Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ...

41
Progress in Reflectarray Antenna Research: From Enhanced Frequency Features to Advanced Radia:on Capabili:es Fan Yang Microwave and Antenna Institute Electronic Engineering Department, Tsinghua University

Transcript of Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ...

Page 1: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Progress  in  Reflectarray  Antenna  Research:    From  Enhanced  Frequency  Features  to  

Advanced  Radia:on  Capabili:es  

Fan Yang

Microwave and Antenna Institute Electronic Engineering Department, Tsinghua University

Page 2: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

OUTL INE!v  Introduction of reflectarray antennas

v  Reflectarray analysis and synthesis methods

v  RA with enhanced frequency features

v  RA with advanced radiation capabilities

v  Conclusions

Page 3: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Antenna Classifications

Low gain antenna 1. Gain < 10 dBi

2. Examples:

* Dipole and loop

* Microstrip and slot

3. Applications: cell phone, laptop, PDA, WLAN, etc.

Middle gain antenna 1. 10 < Gain < 20 dBi

2. Examples:

* Horn antenna

* Spiral antenna

3. Applications: base stations, antenna & EMC measurement

High gain antenna 1. Gain > 20 dBi

2. Examples:

* Reflector, lens

* Antenna array

3. Applications: space and satellite comm.

Page 4: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

High Gain Antenna Development

Images are from www.deepspace.jpl.nasa.gov and www.activefrance.com/Antennas

o  Simple, well developed

Parabolic Reflector

Ø  Bulky, limited beam scan

Microstrip Array

o  Low profile, flexible beams Ø  Power loss in the feed network

New high-gain antennas

o  Low profile o  Low mass o  Easy to fabricate o  Easy for circuitry integration o  Element phase: individual control

o  Beam-scanning reflectarrays o  Amplifying reflectarrays o  Multi-beam reflectarrays o  Contour-beam reflectarrays

Reflectarray

Page 5: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Reflectarray Antennas

1.  R. E. Munson and H. Haddad, “Microstrip reflectarray for satellite communication and RCS enhancement and reduction”, U.S. patent 4,684,952, August 1987.

2.  J. Huang, “Microstrip reflectarray antenna for the SCANSCAT radar application”, JPLPublication No. 90-45, Nov. 15, 1990.

3.  D. M. Pozar and T. A. Metzler, “Analysis of a reflectarray antenna using microstrip patches of variable size”, Electronics Letters, April 1993.

Planar reflecting surface

Feed antenna

Page 6: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Phasing Elements in Reflectarrays

Variable element size

Phase/time delay lines

Element rotation

Page 7: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Reflectarray Applications

JPL,  NASA  

77GHz  RA  using  LC  material  and  LTCC  technique  

3m  aperture  dual-­‐frequency  RA�

Integra:ve  design  of  RA  &  solar  panels�

GAC,  ESA  

Page 8: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

OUTL INE!v  Introduction of reflectarray antennas

v  Reflectarray analysis and synthesis methods

v  RA with enhanced frequency features

v  RA with advanced radiation capabilities

v  Conclusions

Page 9: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Reflectarrays Design Overview

q  Design goals:

§  Radiation patterns

§  Beam direction

§  Directivity

§  Gain and efficiency

§  Bandwidth

§  Axial ratio

Ø  Design parameters:

•  Aperture size (D), feed location (f/D), and feed pattern (q value).

•  Phase elements: patch, ring, dipole; substrate thickness & permittivity.

