Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes...

44
Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1

Transcript of Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes...

Page 1: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Prof. David R. JacksonECE Dept.

Fall 2014

Notes 6

ECE 2317 Applied Electricity and Magnetism

Notes prepared by the EM Group University of Houston

1

Page 2: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Review of Coordinate Systems

An understanding of coordinate systems is important for doing EM calculations.

2

x

y

z

P (x, y, z)

Page 3: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Kinds of Integrals That Often Occur

20

ˆ

4

C

AB

C

C

v

V

Q d

V E dr

RE d

R

Q dV

(scalar integral,

scalar result)

(vector integral,

scalar result)

(vector integral,

vector result)

(scalar integral,

scalar re

Line

integrals :

Volume

integrals :2

0

ˆ

4v

V

RE dV

R

sult)

(vector integral,

vector result)

20

ˆ

ˆ

4

s

S

S

s

S

Q dS

I J n dS

RE dS

R

(scalar integral,

scalar result)

(vector integral,

scalar result)

(vector integral,

vector result)

Surface

integrals :

We wish to be able to perform all of these in various coordinates.

3

Page 4: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Rectangular Coordinates

ˆ ˆ ˆr xx yy zz

Short hand notation:

, ,r x y z

Note: Different notations are used for vectors in the books.4

Position vector:

zz

yyxx

x

y

z

r

P (x,y,z)

Note: A unit vector direction is defined by increasing one coordinate variable while keeping the other two fixed.

Note: We have the “tip to tail” rule when adding vectors.

Page 5: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Rectangular Coordinates

dV dx dy dz

5

We increment (x, y, z) starting from an initial

point (blue dot).

dxdy

dz

dS = dxdy

dS = dxdz

dS = dydzx

y

z

Page 6: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Rectangular (cont.)

ˆ ˆ ˆdr x dx y dy z dz

Path Integral (we need dr)

Note on notation: The symbol dl is often used instead of dr .

ˆ ˆ ˆr xx yy zz

6

x

y

z

A

BC

dr

r r+dr

Page 7: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Cylindrical Coordinates

2 2

1

cos

sin

tan /

x

y

z z

x y

y x

z z

x

y

z

.z

P (, , z)

7

x

y

Page 8: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Cylindrical (cont.)

Unit Vectors

Note: and depend on (x, y)

x

y

x

y

z

.

z

This is why we often prefer to express them in terms of

ˆ ˆx yand

Note: A unit vector direction is defined by increasing one coordinate variable

while keeping the other two fixed.

8

Page 9: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

1 2

1

1

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ cos

cos

x A x x A y x

A x

x

A

2 ˆ ˆ

cos2

sin

A y

Hence, we have ˆ ˆ ˆcos sinx y

x

y

1 2

ˆ ˆ ˆA x A y Assume

Similarly,Then we have:

Cylindrical (cont.)

so

Expressions for unit vectors (illustrated for )

9

Page 10: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

ˆ ˆ ˆcos sin

ˆ ˆ ˆsin cos

ˆ ˆ

ˆˆˆ cos sin

ˆˆˆ sin cos

ˆ ˆ

x y

x y

z z

x

y

z z

Summary of Results

Cylindrical (cont.)

10

Page 11: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Cylindrical (cont.)

11

2 2

ˆ ˆˆ ˆ ˆcos sin cos sin cos sin

ˆ ˆcos sin

ˆ ˆ

r zz

zz

zz

ˆ ˆ ˆr xx yy zz

x

y

z

.

z

r

Substituting from the previous tables of unit vector transformations and coordinate transformations, we have

Example: Express the r vector in cylindrical coordinates.

Page 12: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Cylindrical (cont.)

12

x

y

z

.

z

r

ˆ ˆr zz

zz

ˆˆ ˆr zz Note:

Page 13: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

dV d d dz

Note: dS may be in three different forms.

Cylindrical (cont.)

13

We increment (, , z) starting from an initial

point (blue dot).

Differentials

x

y

z

dS = d d

dS = d dzdS = d dz d d

dz

Page 14: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

x

y

d

x

y

z

dz

ˆdr d ˆdr d ˆdr z dz

Path Integrals

First, consider differential changes along any of the three coordinate directions.

y

x

d

d

Cylindrical (cont.)

