Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

40
December 2004 Akira Maeki, Hitachi, Ltd. Slide 1 doc.: IEEE 802.15-04-0715- 00-004a Submission Project: IEEE P802.15 Working Group for Wireless Personal Area Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Networks (WPANs) Submission Title: [Hitachi Direct Sequence UWB Impulse Radio System ] Date Submitted: [December 28th, 2004] Source: [(1)Akira Maeki, Ryosuke Fujiwara, Kenichi Mizugaki, Masayuki Miyazaki, Masaru Kokubo, (2)Yasuyuki Okuma, Miki Hayakawa, Shinsuke Kobayashi, Noboru Koshizuka, Ken Sakamura ] Company [(1) Hitachi, Ltd., Central Research Laboratory and Advanced Research Laboratory, (2) YRP Ubiquitous Networking Laboratory ] Address [(1) 1-280 Higashi Koigakubo Kokubunji-shi, Tokyo 185-8601 JAPAN (2)28 th KOWA Bldg., 2-20-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141-0031 JAPAN] Voice:[+81 42.323.1111], FAX: [+81 42.327.7849], E-Mail:[a- [email protected]] Re: [Response to Call for Proposals] Abstract: [This document proposes Hitachi, Ltd.’s PHY proposal for the IEEE 802.15.4 alternate PHY standard] Purpose: [Proposal for the IEEE802.15.4a standard.] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the

description

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Hitachi Direct Sequence UWB Impulse Radio System ] Date Submitted: [ December 28th, 2004 ] Source: [(1)Akira Maeki, Ryosuke Fujiwara, Kenichi Mizugaki, Masayuki Miyazaki, Masaru Kokubo, - PowerPoint PPT Presentation

Transcript of Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

December 2004

Akira Maeki, Hitachi, Ltd.Slide 1

doc.: IEEE 802.15-04-0715-00-004a

Submission

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Hitachi Direct Sequence UWB Impulse Radio System ]Date Submitted: [December 28th, 2004]Source: [(1)Akira Maeki, Ryosuke Fujiwara, Kenichi Mizugaki, Masayuki Miyazaki, Masaru Kokubo, (2)Yasuyuki Okuma, Miki Hayakawa, Shinsuke Kobayashi, Noboru Koshizuka, Ken Sakamura ] Company [(1) Hitachi, Ltd., Central Research Laboratory and Advanced Research Laboratory,

(2) YRP Ubiquitous Networking Laboratory ]Address [(1) 1-280 Higashi Koigakubo Kokubunji-shi, Tokyo 185-8601 JAPAN (2)28th KOWA Bldg., 2-20-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141-0031 JAPAN]Voice:[+81 42.323.1111], FAX: [+81 42.327.7849], E-Mail:[[email protected]]

Re: [Response to Call for Proposals]

Abstract: [This document proposes Hitachi, Ltd.’s PHY proposal for the IEEE 802.15.4 alternate PHY standard]

Purpose: [Proposal for the IEEE802.15.4a standard.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

December 2004

Akira Maeki, Hitachi, Ltd.Slide 2

doc.: IEEE 802.15-04-0715-00-004a

Submission

Akira MaekiHitachi, Ltd.

Hitachi, Ltd. Proposal for IEEE 802.15.4a

DS- UWB Impulse Radio

December 2004

Akira Maeki, Hitachi, Ltd.Slide 3

doc.: IEEE 802.15-04-0715-00-004a

Submission

Contents

• DS-UWB IR Proposal

• Details of the System Evaluation

• Location Awareness

• Summary

December 2004

Akira Maeki, Hitachi, Ltd.Slide 4

doc.: IEEE 802.15-04-0715-00-004a

Submission

Direct Sequence UWB Impulse Radio System (DS-UWB IR)

PulseGenerator

PA

Transmitter

PRF=Tens of MHz

t

Impulse Radio

RF

Receiver

BB

DBPSK

PRF :Pulse Repetition Frequency

December 2004

Akira Maeki, Hitachi, Ltd.Slide 5

doc.: IEEE 802.15-04-0715-00-004a

Submission

UWB Pulse and Spectrum

Frequency (GHz)

EIR

P (

dBm

/MH

z)

Example: • 2.5ns Gaussian Pulse• Center Frequency=4.1GHz• 10dB BW=1.4GHz• TxPower (ave.)= - 9.8dBm

Initial Target : Arbitrary Pulse in Low Band (3.1-5.1GHz)

Low Band(3.1-5.1GHz)