•  Phasing approaches: variable size, element rotation, delay lines.

or

ir

iR

ith element

Z

X

Y

θo

φo

Page 10: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Reflectarray Design Engine

Measurement Tools

Near-Field Measurements

§  Spectral NTFF Principal plane pattern cuts

§  Microwave Holography Measured aperture fields for

accurate simulations

Planar and Conformal Systems

§  Radiation Analysis Array Theory Aperture Field Full-wave

§  Efficiency Analysis Illumination efficiency Spillover efficiency

§  Phase Error Analysis

Analysis Tools

Phase-only Optimizations

§  Alternating Projection Method (APM)

§  Particle Swarm Optimization (PSO)

Optimization Tools

x0 x∞

B

M

Page 11: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Element Analysis

Full-wave analysis of unit cell: Ø Infinite array approach: in-house FDTD program, Ansoft Designer,

HFSS, CST, FEKO … Ø Incident angle, phase range, phase quantization, quasi-periodic

FDTD model

Metal Patch

Source Observation

Periodic Boundary Conditions

Substrate

Ground Plane

Page 12: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Efficiency Analysis

ηs    -­‐  spill  over  ηi    -­‐  illumina0on  ηt      -­‐  taper    ηp    -­‐  phase  

A! = s! ! t! ! p! ! o!

η i

Aperture  efficiency (ηA ):

Illumination taper

Spillover loss

6 8 10 12 14 1630

40

50

60

70

80

90

100

Zfeed

Effic

ienc

y (%

)

ηiη

a

Page 13: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Radiation Pattern Analysis

•  Array  theory  approach  •  Aperture  field  method  

•  Full  wave  simula0on  

θϕθϕθ cosˆsinsinˆcossinˆˆ

,)()ˆ()ˆ(1 1

zyxu

rIuAuEM

m

N

nmnmn

++=

⋅=∑∑= =

.),(

),(

),(

),(

⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

ΓΓ

ΓΓ=

⎥⎥⎦

⎢⎢⎣

nmEnmE

nmEnmE

incy

incx

yyyx

xyxx

refy

refx

-50 0 50-60

-50

-40

-30

-20

-10

0

!1 (degrees)

Radi

atio

n Pa

ttern

(dB)

Array TheoryAperture Field (co-pol)Aperture Field (x-pol)

! -50 0 50-60

-50

-40

-30

-20

-10

0

!1 (degrees)

Radi

atio

n Pa

ttern

(dB)

Aperture Field (co-pol)FEKO (co-pol)FEKO (x-pol)

20 30-40

-20

0

!-40 -20 0 20 40-50

-40

-30

-20

-10

0

α1 (degrees)

Rad

iatio

n Pa

ttern

(dB)

MeasurementSimulation

10 20 30 40-40

-20

0

Page 14: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Reflectarray Design Roadmap

Element design System design

Element type

GEA: Aperture size, feed location

Beam direction Gain

Prototype & measurement

RA: Aperture fields

RA: Far field

Phase compensationElement parameters

Comparison: Patterns, Directivity, Gain, Axial Ratio, Bandwidth

Element design System design

Element type

GEA: Aperture size, feed location

Beam direction Gain

Prototype & measurement

RA: Aperture fields

RA: Far field

Phase compensationElement parameters

Comparison: Patterns, Directivity, Gain, Axial Ratio, Bandwidth

Page 15: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

OUTL INE!v  Introduction of reflectarray antennas

v  Reflectarray analysis and synthesis methods

v  RA with enhanced frequency features

Ø  Broadband reflectarrays

Ø  Multi-band reflectarrays

v  RA with advanced radiation capabilities

v  Conclusions

Page 16: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

q  Printed reflectarray has an inherent narrow bandwidth.

q  Bandwidth of a microstrip reflectarray is limited primarily by two factors. 1) Bandwidth of Elements

o  A micorstrip patch element generally has a bandwidth of about 3 to 5 %.

