Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

18
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1

description

Choose: Potential Formula 3 or Then we have:

Transcript of Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Page 1: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Prof. David R. JacksonECE Dept.

Spring 2016

Notes 14

ECE 3318 Applied Electricity and Magnetism

1

Page 2: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Potential Calculation from Field

2

In this set of notes we explore calculating the potential function (x,y,z) (assuming that we already know the electric field).

Note: The electric field is found first, either from Coulomb’s law (superposition) or from Gauss’s law.

Page 3: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Choose:

Potential Formula

B

ABA

V E dr

A B

R

r

r R E dr

r

R

r R E dr 3

or

A r B R

r

R

Then we have:

Page 4: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Potential Formula (cont.)

r

R

r R E dr

Cr

R

4

1) Pick a reference point (if it is not already given).2) Integrate in a coordinate system of your choice (remember that any path can be chosen in statics).

Recipe:

Page 5: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Path Independence of Voltage Drop

20

0

0

ˆ ˆˆ ˆ sin

4

4

1 14

B

A

B

A

B

A

B

AB rA

r

rr

r

r

r

r

A B

V r E r dr r d r d

E dr

q drr

qr

qr r

Consider first a point charge:

By superposition, the potential from any set of charges is path independent in statics.

The integral is path independent (the answer only depends on the endpoints).

5

y

z

q

Point charge

x

A

CB

Page 6: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Example

Given: R = , (R) = 0

20

ˆ4

qE rr

Choose a radial path for convenience.

Find the potential function

r

R

r R E dr 0r

R

E dr

y

z

q

r

RC

Point charge

x

6

Page 7: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Example (cont.)

20

0

ˆ ˆˆ ˆ sin

4

4

r

rR

r

rR

r

r

r E r dr r d r d

E dr

q drr

qr

0

V4

qrr

7

Hence, we have

Page 8: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Summary for a Point Charge

0

V , 04

qrr

8

20

V/mˆ4

qE r rr

y

z

q

r

x

rThese results for a point charge form the building blocks for all

other charge distributions (using superposition).

This is done in Notes 15.

Page 9: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

ExampleGiven: R is at = b, (R) = 0

0

0

ˆ2

E

Find the potential function

Choose a radial path

0

ˆˆ ˆ ˆ

r

R

r

R

b

E dr

E d z dz d

E d

Infinite line charge

9

x

y

z

l0 [C/m]

r

R ( = b)

C

b

r

R

r R E dr

Page 10: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Example (cont.)

0

0

0

0

0

0

2

ln2

ln2

b

b

d

b

Note: b cannot be chosen as (there is an infinite voltage drop between = and = ).

0

0ln V

2b

10

In 2D problems (infinite in z) the reference point cannot be put at infinity.

Page 11: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Example

x

y

z

a

l0 [C/m]

r (0,0,z)

Given: () = 0

Note: We only know E on the z axis (from a previous example), so we MUST choose a path on the z axis.

Find the potential function on the z axis

Circular ring of line charge

11

r

R

r R E dr

Page 12: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Example (cont.)

() = 0

C

x

y

z

r

R ()

Choice of path:

12

r

R

r R E dr

Page 13: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Example (cont.)

From Coulomb’s law, we know that on the z axis the field is

ˆ ˆˆ ˆr

zR

z

z

r z E xdx y dy z dz

E dz

03/22 2

0

0, 0,2z

a zE zz a

13

0r

R

r E dr

r

R

r R E dr

so

Page 14: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Example (cont.)Hence,

03/22 2

0

03/22 2

0

1/22 20

0

0, 0,2

2

2

z

z

z

a zz dzz a

a z dzz a

a z a

02 2

0

10, 0, V2

azz a

The result is:

14

Page 15: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Adding a Constant to

Proof:

2

22 2

r

R

r R E dr

1

11 1

r

R

r R E dr

1

2

1

2

1 21 2 1 2

1 21 2

Rr

R r

R

R

r r R R E dr E dr

R R E dr

constant

C1

R1

r

C2

R2

15

1 1 01 2 2 02,R R

Assume two solutions:

Two different solutions for the potential function can only differ by a constant.

Page 16: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Adding a Constant to (cont.)

2 1, , , ,x y z x y z C

Conclusion:

Valid potential functions can only differ by the addition of a constant.

Adding a constant to a valid potential function gives a another valid potential function (this does not change the electric field).

16

Page 17: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

ExampleGiven: (z = 1 [m]) = 10 [V]

Find the potential function on the z axis

02 2

0

10, 0,2

az Cz a

Start with our previous solution, which has zero volts at infinity, and add a constant to it:

Circular ring of line charge

x

y

z

al0 [C/m]

r (0, 0, z)

R (0, 0, 1)10 [V]

17

Page 18: Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.

Example (cont.) 0

2 20

10, 0,2

az Cz a

0, 0,1 10 [V]

02 2

0

1 102 1

a Ca

Set:

x

y

z

a

l0 [C/m]

r (0, 0, z)

R (0,0,1)10 [V]

18

02 2

0

110 [V]2 1

aCa

Hence we have:

02 2 2 2

0

1 10, 0, 10 [V]2 1

azz a a

The solution is thus: