Prof. (Dr.) Rajib Kumar Bhattacharjya

20
Multivariable problem with equality and inequality constraints Prof. (Dr.) Rajib Kumar Bhattacharjya Professor, Department of Civil Engineering Indian Institute of Technology Guwahati, India Room No. 005, M Block Email: [email protected] , Ph. No 2428

Transcript of Prof. (Dr.) Rajib Kumar Bhattacharjya

Page 1: Prof. (Dr.) Rajib Kumar Bhattacharjya

Multivariable problem with equality and inequality constraints

Prof. (Dr.) Rajib Kumar Bhattacharjya

Professor, Department of Civil EngineeringIndian Institute of Technology Guwahati, India

Room No. 005, M BlockEmail: [email protected], Ph. No 2428

Page 2: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

General formulation

๐‘“ ๐‘‹Min/Max

Subject to ๐‘”๐‘— ๐‘‹ = 0 ๐‘— = 1,2,3, โ€ฆ ,๐‘š

Where ๐‘‹ = ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ€ฆ , ๐‘ฅ๐‘›๐‘‡

This is the minimum point of the function

g ๐‘‹ = 0

Now this is not the minimum point of the constrained function

This is the new minimum point

Page 3: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Consider a two variable problem

๐‘“ ๐‘ฅ1, ๐‘ฅ2Min/Max

Subject to ๐‘” ๐‘ฅ1, ๐‘ฅ2 = 0

g ๐‘ฅ1, ๐‘ฅ2 = 0

๐‘ฅ1, ๐‘ฅ2

๐‘‘๐‘“ =๐œ•๐‘“

๐œ•๐‘ฅ1๐‘‘๐‘ฅ1 +

๐œ•๐‘“

๐œ•๐‘ฅ2๐‘‘๐‘ฅ2 = 0

Take total derivative of the function at ๐‘ฅ1, ๐‘ฅ2

If ๐‘ฅ1, ๐‘ฅ2 is the solution of the constrained problem, then

๐‘” ๐‘ฅ1, ๐‘ฅ2 = 0

Now any variation ๐‘‘๐‘ฅ1 and ๐‘‘๐‘ฅ2 is admissible only when

๐‘” ๐‘ฅ1 + ๐‘‘๐‘ฅ1, ๐‘ฅ2 + ๐‘‘๐‘ฅ2 = 0

Page 4: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Consider a two variable problem

๐‘“ ๐‘ฅ1, ๐‘ฅ2Min/Max

Subject to ๐‘” ๐‘ฅ1, ๐‘ฅ2 = 0

g ๐‘ฅ1, ๐‘ฅ2 = 0

๐‘ฅ1, ๐‘ฅ2

๐‘” ๐‘ฅ1 + ๐‘‘๐‘ฅ1, ๐‘ฅ2 + ๐‘‘๐‘ฅ2 = 0

This can be expanded as

๐‘” ๐‘ฅ1 + ๐‘‘๐‘ฅ1, ๐‘ฅ2 + ๐‘‘๐‘ฅ2 = ๐‘” ๐‘ฅ1, ๐‘ฅ2 +๐œ•๐‘” ๐‘ฅ1,๐‘ฅ2

๐œ•๐‘ฅ1๐‘‘๐‘ฅ1 +

๐œ•๐‘” ๐‘ฅ1,๐‘ฅ2

๐œ•๐‘ฅ2๐‘‘๐‘ฅ2 = 0

0

๐‘‘๐‘” =๐œ•๐‘”

๐œ•๐‘ฅ1๐‘‘๐‘ฅ1 +

๐œ•๐‘”

๐œ•๐‘ฅ2๐‘‘๐‘ฅ2 = 0

๐‘‘๐‘ฅ2 = โˆ’

๐œ•๐‘”๐œ•๐‘ฅ1๐œ•๐‘”๐œ•๐‘ฅ2

๐‘‘๐‘ฅ1

Page 5: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Consider a two variable problem

๐‘“ ๐‘ฅ1, ๐‘ฅ2Min/Max

Subject to ๐‘” ๐‘ฅ1, ๐‘ฅ2 = 0

g ๐‘ฅ1, ๐‘ฅ2 = 0

๐‘ฅ1, ๐‘ฅ2

๐‘‘๐‘ฅ2 = โˆ’

๐œ•๐‘”๐œ•๐‘ฅ1๐œ•๐‘”๐œ•๐‘ฅ2

๐‘‘๐‘ฅ1

Putting in ๐‘‘๐‘“ =๐œ•๐‘“

๐œ•๐‘ฅ1๐‘‘๐‘ฅ1 +

๐œ•๐‘“

๐œ•๐‘ฅ2๐‘‘๐‘ฅ2 = 0

๐‘‘๐‘“ =๐œ•๐‘“

๐œ•๐‘ฅ1๐‘‘๐‘ฅ1 โˆ’

๐œ•๐‘“

๐œ•๐‘ฅ2

๐œ•๐‘”๐œ•๐‘ฅ1๐œ•๐‘”๐œ•๐‘ฅ2

๐‘‘๐‘ฅ1 = 0

๐œ•๐‘“

๐œ•๐‘ฅ1

๐œ•๐‘”

๐œ•๐‘ฅ2โˆ’๐œ•๐‘“

๐œ•๐‘ฅ2

๐œ•๐‘”

๐œ•๐‘ฅ1๐‘‘๐‘ฅ1 = 0

This is the necessary condition for optimality for optimization problem with equality constraints

๐œ•๐‘“

๐œ•๐‘ฅ1

๐œ•๐‘”

๐œ•๐‘ฅ2โˆ’๐œ•๐‘“

๐œ•๐‘ฅ2

๐œ•๐‘”

๐œ•๐‘ฅ1= 0

Page 6: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Lagrange Multipliers

๐‘“ ๐‘ฅ1, ๐‘ฅ2Min/Max

Subject to ๐‘” ๐‘ฅ1, ๐‘ฅ2 = 0

We have already obtained the condition that

By defining

๐œ•๐‘“

๐œ•๐‘ฅ1โˆ’๐œ•๐‘“

๐œ•๐‘ฅ2

๐œ•๐‘”

๐œ•๐‘ฅ1๐œ•๐‘”

๐œ•๐‘ฅ2

= 0๐œ•๐‘“

๐œ•๐‘ฅ1โˆ’

๐œ•๐‘“

๐œ•๐‘ฅ2๐œ•๐‘”

๐œ•๐‘ฅ2

๐œ•๐‘”

๐œ•๐‘ฅ1= 0

๐œ† = โˆ’

๐œ•๐‘“๐œ•๐‘ฅ2๐œ•๐‘”๐œ•๐‘ฅ2

We have๐œ•๐‘“

๐œ•๐‘ฅ1+ ๐œ†๐œ•๐‘”

๐œ•๐‘ฅ1= 0

We can also write

๐œ•๐‘“

๐œ•๐‘ฅ2+ ๐œ†๐œ•๐‘”

๐œ•๐‘ฅ2= 0

Necessary conditions for optimality

๐‘” ๐‘ฅ1, ๐‘ฅ2 = 0Also put

Page 7: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Lagrange Multipliers

๐ฟ ๐‘ฅ1, ๐‘ฅ2, ๐œ† = ๐‘“ ๐‘ฅ1, ๐‘ฅ2 + ๐œ†๐‘” ๐‘ฅ1, ๐‘ฅ2

Let us define

By applying necessary condition of optimality, we can obtain

๐œ•๐ฟ

๐œ•๐‘ฅ1=๐œ•๐‘“

๐œ•๐‘ฅ1+ ๐œ†๐œ•๐‘”

๐œ•๐‘ฅ1= 0

๐œ•๐ฟ

๐œ•๐‘ฅ2=๐œ•๐‘“

๐œ•๐‘ฅ2+ ๐œ†๐œ•๐‘”

๐œ•๐‘ฅ2= 0

๐œ•๐ฟ

๐œ•๐œ†= ๐‘” ๐‘ฅ1, ๐‘ฅ2 = 0

Necessary conditions for optimality

Page 8: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Lagrange Multipliers

๐ฟ ๐‘ฅ1, ๐‘ฅ2, ๐œ† = ๐‘“ ๐‘ฅ1, ๐‘ฅ2 + ๐œ†๐‘” ๐‘ฅ1, ๐‘ฅ2

Sufficient condition for optimality of the Lagrange function can be written as

๐ป =

๐œ•2๐ฟ

๐œ•๐‘ฅ1๐œ•๐‘ฅ1

๐œ•2๐ฟ

๐œ•๐‘ฅ1๐œ•๐‘ฅ2

๐œ•2๐ฟ

๐œ•๐‘ฅ1๐œ•๐œ†

๐œ•2๐ฟ

๐œ•๐‘ฅ2๐œ•๐‘ฅ1

๐œ•2๐ฟ

๐œ•๐‘ฅ2๐œ•๐‘ฅ2

๐œ•2๐ฟ

๐œ•๐‘ฅ2๐œ•๐œ†

๐œ•2๐ฟ

๐œ•๐œ†๐œ•๐‘ฅ1

๐œ•2๐ฟ

๐œ•๐œ†๐œ•๐‘ฅ2

๐œ•2๐ฟ

๐œ•๐œ†๐œ•๐œ†

๐ป =

๐œ•2๐ฟ

๐œ•๐‘ฅ1๐œ•๐‘ฅ1

๐œ•2๐ฟ

๐œ•๐‘ฅ1๐œ•๐‘ฅ2

๐œ•๐‘”

๐œ•๐‘ฅ1๐œ•2๐ฟ

๐œ•๐‘ฅ2๐œ•๐‘ฅ1

๐œ•2๐ฟ

๐œ•๐‘ฅ2๐œ•๐‘ฅ2

๐œ•๐‘”

๐œ•๐‘ฅ2๐œ•๐‘”

๐œ•๐‘ฅ1

๐œ•๐‘”

๐œ•๐‘ฅ20

If ๐ป is positive definite , the optimal solution is a minimum point

If ๐ป is negative definite , the optimal solution is a maximum point

Else it is neither minima nor maxima

Page 9: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Lagrange Multipliers

Necessary conditions for general problem

๐‘“ ๐‘‹Min/Max

Subject to ๐‘”๐‘— ๐‘‹ = 0 ๐‘— = 1,2,3, โ€ฆ ,๐‘š

Where ๐‘‹ = ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ€ฆ , ๐‘ฅ๐‘›๐‘‡

๐ฟ ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, ๐œ†1, ๐œ†2, ๐œ†3โ€ฆ , ๐œ†๐‘š = ๐‘“ ๐‘‹ + ๐œ†1๐‘”1 ๐‘‹ + ๐œ†2๐‘”2 ๐‘‹ ,โ€ฆ , ๐œ†๐‘š๐‘”๐‘š ๐‘‹

Necessary conditions

๐œ•๐ฟ

๐œ•๐‘ฅ๐‘–=๐œ•๐‘“

๐œ•๐‘ฅ๐‘–+

๐‘—=1

๐‘š

๐œ†๐‘—๐œ•๐‘”๐‘—

๐œ•๐‘ฅ๐‘–= 0

๐œ•๐ฟ

๐œ•๐œ†๐‘—= ๐‘”๐‘— ๐‘‹ = 0

Page 10: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Lagrange Multipliers

