easy Low Pass FilteringParallel structure for high speed signal processingIFFT/FFT processor 32-point radix-24 DIF SDF structure Small area, low power, high speed operation Canonic Signed Digit Multiplier – constant coefficients Modified Booth Multiplier – variable coefficients

IFFT processor FFT processor

Point 256-point 128-point

Parallelism 8 4

Number of input data (sample/clock) 4 4

Throughput (sample/clock) 8 4

Latency (except S/P, reverse unit) 32 32

Number of gates (30dB SQNR) About 80K About 40K