Progress of Thermal Scattering Law Development and ......Progress of Thermal Scattering Law...

30
Progress of Thermal Scattering Law Development and Evaluations at North Carolina State University Cole Manring, Colby Sorrell, Ben Laramee Ayman I. Hawari Nuclear Reactor Program Department of Nuclear Engineering North Carolina State University Raleigh, North Carolina, USA Technical Program Review Nuclear Criticality Safety Program March 26 – 27, 2019 • Amarillo, TX, USA

Transcript of Progress of Thermal Scattering Law Development and ......Progress of Thermal Scattering Law...

  • Progress of Thermal Scattering Law Development and Evaluations

    at North Carolina State University

    Cole Manring, Colby Sorrell, Ben LarameeAyman I. Hawari

    Nuclear Reactor Program

    Department of Nuclear Engineering

    North Carolina State University

    Raleigh, North Carolina, USA

    Technical Program Review

    Nuclear Criticality Safety ProgramMarch 26 – 27, 2019 • Amarillo, TX, USA

  • Acknowledgement

    The many graduate students, postdocs, andresearch staff at North Carolina StateUniversity

    Collaboration with LLNL and Bettis labs◼ David Heinrichs, Michael Zerkle, Jesse Holmes

    Funding◼ US NNSA Nuclear Criticality Safety program

    ◼ US Naval Nuclear Propulsion Program

  • FY 2018/2019 4 new TSL evaluations

    ◼ 3 first-of-a-kind evaluations

    Modern predictive methods for thermal neutron crosssection calculations based on the use of atomisticsimulations

    ◼ Ab initio lattice dynamics

    ◼ Molecular dynamics (ab initio and classical) New materials

    All states of matter (solid, liquid, gas)

    Imperfect structure

    Expanding the FLASSH thermal scattering analysis platform◼ Removed approximations such as incoherent approximation,

    cubic approximation, atom site approximation and SCT approximation

    Initiated the integration of the Generalized Nuclear Data Structure (GNDS) format into FLASSH

  • Objectives

  • Objectives

    Completed light water (H2O) Finalizing molten salt FLiBe

  • ( ) ( )2

    coh incoh s

    d σ 1 ES κ,ω S κ,ω

    d dE 4π E

    = +

    )()()( ω,κSω,κSω,κS ds

    +=

    is composed of two parts)( ω,κS

    The scattering law

    Using first Born approximation combined with Fermi pseudopotential, it can

    be shown that the double differential scattering cross section has the form

    Van Hove’s space-time formulation

    ( ) ( ) ( )1

    , ,2

    i r tS G r t e drdt

    − −

    =

    where G( Ԧ𝑟,t) is the dynamic pair correlation function and can be expressed in terms of time dependent atomic positions.

    Neutron Thermalization

  • 2

    ( , )2

    s

    Binelastic

    d ES

    d dE k T E

    =

    Tk

    EE

    B

    −= Energy transfer

    Tk

    )cosEE2EE(

    B

    −+= Momentum transfer

    −−= dteeS ttis)(

    2

    1),(

    deet ti 2/ 1

    )2/sinh(

    )(

    2)(

    −−=

    () – density of states (e.g., phonon frequency distribution)

    The scattering law (TSL) is the Fourier transform of a Gaussian correlation

    function

    ( ) ( )s B sS , k T S κ,ω =

    Since 1960s

    GASKET

    NJOY/LEAPR

    INCOHERENT

    APPROXIMATION

  • Thermal Scattering Law Analysis

    Key development in the last 20 years isthe use of atomistic simulations methodsto support the evaluation process

    ◼ Produce data necessary to calculate the TSL including

    DOS for evaluation of TSL

    Direct access to TSL using correlation analysis

  • ENDF/B-VIII TSL EvaluationsMaterial ENDF Library Name Evaluation

    BasisInstitution

    Beryllium metal tsl-Be-metal.endf DFT/LD NCSUBeryllium oxide (beryllium) tsl-BeinBeO.endf DFT/LD NCSUBeryllium oxide (oxygen) tsl-OinBeO.endf DFT/LD NCSULight water (hydrogen) tsl-HinH2O.endf MD CABLight water ice (hydrogen) tsl-HinIceIh.endf DFT/LD BAPLLight water ice (oxygen) tsl-OinIceIh.endf DFT/LD BAPLHeavy water (deuterium) tsl-DinD2O.endf MD CABHeavy water (oxygen) tsl-OinD2O.endf MD CAB

    Polymethyl Methacrylate (Lucite)

    tsl-HinC5O2H8.endfMD NCSU

    Polyethylene tsl-HinCH2.endf MD NCSUCrystalline graphite tsl-graphite.endf MD NCSU