Sufficient condition for general problem

๐ป =

๐ฟ11 ๐ฟ12 ๐ฟ13๐ฟ21 ๐ฟ22 ๐ฟ23โ‹ฎ โ‹ฎ โ‹ฎ

โ€ฆ ๐ฟ1๐‘› ๐‘”11โ€ฆ ๐ฟ2๐‘› ๐‘”12โ‹ฎ โ‹ฎ โ‹ฎ

๐‘”21 โ€ฆ ๐‘”๐‘š1๐‘”22 โ€ฆ ๐‘”๐‘š2โ‹ฎ โ‹ฎ โ‹ฎ

๐ฟ๐‘›1 ๐ฟ๐‘›2 ๐ฟ๐‘›3๐‘”11 ๐‘”12 ๐‘”13๐‘”21 ๐‘”22 ๐‘”23

โ€ฆ ๐ฟ๐‘›๐‘› ๐‘”1๐‘›โ€ฆ ๐‘”1๐‘› 0โ‹ฎ ๐‘”2๐‘› โ‹ฎ

๐‘”1๐‘› โ€ฆ ๐‘”๐‘š๐‘›0 โ€ฆ 0โ‹ฎ โ‹ฎ โ‹ฎ

๐‘”31 ๐‘”32 ๐‘”33โ‹ฎ โ‹ฎ โ‹ฎ๐‘”๐‘š1 ๐‘”๐‘š2 ๐‘”๐‘š3

โ€ฆ ๐‘”3๐‘› 0โ€ฆ โ‹ฎ โ‹ฎโ€ฆ ๐‘”2๐‘› 0

โ€ฆ โ€ฆ โ€ฆโ€ฆ โ€ฆ โ€ฆโ€ฆ โ€ฆ 0

The hessian matrix is Where,

๐ฟ๐‘–๐‘—=๐œ•2๐ฟ

๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—

๐‘”๐‘–๐‘—=๐œ•๐‘”๐‘–

๐œ•๐‘ฅ๐‘—

Page 11: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Lagrange Multipliers

๐‘“ ๐‘‹Min/Max

Subject to ๐‘” ๐‘‹ = ๐‘ Or, ๐‘ โˆ’ ๐‘” ๐‘‹ = 0

Applying necessary conditions

๐œ•๐‘“

๐œ•๐‘ฅ๐‘–โˆ’ ๐œ†๐œ•๐‘”

๐œ•๐‘ฅ๐‘–= 0

Where ๐‘‹ = ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ€ฆ , ๐‘ฅ๐‘›๐‘‡

Where, ๐‘– = 1,2,3, โ€ฆ , ๐‘›

๐‘ โˆ’ ๐‘” = 0

Further ๐‘‘๐‘ โˆ’ ๐‘‘๐‘” = 0

๐‘‘๐‘ = ๐‘‘๐‘” =

๐‘–=1

๐‘›๐œ•๐‘”

๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฅ๐‘–

๐œ•๐‘”

๐œ•๐‘ฅ๐‘–=

๐œ•๐‘“๐œ•๐‘ฅ๐‘–๐œ†

๐‘‘๐‘ =

๐‘–=1

๐‘›1

๐œ†

๐œ•๐‘“

๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฅ๐‘–

๐‘‘๐‘ =๐‘‘๐‘“

๐œ†

๐œ† =๐‘‘๐‘“

๐‘‘๐‘

๐‘‘๐‘“ = ๐œ†๐‘‘๐‘

There may be three conditions

๐œ† โˆ— > 0๐œ† โˆ— < 0๐œ† โˆ— = 0

Page 12: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Multivariable problem with inequality constraints

๐‘“ ๐‘‹Minimize

Subject to ๐‘”๐‘— ๐‘‹ โ‰ค 0 ๐‘— = 1,2,3, โ€ฆ ,๐‘š

Where ๐‘‹ = ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ€ฆ , ๐‘ฅ๐‘›๐‘‡

We can write ๐‘”๐‘— ๐‘‹ + ๐‘ฆ๐‘—2 = 0

Thus the problem can be written as

๐‘“ ๐‘‹Minimize

Subject to ๐บ๐‘— ๐‘‹, ๐‘Œ = ๐‘”๐‘— ๐‘‹ + ๐‘ฆ๐‘—2 = 0 ๐‘— = 1,2,3, โ€ฆ ,๐‘š

Where Y= ๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3, โ€ฆ , ๐‘ฆ๐‘š๐‘‡

Page 13: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Multivariable problem with inequality constraints