2) Differential Spatial Phase Delay at the design frequency as frequency changes where N is an integer, dλ is the compensated phase

Bandwidth of Reflectarrays

λ)( dNs +=Δ

)()( λλ Δ++=Δ dNs

Page 17: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Bandwidth Enhancement Methods

Element bandwidth

9.5%

5.8% 4.8%

Wideband phase synthesis

7.6% 10.9%

16.3%

Page 18: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

30 30.5 31 31.5 32 32.5 33 33.5 34-50

-40

-30

-20

-10

0

10

20

30

40

Frequency (GHz)

Phas

e Er

ror (

degr

ees)

λ/2 elementsλ/3 elementsλ/4 elements

30 30.5 31 31.5 32 32.5 33 33.5 34-100

-50

0

50

100

150

Frequency (GHz)

〈 Γ (d

egre

es)

λ/2 elementsλ/3 elementsλ/4 elements

Broadband Sub-λ RA: Freq. Behavior

λ/2 design λ/4 design

Page 19: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Broadband Sub-λ RA: Prototypes

λ/2 element spacing array λ/3 element spacing array (848 patches) (1941 patches)

Circular aperture (D = 6.275 inch = 17λ @ 32 GHz) Material 20 mil Rogers 5880 (εr=2.2) substrate with 0.5 ounce cladding

Page 20: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Broadband Sub-λ RA: Patterns

Gain (dB) λ/2 array λ/3 array Simulation 32.805 32.8355

Measurement 31.4080 31.3670

32 GHz

Page 21: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Broadband Sub-λ RA: Gain & BW

λ/2 array: The 1 dB gain bandwidth is 8.03%. (30.48 GHz to 33.05 GHz) λ/3 array: The 1 dB gain bandwidth is 10.94%. (30.39 GHz to 33.89 GHz)

Page 22: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Single-Layer Tri-Band RA: Geometry Element geometry: 1. Ka band (32 GHz): v  Circular ring for CP v  Use angular rotation technique for

phase compensation 2. C band (7.1 GHz): v  Cross dipole for reversed CP v  Adjust the dipole size for phase

compensation 3. X band (8.4 GHz): v  Split square loop for CP v  Change slot positions for phase

compensation

Printed on a single layer h = 62 mil, εr=2.33.

Page 23: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Single-Layer Tri-Band RA: Prototype

A circular reflectarray with a diameter of 0.566 meter, including: •  692 cross dipoles at C band (7.1 GHz) •  685 square rings at X band (8.4 GHz) •  10,760 circular rings at Ka band (32 GHz)

Page 24: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Single Layer Tri-Band RA: Results

Ka band (32 GHz)

X band (8.4 GHz)

C band (7.1 GHz)

Peak Gain (dB)

Center Frequency (fc)

-1 dB Bandwidth (%) ηa @ fc (%)

Ka 38.7 31.8 6.3 20.6

X 29.1 8.4 2.0 26.5

C 28.4 7.1 1.8 38.8

Page 25: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

OUTL INE!v  Introduction of reflectarray antennas

v  Reflectarray analysis and synthesis methods

v RA with enhanced frequency features

v  RA with advanced radiation capabilities

Ø  Multi-beam reflectarrays

Ø  Beam scanning reflectarrays

v  Conclusions

Page 26: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Advanced Radiation Performance of RA

An important feature of RA: Reflection phase of each element can be individually adjusted è abundance of design freedom.

Ø  Advanced radiation properties: •  Multiple beams from a single feed;

•  Contoured beam pattern or shaped beam pattern;

•  Wide beam scanning angles.

Page 27: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Direct Methods for MBRA Design Geometrical Approach

The reflectarray surface is divided into N sub-arrays each radiating a beam in a given direction.

Disadvantage: q  High side-lobe levels q  Gain reduction and beam widening

Problem: Sub-Arrays with Smaller Apertures

Superposition Approach

∑=

=N

n

yxjiiiniiR

iiineyxAyxE1

),(,

,),(),( φ

The field on the reflectarray surface Number of beams

∑=

⋅=N

n

yxjii

FeediiiR

iiineyxAyxE1

),(,),(),( φ

11

),()( ≠∑=

N

n

yxj iiine φ

Problem: Amplitude Error

Disadvantage: q  Reduced gain (due to side-lobes) q  High side-lobe levels

⎭⎬⎫

⎩⎨⎧

⋅∠= ∑=

N

n

yxjii

Feediii

iiineyxAyx1

),(,),(),( φφ

Page 28: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Alternating Projection Method (APM)

q  APM, or intersection approach, is a robust local optimization search, that is well suited for optimization of large array antennas. q  An iterative process that searches for the intersection between two sets.

O.M. Bucci, G. Mazzarella, and G. Panariello, “Reconfigurable arrays by phase-only control”, IEEE Trans. Antennas Propag., vol. 39, no. 7, pp. 919-925, July 1991.

⎪⎪⎪

⎪⎪⎪

<

≤≤

>

=

),(|),(||),(|),(),(

),(|),(|),(),(

),(|),(||),(|),(),(

),(

vuMvuFvuFvuFvuM

vuMvuFvuMvuF

vuMvuFvuFvuFvuM

vuFP

LL

UL

UU

M

x0 x∞

B

M

Page 29: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

-60 -40 -20 0 20 40 60-40

-35

-30

-25

-20

-15

-10

-5

0

θ (degrees)

Radi

atio

n Pa

ttern

(dB)

Measured Quad-BeamSimulated Quad-Beam

29 P. Nayeri, F. Yang, and A. Z. Elsherbeni, “Design of a single-feed quad-beam reflectarray antenna,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 1166 - 1171, Feb. 2012.

A Symmetric MBRA – APM Method

-60 -40 -20 0 20 40 60-40

-35

-30

-25

-20

-15

-10

-5

0

θ (degrees)

Rad

iatio

n Pa

ttern

(dB)

Measured Quad-BeamSimulated Quad-BeamSimulated Single-Beam

Measured  gain:25.3  dB  

Page 30: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Particle Swarm Optimization (PSO)

q  A powerful global optimization method, developed by Kennedy and Eberhart in 1995. q  A stochastic evolutionary optimization technique based on the movement and intelligence of swarms. q  It is comparable in performance with other stochastic optimizations such as genetic algorithm (GA), with the added advantage that PSO is much simpler to implement.

1.  J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc. IEEE Conf. Neural Networks IV, Piscataway, NJ. 1995.

2.  J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antennas Propag., vol. 52, no. 2, pp. 397–407, Feb. 2004.

3.  D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus genetic algorithms for phased array synthesis,” IEEE Trans. Antennas Propag., vol. 52, no. 3, pp. 771–779, Mar. 2004.

What’s the challenge? Very large number of elements e.g. ~ 1000 element array 400 particles, 100,000 iterations 40 million fitness evaluations

Page 31: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

31

An Asymmetric MBRA – PSO Method

u

v

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

-12

-10

-8

-6

-4

-2

u

v

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

-12

-10

-8

-6

-4

-2Simulation Measurement

Measurement

Page 32: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

or

ir

ith element

Z

X

Y

θo

φo

),(),( 0 iiRiii yxdkyx φφ +−=

Beam Scanning Reflectarray Antenna The phase on the reflectarray aperture can be changed to scan the beam

Improve system performance, Reduce system cost

Hybrid Design

spatial delay control

Feed Displacement

The phase center of the feed is moved to scan the beam

element phase control

Aperture Phase Tuning

The phase of RA elements is changed to scan the beam

Page 33: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

-60 -40 -20 0 20 40 60-30

-20

-10

0

10

20

30

θ (degrees) - xz-plane

Gai

n (d

B)

Bi-Focal Beam Scanning RA

Ø  Traditional parabolic RA: Ø Bi-focal design concept:

Scan Performance �

Angle � 30 � 20 � 10 � 0 �

Gain(dB) � 31.43 � 31.73 � 31.42 � 32.39 �

Page 34: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Reflectarray Optimizations

-60 -40 -20 0 20 40 60-60

-50

-40

-30

-20

-10

0

θ (degrees)

Radia

tion

Patte

rn (d

B)

Conventional DesignBifocal Design

-60 -40 -20 0 20 40 60-60

-50

-40

-30

-20

-10

0

θ (degrees)

Radia

tion

Patte

rn (d

B)