-40

-50

-60

-70

-80

-900 1 2 3 4 5 6 7 8 9 10 11

High Band(6-10GHz)

December 2004

Akira Maeki, Hitachi, Ltd.Slide 6

doc.: IEEE 802.15-04-0715-00-004a

Submission

Why DS-UWB IR? • Low Power Consumption : -Very Simple Architecture -Low Rate Sampling ADC : Tens of Msps, 4bits

• Low Cost : -CMOS Implementation is Feasible (Peak Power <10dBm) -Low Band (3.1-5.1GHz)

• High Location Accuracy : -Narrow Pulse (2.5ns) ~30cm in 30m region (AWGN)

• Scalability : by Spread Factor 258kbps @30m (cf. ZigBee 250kbps @30-70m) 10.7Mbps @10m (cf. Bluetooth 1Mbps @10m)

December 2004

Akira Maeki, Hitachi, Ltd.Slide 7

doc.: IEEE 802.15-04-0715-00-004a

Submission

Evaluation Results

• Scalability 258kbps at 30m, 10.7Mbps at 10m in AWGN channel

• Low Power Consumption Tx=30mW, Rx=120mW

• Low Cost CMOS implementation

• High Location Accuracy 30 cm at 30m (AWGN)

x cm at y m (Indoor Residential LOS: CM1)

December 2004

Akira Maeki, Hitachi, Ltd.Slide 8

doc.: IEEE 802.15-04-0715-00-004a

Submission

Benchmark

Hitachi Proposal DS-UWB

IEEE802.15.4 #1

#1: commercial chip example#2: Sampling Rate=64Msps

Data Rate & Range

Power Consumption

Location Accuracy (30m range in AWGN)

10.7Mbps @10m258kbps @30m

Tx: 30mWRx: 120mW

250kbps @30-70m

30cm 2-3m #2

Tx: 50-60mWRx: 50-60mW

December 2004

Akira Maeki, Hitachi, Ltd.Slide 9

doc.: IEEE 802.15-04-0715-00-004a

Submission

Details of the System Evaluation

1. General Definitions2. Signal Robustness3. Technical Feasibility

December 2004

Akira Maeki, Hitachi, Ltd.Slide 10

doc.: IEEE 802.15-04-0715-00-004a

Submission

1. General Definitions

-Overview-Parameters for the Simulations-Scalability-Link Budget

December 2004

Akira Maeki, Hitachi, Ltd.Slide 11

doc.: IEEE 802.15-04-0715-00-004a

Submission

Overview

PAN coordinator

FFD (Full Function Device)

RFD (Reduced Function Device)

Code 1

Code 2

Multiple Access: CDMA (Slide 18) 31chip M-Sequence

• System Parameters (Slide 12-14)• Frame Format (Slide 19)• System Performance (Slide 22)

• Transceiver (Slide 15)

Tx

Rx

Interferer

•Coexistence (Slide 24)

• Tx (Slide 17)• Rx (Slide 27-28)

Location Awareness (Slide 33)

Anchor Nodes (Known position)

Sync. Node

Code 3

SOP evaluation Not finished yet

Interference

December 2004

Akira Maeki, Hitachi, Ltd.Slide 12

doc.: IEEE 802.15-04-0715-00-004a

Submission

System Parameters

Hardware specifications:• Crystal =± 40ppm • ADC=32Msps, 4bits (Including Location Awareness)

Nominal

Data Rate Range

Optional

258kbps

10.7Mbps

30m

10m

Data Rate:

2.5ns Gaussian Pulse with PRF=32MHz (Data Rate depends on Spread Factor:124 for 258kbps, 3 for 10.7Mbps)

32MHz (=31ns)2.5ns

1 symbol for 10.7Mbps mode (optional)

December 2004

Akira Maeki, Hitachi, Ltd.Slide 13

doc.: IEEE 802.15-04-0715-00-004a

Submission

Scalability with spread factor

Data Rate Modulation Spread FactorNumber of

Pulses / Bit

32.0 Mbps DBPSK 1 1

10.7 Mbps DBPSK 3 3

4.57 Mbps DBPSK 7 7

2.13 Mbps DBPSK 15 15

1.03 Mbps DBPSK 31 31

258 kbps DBPSK 124 124

129 kbps DBPSK 248 248

PRF=32MHz

December 2004

Akira Maeki, Hitachi, Ltd.Slide 14

doc.: IEEE 802.15-04-0715-00-004a

Submission

Link BudgetParameters

Value258kbps 30m

Value10.7Mbps 10m

Units

Center Frequency 4096 4096 MHz

Transmit Power(2.5ns Gaussian Pulse)