๐‘“ ๐‘‹Minimize

Subject to ๐บ๐‘— ๐‘‹, ๐‘Œ = ๐‘”๐‘— ๐‘‹ + ๐‘ฆ๐‘—2 = 0 ๐‘— = 1,2,3, โ€ฆ ,๐‘š

Where ๐‘‹ = ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ€ฆ , ๐‘ฅ๐‘›๐‘‡

The Lagrange function can be written as

๐ฟ ๐‘‹, ๐‘Œ, ๐œ† = ๐‘“ ๐‘‹ +

๐‘—=1

๐‘š

๐œ†๐‘—๐บ๐‘— ๐‘‹, ๐‘Œ

The necessary conditions of optimality can be written as

๐œ•๐ฟ ๐‘‹, ๐‘Œ, ๐œ†

๐œ•๐‘ฅ๐‘–=๐œ•๐‘“ ๐‘‹

๐œ•๐‘ฅ๐‘–+

๐‘—=1

๐‘š

๐œ†๐‘—๐œ•๐‘”๐‘— ๐‘‹

๐œ•๐‘ฅ๐‘–= 0

๐œ•๐ฟ ๐‘‹, ๐‘Œ, ๐œ†

๐œ•๐œ†๐‘—= ๐บ๐‘— ๐‘‹, ๐‘Œ = ๐‘”๐‘— ๐‘‹ + ๐‘ฆ๐‘—

2 = 0

๐‘– = 1,2,3, โ€ฆ , ๐‘›

๐‘— = 1,2,3, โ€ฆ ,๐‘š

๐œ•๐ฟ ๐‘‹,๐‘Œ,๐œ†

๐œ•๐‘ฆ๐‘—=2๐œ†๐‘—๐‘ฆ๐‘—=0 ๐‘— = 1,2,3, โ€ฆ ,๐‘š

Page 14: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

๐œ•๐ฟ ๐‘‹,๐‘Œ,๐œ†

๐œ•๐‘ฆ๐‘—= 2๐œ†๐‘—๐‘ฆ๐‘—=0

Multivariable problem with inequality constraints

From equation

Either ๐œ†๐‘—= 0 Or, ๐‘ฆ๐‘—= 0

If ๐œ†๐‘—= 0, the constraint is not active, hence can be ignored

If ๐‘ฆ๐‘—= 0, the constraint is active, hence have to consider

Now, consider all the active constraints, Say set ๐ฝ1 is the active constraintsAnd set ๐ฝ2 is the active constraints

The optimality condition can be written as๐œ•๐‘“ ๐‘‹

๐œ•๐‘ฅ๐‘–+

๐‘—โˆˆ๐ฝ1

๐œ†๐‘—๐œ•๐‘”๐‘— ๐‘‹

๐œ•๐‘ฅ๐‘–= 0 ๐‘– = 1,2,3, โ€ฆ , ๐‘›

๐‘”๐‘— ๐‘‹ = 0

๐‘”๐‘— ๐‘‹ + ๐‘ฆ๐‘—2 = 0

๐‘— โˆˆ ๐ฝ1

๐‘— โˆˆ ๐ฝ2

Page 15: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Multivariable problem with inequality constraints

โˆ’๐œ•๐‘“

๐œ•๐‘ฅ๐‘–= ๐œ†1๐œ•๐‘”1๐œ•๐‘ฅ๐‘–+ ๐œ†2๐œ•๐‘”2๐œ•๐‘ฅ๐‘–+ ๐œ†3๐œ•๐‘”3๐œ•๐‘ฅ๐‘–+โ‹ฏ+ ๐œ†๐‘

๐œ•๐‘”๐‘๐œ•๐‘ฅ๐‘–

๐‘– = 1,2,3, โ€ฆ , ๐‘›

โˆ’๐›ป๐‘“ = ๐œ†1๐›ป๐‘”1 + ๐œ†2๐›ป๐‘”2 + ๐œ†3๐›ป๐‘”3 +โ‹ฏ+ ๐œ†๐‘š๐›ป๐‘”๐‘š

๐›ป๐‘“ =

๐œ•๐‘“๐œ•๐‘ฅ1

๐œ•๐‘“๐œ•๐‘ฅ2โ‹ฎ

๐œ•๐‘“๐œ•๐‘ฅ๐‘›

๐›ป๐‘”๐‘— =

๐œ•๐‘”๐‘—๐œ•๐‘ฅ1

๐œ•๐‘”๐‘—๐œ•๐‘ฅ2โ‹ฎ

๐œ•๐‘”๐‘—๐œ•๐‘ฅ๐‘›

This indicates that negative of the gradient of the objective function can be expressed as a linear combination of the gradients of the active constraints at optimal point.

