Prof. V.G. OklobdzijaAdvanced Digital Integrated Circuits1 VLSI Prof. Vojin G. Oklobdzija References...

35
Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 1 VLSI Prof. Vojin G. Oklobdzija References (used for creation of the presentation material): [1] Mead, Conway, “Introduction to VLSI Systems”, Addison Wesley Publishing. [2] Glasser, Dobberpuhl, “The Design and Analysis of VLSI Circuits”, Addison Wesley Publishing. [3] Weste, Eshraghian, “Principles of CMOS VLSI Design”, Addison Wesley Publishing. [4] Shoji, “CMOS Digital Circuits Technology” , Prentice Hall.

Transcript of Prof. V.G. OklobdzijaAdvanced Digital Integrated Circuits1 VLSI Prof. Vojin G. Oklobdzija References...

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 1

VLSIProf. Vojin G. Oklobdzija

References (used for creation of the presentation material):

[1] Mead, Conway, “Introduction to VLSI Systems”, Addison Wesley Publishing.

[2] Glasser, Dobberpuhl, “The Design and Analysis of VLSI Circuits”, Addison Wesley Publishing.

[3] Weste, Eshraghian, “Principles of CMOS VLSI Design”, Addison Wesley Publishing.

[4] Shoji, “CMOS Digital Circuits Technology”, Prentice Hall.

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 2

Historical Overview

• nMOS era: 1970-85• Pass-transistor design• Domino CMOS, 1982

– NORA– DCVSL

• CPL, DPL– DCVS-PG– SRPL– LEAP

• SOI-CMOS

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 3

n-MOS Design Era

LSI started with nMOS:• pass-transistor design experience:

- Flourished at the beginning of the nMOS era

(popularized by Mead-Conway book)

- Allows high density layout and compact design style

- Fast: outperforming gate based design

- Low in power

• Drawbacks:– Not compatible with existing design tools

– Exhibiting testability and reliability problems

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 4

Pass-Transistor Design

Another way of looking at Karnaugh Map: AND function

0 10

1

0 1

B

A

1 0

A

A

B

B

F

F

B B

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 5

Pass-Transistor Design

Two-variable function

A

A

X

Y

F

X Y F0 0 00 1 A1 01 1 10 B AB01 B1B 0B 1B 0 A+BB 1BB BBB B B

B

B

B

B

B

A

BA

BABA

BABA

BA

BA

BA

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 6

Pass-Transistor Design“Threshold Voltage Drop” problem:

A

B=Vdd

B

Fmax = Vdd-Vth

A=Vdd

Vth+

-

Cout

Vdd

Vdd

Fmax = Vdd-Vth

Cout

Vth+

-Vth

+

-

Vdd

(a) (b)

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 7

Pass-Transistor DesignSolving the “Threshold Voltage Drop” problem in CMOS:

A=0V

In=VddFmax= Vdd

A=Vdd

Vth+

-

Cout

Vdd

Vdd

Cin

Vth+

-

(a) (b)

+

-Vdd

ON

+Vdd

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 8

Pass-Transistor Design

Function Generator

A A B B

P0

P1

P2

P3

F(A,B)

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 9

Pass-Transistor Design

Full 1-bit Adder A

A

A

S

A

A

S

OC

OC

B B C C

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 10

Pass-Transistor DesignCompact ALU

Example

(IBM PC/RT)

Circ. 1984

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 11

Control Lines OutputControl

A - inputs B - inputs

Odd Even Odd Even

Operation K1 K2 Qn A A B B Odd Even

Arithmetic

A+B Add 0 0 0 0 1 1 0 0 1 1 0 0 1

A+B+1 0 0 1 0 1 1 0 0 1 1 0 0 1

A-B Subtract 0 0 1 0 1 1 0 1 0 0 1 0 1

B-A Subtract 0 0 1 1 0 0 1 0 1 1 0 0 1

B+1 Increment 0 0 1 1 1 0 0 0 1 1 0 0 1

+1 2s compl 0 0 1 1 1 0 0 1 0 0 1 0 1

A+1 Increment 0 0 1 0 1 1 0 1 1 0 0 0 1

+1 2s compl 0 0 1 1 0 0 1 1 1 0 0 0 1

Logical

1 1 1 0 0 0 0 0 0 0 0 0 0 0

B 1 1 0 0 0 0 0 0 1 0 1 0 0

1 1 0 0 0 0 0 1 0 1 0 0 0

1 1 0 0 1 0 1 0 1 0 1 0 0

1 1 0 0 1 0 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0 0 0 0 0 0

1 1 0 1 0 1 0 0 1 0 1 0 0

0 1 1 0 0 0 0 0 0 0 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 1

A 1 1 0 1 0 1 0 0 0 0 0 1 1

1 1 0 0 1 0 1 0 1 0 1 1 1

1 1 0 0 1 0 1 1 0 1 0 1 1

1 1 0 1 0 1 0 0 1 0 1 1 1

0 1 0 0 1 0 1 0 1 0 1 1 1

0 1 0 0 1 0 1 1 0 1 0 1 1

0 1 0 1 0 1 0 0 1 0 1 1 1

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 12

Pass-Transistor Design

Compact ALU

Example

(IBM PC/RT)