-9.8 -9.8 dBm

PRF 32 32 MHz

Spread Factor 124 3  

Data Rate 258 10666 kbps

Path Loss at 1m 44.7 44.7 dB

Distance 30 10 m

Decay coefficient 2.0 2.0   -

Additional Path Loss at 30m,10m 29.5 20.0 dB

Implementation Loss 3.0 3.0 dB

Antenna gain -3.0 -3.0 dBi

Required Eb/N0 @PER=1%, 32B 14.0 9.8 dB

Noise Power Density -174 -174 dBm

Receiver Total NF 7.0 7.0 dB

Margin 5.9 5.6 dB

December 2004

Akira Maeki, Hitachi, Ltd.Slide 15

doc.: IEEE 802.15-04-0715-00-004a

Submission

Transceiver Architecture

Pulse Generator

I

Q

LPFDigital Block

Data

LNA

Transmitter

ReceiverLPF

0/90 PLL

Modulation & Spreading

ADC

ADC

Digital PHYAnalog RF MAC

Data•Matched Filter•Signal Acquisition•Tracking•Rangingetc.

ANT.SwitchBPF

PA

4.1GHz

<100kgates32MHz, 4bits

Xtal

40ppm

Antenna

December 2004

Akira Maeki, Hitachi, Ltd.Slide 16

doc.: IEEE 802.15-04-0715-00-004a

Submission

Modulation and Spreading

Items Specifications

RF Frequency 4096±700MHz (10dB BW)

Modulation DBPSK

Spreading Direct Sequence

Despreading Matched Filter + Integration

PRF 32MHz

Sequence M-Sequence

December 2004

Akira Maeki, Hitachi, Ltd.Slide 17

doc.: IEEE 802.15-04-0715-00-004a

Submission

Modulation and Spreading

Length value

1 1

4 1,1,0,1

8 1,1,1,0,0,1,0,1

DSpread Sequence 2

Spreading

PG

Spread Sequence 1

Differential Coding

Length Value

1 1

3 1,1,0

7 1,1,1,0,0,1,0

15 1,1,1,1,0,0,0,1,0,0,1,1,0,1,0

31 1,1,1,1,1,0,0,0,1,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0,0,1,0,1,1,0,0

Spread Sequence 1 Spread Sequence 2

DATA

Nominal Data Rate 258kbps Spread Factor =124 :Spread Sequence (4, 31)Optional Data Rate 10.7Mbps Spread Factor= 3 :Spread Sequence (1, 3 )

Spreading

December 2004

Akira Maeki, Hitachi, Ltd.Slide 18

doc.: IEEE 802.15-04-0715-00-004a

Submission

Multiple Access

Multiple access : CDMA• Each Piconet has its own sequence (One sequence / Piconet)• 31 chip M-sequence has 6 nearly orthogonal sequences.

Sequence 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0

Sequence 2 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1

Sequence 3 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1

Sequence 4 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0

Sequence 5 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 1 1

Sequence 6 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0

Auto Correlation

Cross Correlation

Cross Correlation

December 2004

Akira Maeki, Hitachi, Ltd.Slide 19

doc.: IEEE 802.15-04-0715-00-004a

Submission

Frame Format

PPDU

Octets:

PHY Layer

Preamble

20 1

FrameLength

SFD

1

SHR PHR PSDU

MPDU

Data: 32 (n=23)

FrameCont.

Seq. # AddressData Payload CRC

Octets: 2 1 0/4/8 2

MAC Sublayer

n

MHR MSDU MFR

For ACK: 5 (n=0)

December 2004

Akira Maeki, Hitachi, Ltd.Slide 20

doc.: IEEE 802.15-04-0715-00-004a

Submission

System Throughput

Time for transmission

Nominal mode (X0 = 258 kbps)

Throughput: 100 kbps

…HDR PSDU

3222

HDR

ACK

522

DATA Frame 1 tACKtLIFS

DATA Frame 2

HDR PSDU

3222

Acknowledged transmission

December 2004

Akira Maeki, Hitachi, Ltd.Slide 21

doc.: IEEE 802.15-04-0715-00-004a

Submission

2. Signal Robustness

-Multipath Immunity-Simultaneously Operating Piconets-Coexistence

December 2004

Akira Maeki, Hitachi, Ltd.Slide 22

doc.: IEEE 802.15-04-0715-00-004a

Submission

System Performance in AWGN

AWGN channel

0.001

0.01

0.1

1

12 13 14 15 16 17 18 19 20 21

40ppm worst- 40ppmworst40ppm typ- 40ppm typ0ppm typ

0ppm ideal

40ppm ideal

-40ppm ideal

-40ppm worst

40ppm worst

PE

R

Eb/N0 (dB)

Crystal Accuracy

PSDU: 32Bytes

December 2004

Akira Maeki, Hitachi, Ltd.Slide 23

doc.: IEEE 802.15-04-0715-00-004a

Submission

System Performance

Range AWGN CM1 CM5

258 kbps 30 m x2 m x3 m

10.7 Mbps 10 m y2 m y3 m

Results obtained using 4a channel model (doc #04/581r7).

CM1: Indoor Residential (LOS), CM5: Outdoor (LOS)

Preliminary evaluations

December 2004

Akira Maeki, Hitachi, Ltd.Slide 24

doc.: IEEE 802.15-04-0715-00-004a

Submission

CoexistenceThe band allocation of 3.1-5.1GHz allows the coexistence with Wireless LANs & PANs (802.11a/b/g and 802.15.1/3/4)

Frequency (GHz)

EIR

P (

dBm

/MH

z)

Low Band(3.1-5.1GHz)

-40

-50

-60

-70

-80

-900 1 2 3 4 5 6 7 8 9 10 11

High Band(6-10GHz)

UNII notch for “desired criteria” coexistence

Meet the Desired Criteria in the 15.3a(Interferer at 0.3m)

BPF: Rejection=30dB (@2.4GHz and 5GHz)

December 2004

Akira Maeki, Hitachi, Ltd.Slide 25

doc.: IEEE 802.15-04-0715-00-004a

Submission

3. Technical Feasibility

-Transceiver Architecture-Synchronization-Complexity-Evaluation by a Test Bed

December 2004

Akira Maeki, Hitachi, Ltd.Slide 26

doc.: IEEE 802.15-04-0715-00-004a

Submission

Transceiver Architecture

Pulse Generator

I

Q

LPFDigital Block

Data

LNA

Example:

Transmitter

ReceiverLPF

0/90 PLL

Modulation & Spreading

ADC

ADC

Digital PHYAnalog RF MAC

Data•Matched Filter•Signal Acquisition•Tracking•Rangingetc.

ANT.SwitchBPF

PA

4.1GHz

<100kgates32MHz, 4bits

Rejection=30dB @2.4GHz&5GHz

Xtal

40ppm

Antenna

December 2004

Akira Maeki, Hitachi, Ltd.Slide 27

doc.: IEEE 802.15-04-0715-00-004a

Submission

Synchronization

×

~C

OR

R

LO

ADC×

90

CO

RR

ABS+

Detector

TemplateGenerator

Th

resho

ld

D

etector

ADC MF

MF

Timing Control

Code Correlator

ABS

Pulse CorrelatorAnalog Domain

Digital Domain

Two Step Synchronization:• Pulse Correlation: Sliding Correlation • Code Correlation: Digital Matched Filter

Example:

December 2004

Akira Maeki, Hitachi, Ltd.Slide 28

doc.: IEEE 802.15-04-0715-00-004a

Submission

2.5ns

Tw=31.3nsRx Signal

Template

=0.5ns

Sliding correlation for pulse synchronization

ReceivedSignal

TemplateWavelet

Sampled data

Sampling Timing

OutputOf MF

Time

Tw

Symbol: Ts

Acquisition

Two Step Synchronization

No pulse sync.Pulse sync.

December 2004

Akira Maeki, Hitachi, Ltd.Slide 29

doc.: IEEE 802.15-04-0715-00-004a

Submission

Unit Manufacturing Complexity

Preliminary Evaluation

Analog RF **

Size*

*0.18m Standard CMOS Process

Digital PHY ***Base Band

Ranging

External Components

** Analog RF : LNA, Mixer, PLL, ADC (Slide 26)*** Base Band : Acquisition, Tracking etc. (Slide 26) Ranging : 1GHz Counter (Slide 37).

•Crystal =± 40ppm

•BPF ([email protected]&5GHz)

•Antenna -Ceramic Antenna -Pattern Antenna

100 kgates

1 kgates

12 mm2

December 2004

Akira Maeki, Hitachi, Ltd.Slide 30

doc.: IEEE 802.15-04-0715-00-004a

Submission

Manufacturability & Technical Feasibility

December 2004

Akira Maeki, Hitachi, Ltd.Slide 31

doc.: IEEE 802.15-04-0715-00-004a

Submission

Feasibility Study by the Test Bed

HDR PSDU

3222

1000 Pseudo Random Packets

Tx Rx

Variable ATT.

Propagation Loss

PER Measurement

-Send 1000 Pseudo random packets through the variable attenuator (Variable attenuator represents Propagation Loss)-Measure the PER

PER<1% for 258kbps at 30m and 10.7Mbps at 10m

December 2004

Akira Maeki, Hitachi, Ltd.Slide 32

doc.: IEEE 802.15-04-0715-00-004a

Submission

Location Awareness

December 2004

Akira Maeki, Hitachi, Ltd.Slide 33

doc.: IEEE 802.15-04-0715-00-004a

Submission

Location Awareness

• Trilateration for Location Awareness - 3 Known-position Nodes (+1 sync. node) - Synchronization by a beacon or a sync. node - TDOA (Time Difference Of Arrival) based

• High Location Accuracy : AWGN: 30cm @30m Range   Indoor Residential :  xcm @ym Range

December 2004

Akira Maeki, Hitachi, Ltd.Slide 34

doc.: IEEE 802.15-04-0715-00-004a

Submission

Active-TDOA

• One-way Ranging Can relax the RFD specifications High Accuracy for mobile node location• Synchronization Easier Sync. than TOA/OWR• Accuracy Accuracy depends only on the clock at the FFD (Cf. TOA/TWR: Error will be sum up in two nodes)• Transmit Only Will not waste the power for the signal reception

RFD

FFD(Anchor)

December 2004

Akira Maeki, Hitachi, Ltd.Slide 35

doc.: IEEE 802.15-04-0715-00-004a

Submission

System Configuration

System Configuration for 2D location measurements

Node

Server & Data Base

Monitor Terminal

Anchor Node 3

Anchor Node 1

Anchor Node 2

T2

T1

T3

TDOA(t1-T1)

TDOA(t2-T2)

TDOA(t3-T3)

Wireless/Wired Network

Time of Arrival: t1

t2

t3

“Calculation of the Node Location based on the TDOAs and the Reference Locations”

For Sync.

---Synchronization by a node--

-Expand the Range-Asynchronous Anchors

December 2004

Akira Maeki, Hitachi, Ltd.Slide 36

doc.: IEEE 802.15-04-0715-00-004a

Submission

TDOA Based Measuring

time

Signal from a node whose position is known

time

Anchor 1

Anchor 2

time

The Location is calculated by the Time Difference those

Signal from a node for location

Anchor 1

Anchor 2

Anchor 1

Anchor 2

Anchors are not synchronized

Temporary synchronization

Measure the time difference of arrival

Reference time

---Synchronization by a node--

December 2004

Akira Maeki, Hitachi, Ltd.Slide 37

doc.: IEEE 802.15-04-0715-00-004a

Submission

Receiver Architecture

Counter Memory

Detection

Timing Counter

Sync. Demod.

• Count the time difference of arrival by the Counter• The Counter and Memory are the additional circuits to the Rx (Gate size: About 1kgates)

Receiver

December 2004

Akira Maeki, Hitachi, Ltd.Slide 38

doc.: IEEE 802.15-04-0715-00-004a

Submission

Parameters for Simulations

Packet Format:   same packet as data transmission

Channel Model : Indoor Residential LOS (CM1)

Counter clock :   1GHz

ADC : 32Msps

Spread factor :   31

Number of trial :   100 for each distance

December 2004

Akira Maeki, Hitachi, Ltd.Slide 39

doc.: IEEE 802.15-04-0715-00-004a

Submission

Summary

•DS-UWB IR is Simple, Scalable and Reliable 258kbps at 30m (Nominal), 10.7Mbps at 10m (Optional)

•Location Awareness: 30cm in 30m region (AWGN) In a regular packet transmission, with one additional counter.

Proposed DS-UWB IR - fc=4.1GHz, BW=1.4GHz at Low Band (3.1-5.1GHz) - 2.5ns Gaussian Pulse with PRF of 32MHz - DBPSK Modulation - TDOA for Location Awareness

December 2004

Akira Maeki, Hitachi, Ltd.Slide 40

doc.: IEEE 802.15-04-0715-00-004a

Submission

Conclusion

• Still have evaluations to do…• Can show the feasibility in March

by the Test Bed and TEG chip

- Scalable data rate up to 10.7Mbps at 10m- High Location Accuracy of ~30cm in 30m range are the main differentiation from the 15.4 system

Hitachi DS-UWB IR System