โˆ’๐›ป๐‘“ = ๐œ†1๐›ป๐‘”1 + ๐œ†2๐›ป๐‘”2

Let ๐‘† be a feasible direction, then we can write

โˆ’๐‘†๐‘‡๐›ป๐‘“ = ๐œ†1๐‘†๐‘‡๐›ป๐‘”1 + ๐œ†2๐‘†

๐‘‡๐›ป๐‘”2

Since ๐‘† is a feasible direction ๐‘†๐‘‡๐›ป๐‘”1 < 0 and ๐‘†๐‘‡๐›ป๐‘”2 < 0

If ๐œ†1, ๐œ†2 > 0Then the term ๐‘†๐‘‡๐›ป๐‘“ is +ve

This indicates that ๐‘† is a direction of increasing function value

Thus we can conclude that if ๐œ†1, ๐œ†2 > 0, we will not get any better solution than the current solution

Page 16: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

๐‘”1 ๐‘‹ = 0

๐‘”2 ๐‘‹ = 0

๐‘”1 ๐‘‹ < 0

๐‘”2 ๐‘‹ < 0

๐‘”1 ๐‘‹ > 0

๐‘”2 ๐‘‹ > 0

๐›ป๐‘”1

๐›ป๐‘”2

๐‘†

Infeasible region

Infeasible region

Feasible region

Page 17: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Multivariable problem with inequality constraints

The necessary conditions to be satisfied at constrained minimum points ๐‘‹โˆ— are

๐œ•๐‘“ ๐‘‹

๐œ•๐‘ฅ๐‘–+

๐‘—โˆˆ๐ฝ1

๐œ†๐‘—๐œ•๐‘”๐‘— ๐‘‹

๐œ•๐‘ฅ๐‘–= 0 ๐‘– = 1,2,3, โ€ฆ , ๐‘›

๐œ†๐‘— โ‰ฅ 0 ๐‘— โˆˆ ๐ฝ1

These conditions are called Kuhn-Tucker conditions, the necessary conditions to be satisfied at a relative minimum of ๐‘“ ๐‘‹ .

These conditions are in general not sufficient to ensure a relative minimum, However, in case of a convex problem, these conditions are the necessary and sufficient conditions for global minimum.

Page 18: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Multivariable problem with inequality constraints

If the set of active constraints are not known, the Kuhn-Tucker conditions can be stated as

๐œ•๐‘“ ๐‘‹

๐œ•๐‘ฅ๐‘–+

๐‘—=1

๐‘š

๐œ†๐‘—๐œ•๐‘”๐‘— ๐‘‹

๐œ•๐‘ฅ๐‘–= 0 ๐‘– = 1,2,3, โ€ฆ , ๐‘›

๐œ†๐‘—๐‘”๐‘— = 0

๐œ†๐‘— โ‰ฅ 0

๐‘”๐‘— โ‰ค 0 ๐‘— = 1,2,3, โ€ฆ ,๐‘š

Page 19: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method

Multivariable problem with equality and inequality constraints

For the problem

๐œ•๐‘“ ๐‘‹

๐œ•๐‘ฅ๐‘–+

๐‘—=1

๐‘š

๐œ†๐‘—๐œ•๐‘”๐‘— ๐‘‹

๐œ•๐‘ฅ๐‘–+

๐‘˜=1

๐‘

๐›ฝ๐‘˜๐œ•โ„Ž๐‘˜ ๐‘‹

๐œ•๐‘ฅ๐‘–= 0 ๐‘– = 1,2,3, โ€ฆ , ๐‘›

๐œ†๐‘—๐‘”๐‘— = 0

๐œ†๐‘— โ‰ฅ 0

๐‘”๐‘— โ‰ค 0

๐‘— = 1,2,3, โ€ฆ ,๐‘š

๐‘“ ๐‘‹Minimize

Subject to ๐‘”๐‘— ๐‘‹ = 0 ๐‘— = 1,2,3, โ€ฆ ,๐‘š

Where ๐‘‹ = ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ€ฆ , ๐‘ฅ๐‘›๐‘‡

๐‘˜๐‘˜ ๐‘‹ = 0 ๐‘˜ = 1,2,3, โ€ฆ , ๐‘

The Kuhn-Tucker conditions can be written as

๐‘— = 1,2,3, โ€ฆ ,๐‘š

โ„Ž๐‘˜ = 0

๐‘— = 1,2,3, โ€ฆ ,๐‘š

๐‘˜ = 1,2,3, โ€ฆ , ๐‘

Page 20: Prof. (Dr.) Rajib Kumar Bhattacharjya

Rajib Bhattacharjya, IITG CE 602: Optimization Method