    Reactor graphite(10% porosity)

    tsl-reactor-graphite-10P.endf

    MD NCSU

    Reactor graphite(30% porosity)

    tsl-reactor-graphite-30P.endf

    MD NCSU

    Silicon carbide (silicon) tsl-CinSiC.endf DFT/LD NCSUSilicon carbide (carbon) tsl-SiinSiC.endf DFT/LD NCSUSilicon dioxide (alpha phase) tsl-SiO2-alpha.endf DFT/LD NCSUSilicon dioxide (beta phase) tsl-SiO2-beta.endf DFT/LD NCSUYttrium hydride (hydrogen) tsl-HinYH2.endf DFT/LD BAPLYttrium hydride (yttrium) tsl-YinYH2.endf DFT/LD BAPLUranium dioxide (oxygen) tsl-OinUO2.endf DFT/LD NCSUUranium dioxide (uranium) tsl-UinUO2.endf DFT/LD NCSUUranium nitride (nitrogen) tsl-NinUN.endf DFT/LD NCSUUranium nitride (uranium) tsl-UinUN.endf DFT/LD NCSU

  • ENDF/B-VIII TSL EvaluationsMaterial ENDF Library Name Evaluation

    BasisInstitution

    Beryllium metal tsl-Be-metal.endf DFT/LD NCSUBeryllium oxide (beryllium) tsl-BeinBeO.endf DFT/LD NCSUBeryllium oxide (oxygen) tsl-OinBeO.endf DFT/LD NCSULight water (hydrogen) tsl-HinH2O.endf MD CABLight water ice (hydrogen) tsl-HinIceIh.endf DFT/LD BAPLLight water ice (oxygen) tsl-OinIceIh.endf DFT/LD BAPLHeavy water (deuterium) tsl-DinD2O.endf MD CABHeavy water (oxygen) tsl-OinD2O.endf MD CAB

    Polymethyl Methacrylate (Lucite)

    tsl-HinC5O2H8.endfMD NCSU

    Polyethylene tsl-HinCH2.endf MD NCSUCrystalline graphite tsl-graphite.endf MD NCSU

    Reactor graphite(10% porosity)

    tsl-reactor-graphite-10P.endf

    MD NCSU

    Reactor graphite(30% porosity)

    tsl-reactor-graphite-30P.endf

    MD NCSU

    Silicon carbide (silicon) tsl-CinSiC.endf DFT/LD NCSUSilicon carbide (carbon) tsl-SiinSiC.endf DFT/LD NCSUSilicon dioxide (alpha phase) tsl-SiO2-alpha.endf DFT/LD NCSUSilicon dioxide (beta phase) tsl-SiO2-beta.endf DFT/LD NCSUYttrium hydride (hydrogen) tsl-HinYH2.endf DFT/LD BAPLYttrium hydride (yttrium) tsl-YinYH2.endf DFT/LD BAPLUranium dioxide (oxygen) tsl-OinUO2.endf DFT/LD NCSUUranium dioxide (uranium) tsl-UinUO2.endf DFT/LD NCSUUranium nitride (nitrogen) tsl-NinUN.endf DFT/LD NCSUUranium nitride (uranium) tsl-UinUN.endf DFT/LD NCSU

  • Thermal Scattering Cross-Sections

    Evaluation DFT/LD

    PHONONVASP

    Optimize the

    system structure

    Generate

    displacements

    Evaluate

    Hellmann–

    Feynman Forces

    Evaluate the

    Dynamical Matrix

    Sample the

    Brillouin Zone

    DFT

    Pseudo-

    potential

    Quantum

    Mechanical

    model

    LD

    Phonon

    model

    Harmonic

    potential

    Density of StatesThermal Scattering

    Law S(α, β)

    FLASSHThermal Scattering Cross Section

  • Thermal Scattering Cross-Sections

    Evaluation MD/QM

    Equilibrate the

    systemGenerate particle

    trajectories

    Velocity Auto-

    Correlation

    Function (VACF)

    Evaluate classical

    Gcl(r, t) and Icl(k, t)

    LAMMPS MD

    Pair potential

    Classical system

    Density of States

    Thermal Scattering

    Law S(α, β)

    Quantum Correction

    Thermal Scattering

    Cross SectionFLASSH

  • Computational Capabilities Hybrid mini cluster - 17 nodes

    ▪ 324 CPU cores▪ 22 Nvidia GPUs▪ Expanding…..