Bifocal DesignPSO Design

PSO

-60 -40 -20 0 20 40 60-60

-50

-40

-30

-20

-10

0

θ (degrees)

Rad

iatio

n Pa

ttern

(dB)

PSOMOPSO

Beam at + 30°

Slight increase in SLL (~2dB)

-60 -40 -20 0 20 40 60-60

-50

-40

-30

-20

-10

0

θ (degrees)

Rad

iatio

n Pa

ttern

(dB)

PSOMOPSO

Significant improvement in SLL

Beam at + 10°

MOPSO

Page 35: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

BSRA Prototypes & Measurements Parabolic � Bi-Focal � PSO � MOPSO �

32GHz,D=160mm,848 patch elements �

-60 -40 -20 0 20 40 60

-20

-10

0

10

20

30

θ (degrees)

Gai

n (d

B)

-60 -40 -20 0 20 40 60

-20

-10

0

10

20

30

θ (degrees)

Gai

n (d

B)

Parabolic �

-60 -40 -20 0 20 40 60

-20

-10

0

10

20

30

θ (degrees)

Gai

n (d

B)

-60 -40 -20 0 20 40 60

-20

-10

0

10

20

30

θ (degrees)

Gai

n (d

B)

Bi-focal �

-60 -40 -20 0 20 40 60

-20

-10

0

10

20

30

θ (degrees)

Gai

n (d

B)

-60 -40 -20 0 20 40 60

-20

-10

0

10

20

30

θ (degrees)

Gai

n (d

B)

PSO �

-60 -40 -20 0 20 40 60

-20

-10

0

10

20

30

θ (degrees)

Gai

n (d

B)

-60 -40 -20 0 20 40 60

-20

-10

0

10

20

30

θ (degrees)

Gai

n (d

B)

MOPSO �

Simulations � Measured �

35

Page 36: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Infrared & THz Reflectarrays

Loss at high frequency! Dielectric reflectarray

Page 37: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Conformal Reflectarray

oufr

Z

Y

X

Main beam direction

Observation direction

u

(m,n) th element Concave design ≈ 0.1 dB Convex design ≈ 0.6 dB

For D/Rc = 1, the gain loss in the conformal designs are:

Inkjet silver printing on flexible material: Kapton

Page 38: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

OUTL INE!v  Introduction of reflectarray antennas

v  Reflectarray analysis and synthesis methods

v  RA with enhanced frequency features

v  RA with advanced radiation capabilities

v  Conclusions

Page 39: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Conclusions

The   printed   reflectarray   is   a   new   genera:on   of   high   gain  antenna,   and   its   mul:tude   of   capabili:es   will   encourage  con:nuous   development   and   exci:ng   applica:ons   in   the  future.                                        -­‐-­‐-­‐  John  Huang  

•  Analysis, design, and measurement techniques

•  RA with wideband and multi-band features

•  RA with multi-beam and beam-scanning operations

•  New frontiers: infrared & THz RA, conformal RA, …

•  Exciting applications in space exploration, satellite communications, radar, remote sensing …

Page 40: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Acknowledgements

Ø  Thanks to the project collaborators: Ø  Thanks to the project sponsors:

§  NASA: MSSGC, EPSCoR §  National Science Foundation (NSF) §  Chinese High-Tech Research and Development Plan

Colleagues:  A.   Elsherbeni   J.  Huang   Y.  Rahmat-­‐Samii   G.  Boreman  H.  Xin   S.  Xu  

Students:  A.    Yu   Y.  Kim   B.  Devireddy   T.  Elsherbeni  P.  Nayeri   Y.  Mao   A.    Abdelrahman   F.  Guo  W.  An   S.  Cheng   X.  Liu  

Page 41: Progress’in’Reflectarray’Antenna’Research:’’ From’Enhanced ... FanYang.pdf · X Y θ o φ o. Reflectarray Design Engine ... $ Particle Swarm Optimization (PSO) Optimization

Questions?

Thanks!