A B

K2 A

B

K1

A B K2

IC

OC

OCK2

A

B

f

HV

HV

Carry Generator

Function Generator

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 13

Using Pass-Transistor Design to Speed-up Addition

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 14

Review of CMOS

Prof. Vojin G. Oklobdzija

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 15

CMOS Basics

A B

C

Vdd

0

1B

A

10

1 1

1 0

)( A B+

( )BA

Function F and its Dual

Karnaugh Mapof Function F

FF

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 16

CMOS Basics

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 17

CMOS Basics

B A

C

D

A

B C D

1

1 0 0 0

0000

1001

100

( )BA +C+Dcovering zeroes :

( )+D A CB

covering ones :

A

B

D

D

F

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 18

CMOS BasicsA complex path example:

VDD

A B

C DE

A

B

C

DE

Output

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 19

CMOS BasicsMore complex blocks are realizable in CMOSPrimitive gates:

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 20

CMOS Deficiencies: Muli-Input NOR function in CMOS is slow

Various remedies:

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 21

CMOS Deficiencies and Remedies

A

B

B

A B + BA

A

BA B + BA

XOR Faster, one-levelrealizations of XOR

function

(a) (b)

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 22

CMOS Deficiencies and Remedies

AB + BA

A

B

XNOR

AB + BA

Faster, one-levelrealizations of XOR

function

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 23

CMOS Basic

Inverter Transfer function:

Logic voltage levels are VOH and VOL

and VIL and VIH

The inverter transfer function lie

within the shaded region

VDD

VOH

VIH

Vout

VIL

VOL

0VOL VIL

Vin

VIH VOH VDD

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 24

CMOS Basic: Inverter Characteristicp “ON”n “OFF’’

p ”OFF”n ”ON”

VDD

VDD

0.5VDD

0

0 0.5VDD VDD + VtpVtn

AB

C

DE

BOTH p & n “ON”

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 25

CMOS Basic: Inverter Characteristic

+ VDD

t

t

0

+ VDD

0.9 VDD

0.1 VDD

VDD

Vin(t) 1T

2TV0(t)

LC

VDD

t

dt

ftrt

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 26

CMOS Basic: Inverter CharacteristicTransistors during the transition

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 27

CMOS Basic: Inverter Switching

CL

t = 0

VDDp-DEVICE

n-DEVICE

SATURATION :

VO

Ic

CL

VDDp-DEVICE

n-DEVICE

LINEAR :

VO

Ic

CL

t = 0

VDDp-DEVICE

n-DEVICE

SATURATION

VO

Ic

p-DEVICE

n-DEVICE

LINEAR

Rc

CL

VDD

VO

Ic

Rc

inDDO VVV inDDO VVV 0

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 28

CMOS Basic: Power

• During the static state there is no current

• Current is only present during transistion:

- Short circuit current (crow-bar current)

- Charging and discharging of the output capacitor

- Leakage Current

t

t

t

VDD

VDD

VDD

0

0

0

V

V

I

tp

tftr

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 29

CMOS Basic: Power

This is an E=mc2 of low-power designThere are three ways to control power:- Reducing Power-Supply Voltage (most effective !!)

- Reducing the switching activity k (various ways)

- Reducing CL (technology scaling etc.)

- Reducing the required frequency of operation (?)

PCMOS=kCLV2DDfo

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 30

CMOS Basic: Delay • Which one of the three designs is the fastest ?

• How can we find this out without simulation ?

CL

Case 1

0a

7a

(a)

CL

Case 27a

4a

3a

0a

(b)

CL

Case 3

0a1a

3a2a

5a6a

4a

7a

(c)

Learn about Logical Effort !

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 31

CMOS Basic: Delay

Cin1 Cin2Cout

DischargeId

Charge:Ic

DischargeId

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 32

CMOS Basic: Delay

Delay can be approximated with:

RND7Cin1+RNORCin2+RND2Cout

CoutCin1 Cin2

Id Id

Ic

RND7

RNOR

RND2

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 33

CMOS Basic: DelayDelay of a signal path in CMOS logic is dependent

on:• Fan-in of a gate

– Represented as a resistance of the pull-up/down transistor path of the gate

• Fan-out of a gate– Represented as a capacitive load at the output

• Number of CMOS blocks in the path.• Wire delay connecting various blocks.

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 34

CMOS Basic: Delay

Delay of a signal path in CMOS logic can be reduced by:

• Making the transistors larger in order to minimize resistance of a pull-up/down path in the gate

• Making the transistors smaller in order to minimize the capacitive load of each gate

• Reducing the number of CMOS blocks in the path.• Bringing the blocks closer and/or choosing the

less wire intensive topology.– Note that these requirements are often contradictory

Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 35

CMOS Basic: Delay

• How to estimate delay and critical timing in CMOS circuits ?

• How to determine the proper transistor sizing in order to make a compromise with contradicting requirements ?

• How to choose the right circuit topology ?

The Answer:

“Logical Effort”