    Parallel computations▪ Atomistic simulations▪ TSL analysis▪ Neutronic simulations▪ System design

    VASP, PHONON, LAMMPS PREPRO, NJOY, FUDGE, SAMMY, MCNP, Serpent, GEANT4, McStas, PARET, RELAP, COMSOL

  • Heavy Paraffinic Oil

    0.0 0.1 0.2 0.3 0.4 0.5 0.60

    5

    10

    15

    20

    25

    30

    DO

    S (

    eV-1

    )

    Energy (eV)

    0.000 0.001 0.0020.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    DO

    S (

    1/e

    V)

    Energy (eV)

    0 500 1000 1500 2000-1.0-0.8-0.6-0.4-0.20.00.20.40.60.81.0

    VA

    CF

    (ar

    b)

    Time (fs)

  • Light Water

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    DO

    S (

    eV

    -1)

    Energy (eV)

    283K 93 bond

    293K 93 bond

    300K 93 bond

    323K 94 bond

    350K 94 bond

    373K 94 bond

    400K 94 bond

    423K 94 bond

    450K 94 bond

    473K 94 bond

    500K 94 bond

    523K 94 bond

    550K 94 bond

    573K 94 bond

    600K 94 bond

    623K 94 bond

    650K 94 bond

    12 6

    2inter intra 214 1 exp ( ) ( )

    2i j i j

    i jtot

    r OH eq eq

    i j i jO O O O ij

    q qU U U D r r K

    r r r

    = + = − + + − − − + −

    Flexible TIP4P/2005 potential

  • Light Water

    0.02 0.04 0.06 0.08 0.100.96

    0.98

    1.00

    1.02

    1.04

    1.06

    Ratio

    Energy (eV)

    NCSU 473K/293K

    ENDF8 473K/293K

    ENDF7 450K/293K

    Dritsa [EXFOR #22613] (473 K / 293 K)

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    10-40

    10-38

    10-36

    10-34

    10-32

    10-30

    10-28

    10-26

    10-24

    10-22

    10-20

    10-18

    10-16

    10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    100

    102

    104

    106

    S(a

    lpha,b

    eta

    )

    Beta

    8.19721E-8

    1.31155E-6

    3.27888E-5

    1.31155E-4

    0.00118

    0.01312

    0.11804

    1.06236

    10.28258

    100.4158

    819.72081

    10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 10410-4010-3810-3610-3410-3210-3010-2810-2610-2410-2210-2010-1810-1610-1410-1210-1010-810-610-410-2100102104106108

    1010

    S(a

    lpha

    ,be

    ta)

    Alpha

    0

    1E-6

    1.02345E-5

    1.04745E-4

    0.001

    0.01027

    0.10507

    1.0062

    10.29797

    105.39471

    398.10717

    1E-5 1E-4 0.001 0.01 0.1 1 1010

    100

    1000

    Tota

    l X

    S (

    ba

    rns)

    Energy (eV)

    283K

    293K

    300K

    323K

    350K

    373K

    400K

    423K

    450K

    473K

    500K

    523K

    550K

    573K

    600K, 80 atm

    623K, 100 atm

    650K, 150 atm

    File 7

  • Liquid FLiBe – FY 2019 Eutectic with a mixture of

    2:1 ratio of LiF and BeF2

    Melting Point: 732K Boiling Point:1703K

    DFT and MD analysis (with QM corrections)

    TSL evaluation between 750K and 1500K

    0.00 0.05 0.10 0.15

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    De

    nsity o

    f S

    tate

    s (

    1/e

    V)

    Energy (eV)

    Li

    Born-Mayer potential

  • Hydrofluoric Acid

    Strong hydrogen bonding

    Unique molecular structure dynamics

    Example CMD Potential:

    LJ + 3 pt. chg.Perturbed Morse Osc.

    𝑉 𝑟 = 𝐶 𝑒𝑥𝑝 −𝐷 𝑟 − 𝑟0 − 12 + 𝐸𝑟𝑉 𝑟 = 𝐴

    𝐵

    𝑟

    12

    −𝐵

    𝑟

    6

    +⋯

  • FLASSH Code

  • FLASSH Code FeaturesNJOY FLASSH

    Coherent Inelastic

    Remove Incoherent Approximation

    Remove Short Collision Time (SCT) Approximation

    Integral against alpha differential cross section

    NumericalDefault: Analytical

    Optional: Numerical

    a, B Gridding User inputDefault: Automatic grid

    Optional: User input

    Parallel Computing Using OpenMP

    Graphite User Interface

    Syntax and Error Checking

    Coherent Elastic Calculation Supported Structure Hexagonal, FCC, BCC Any crystal structure

    Supported MaterialsGraphite, Beryllium, Beryllium Oxide, Aluminum, Lead, Iron

    Any material

    Compound Materials 2 elements with ratio 1:1Any number of elements

    with any ratio

    Remove Cubic Approximation

    Remove Atom Site Approximation

    Coherent Elastic Scattering Cross Section

    Over Ewald SphereOn every reciprocal lattice

    point

    Need to modify source code if calculating other materials

    Yes No

  • Liquid Physics in FLASSH

    Separation of the diffusive DOS from the continuous (solid) DOS in LEAPR

    Convolution of the solid and liquid TSL components

    𝑆𝑡𝑜𝑡𝑎𝑙 𝛼, 𝛽 = 𝑆𝑑𝑖𝑓𝑓. 𝛼, 𝛽 ∗ 𝑆𝑐𝑜𝑛𝑡. 𝛼, 𝛽 𝛽

  • Liquid Physics in FLASSHConstruct fine beta grid (for convolution):

    Call convolve_grid subroutine to determine appropriate resolution and lower/upper beta limits

    Build liquid TSL model over the new beta grid:

    Call liquid model function (e.g., lang for Langevin)

    ◼ Call besk1 (Bessel) function if necessary

    Interpolate solid TSL onto new beta grid:

    Call interp_grid subroutine to interpolate values for every convolution ‘window’

    Convolve the liquid and solid components:

    Call convolve subroutine to perform the convolution

    Construct total TSL:

    Add in extra DW term

    Output results:

    Write TSL components to various files

  • Free Gas◦ Assumes a Maxwellian velocity distribution

    Crystal Lattice◦ Compound nucleus effects separated from lattice effects

    ◦ Transition probability

    ◦ Self Scattering Law

    Identical to that used in thermal scattering

    Describes the energy-momentum phase space of a material

    Doppler Broadening

    23

    ( )( )

    2

    20

    '1 '' ( ', ) ( ') , ( ', ) expFG FG FG

    E EEE dE S E E E S E E

    E

    − −= =

    ( )( ) ( )

    2

    0

    2 2

    0

    ( , )

    4 / 2

    s

    B

    SE d

    E E k T

    =

    − − +

  • Ab initio lattice dynamics◦ Predictive density of states (DOS)

    ◦ Current DOS implemented in the ENDF/B-VIII.0 cross section library for U in UO2

    Doppler Broadening

    24

    ◦ Fluorite Structure

    ◦ 2x2x2 supercell

    ◦ GGA-PBE+U

  • Ab initio lattice dynamics◦ Predictive density of states (DOS)

    ◦ Current DOS implemented in the ENDF/B-VIII.0 cross section library for U in UO2

    Doppler Broadening

    25

    ◦ Fluorite Structure

    ◦ 2x2x2 supercell

    ◦ GGA-PBE+U

  • FLASSH Generalized TSL

    Full Equation Cubic Approximation( )2 21

    3sse k =

    2

    0

    (2 th

    2 2

    )co

    m s

    B

    W dM k T

    k

    =

    Function of the density of states ρ(ω) Function of the polarization vector and dispersion relations

    2

    2 coth2 2

    s

    s

    s

    s B

    eW

    MN k T

    =

    ( )2 0 20

    2( e)

    !

    1,

    2

    U U

    s

    i

    n

    t

    n

    V

    n

    We e dtW

    S Gn

    +

    −−

    =

    = =

    ( )( )

    2

    /2

    1

    1 1

    (0) 2 sinh / 2

    s

    sB

    e eG e

    N k T

    −= ( )( )

    / 2

    1

    1 ( )

    2 sinh / 2G e

    −=

  • 5.49E-3 0 0

    0 5.49E-3 0

    0 0 5.49E-3

    FLASSH Generalized TSL

    27

    Beryllium Metal

    o HCP (P63/mmc)

    o Ab initio lattice dynamics

    o 4x4x3 Supercell Exact Debye-Waller Matrix (Å2)

  • 5.76E-3 -1.58E-5 1.01E-6

    -1.58E-5 5.74E-3 -5.18E-7

    1.01E-6 -5.18E-7 5.02E-3

    FLASSH Generalized TSL

    28

    Beryllium Metal

    o HCP (P63/mmc)

    o Ab initio lattice dynamics

    o 4x4x3 Supercell Exact Debye-Waller Matrix (Å2)

  • FUDGE/GNDS Ongoing

    collaboration with LLNL

  • Summary FY 2018

    ◼ 10 new TSL evaluations contributed to ENDF/B-VIII.0

    ◼ 5 first-of-a-kind evaluations

    FY 2019◼ 4 new TSL evaluations

    ◼ 3 first-of-a-kind evaluations

    Modern predictive methods for thermal neutron cross sectioncalculations based on the use of atomistic simulations

    ◼ Ab initio lattice dynamics

    ◼ Molecular dynamics (ab initio and classical) New materials

    All states of matter (solid, liquid, gas)

    Imperfect structure

    FLASSH is a new thermal scattering analysis platform that uses a generalized theoretical approach for TSL calculations◼ Removed approximations such as incoherent approximation, cubic

    approximation, atom site approximation and SCT approximation

    Progress on FY 2019 tasks