14

Page 15: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

In general:

ˆˆ ˆdr d d z dz

Cylindrical (cont.)

2 2 2d dr d d dz

15

Note: A change is z is not shown, but is possible.

If we ever need to find the length along a contour:

x

y

dr

ˆ d

d

C

Page 16: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Spherical Coordinates

x

Note: = r sin

y

z

.z

P (r, , )

r

16

Note: 0

x

y

z

.

P (r, , )

r z

Page 17: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Spherical (cont.)

2 2 2

1

1

sin cos

sin sin

cos

cos /

tan /

x r

y r

z r

r x y z

z r

y x

Note: = r sin

17

y

z

.z

P (r, , )

r

x

Page 18: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Spherical (cont.)

Note: , and depend on (x, y, z). r

Unit Vectors

18

x

y

z

r

Note: A unit vector direction is defined by increasing one coordinate variable

while keeping the other two fixed.

Page 19: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Spherical (cont.)

ˆ ˆ ˆ ˆsin cos sin sin cos

ˆ ˆ ˆcos cos cos sin sin

ˆ ˆ ˆsin cos

ˆˆ ˆ sin cos cos cos sin

ˆˆ ˆ sin sin cos sin cos

ˆˆ cos sin

r x y z

x y z

x y

x r

y r

z r

Transformation of Unit Vectors

19

x

y

z

r

Page 20: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Spherical (cont.)

20

ˆˆ sin cos cos cos sin sin cos

ˆˆ sin sin cos sin cos sin sin

ˆ cos sin cos

r r r

r r

r r

ˆ ˆ ˆr xx yy zz

x

y

z

r

r

Example: Express the r vector in spherical coordinates.

Substituting from the previous tables of unit vector transformations and coordinate transformations, we have

Page 21: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Spherical (cont.)

21

ˆr rr

After simplifying:

ˆ ˆˆr rr Note:

x

y

z

r

r

Page 22: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Spherical (cont.)Differentials

dS = r2 sin d d

2 sindV r dr d d

Note: dS may be in three different forms (only one is shown). The other two are:

dS = r dr ddS = r sin dr d

22

x

y

z d = r sin d

drr d

d

d

We increment (r, , ) starting from an initial point (blue dot).

Page 23: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Spherical (cont.)

ˆdr r dr

x

y

z drr

x

y

z

d

dr

ˆdr r d ˆ sindr r d

ˆ ˆˆ sindr r dr rd r d

Path Integrals

23

x

y

z

drd

r

sind r d

Page 24: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Note that the formula for the dr vector never changes, no matter which direction we go along a path (we never add a minus sign!).

Note on dr Vector

24

ˆˆ ˆdr d d z dz

Example: integrating along a radial path in cylindrical coordinates.

ˆdr d

B

AB

A

V E dr

x

y

A

B

dr

0d

C

x

y A

B

dr

0d

C

B

A

ABV E d

This form does not change, regardless of which limit is larger.

Page 25: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example

Given:

Find the current I crossing a hemisphere (z > 0) of radius a, in the outward direction.

25

2ˆ [A/m ]J x x

x

y

z

ˆ ˆn r

J

Page 26: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example (Cont.)

26

2 2

ˆ

ˆ

ˆ ˆ

sin cos

sin cos

sin cos sin cos

sin cos

S

S

x

S

x

S

S

S

S

I J n dS

J r dS

x J r dS

J dS

x dS

a dS

a dS

ˆ ˆ ˆ ˆsin cos sin sin cos

ˆ ˆ ˆcos cos cos sin sin

ˆ ˆ ˆsin cos

ˆˆ ˆ sin cos cos cos sin

ˆˆ ˆ sin sin cos sin cos

ˆˆ cos sin

r x y z

x y z

x y

x r

y r

z r

sin cos

sin sin

cos

x r

y r

z r

Page 27: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example (Cont.)

27

2 2

2 /22 2 2

0 0

2 /23 2 2

0 0

/23 2

0

/23 3

0

3

sin cos

sin cos sin

sin cos sin

sin sin

sin

2

3

S

I a dS

a a d d

a d d

a d

a d

a

2

2

0

1cos 2

2d

Note :

/23

0

2sin

3d

Note :

32[A]

3I a

Page 28: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Appendix

28

Here we work out some more examples.

Page 29: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

ExampleP1 (4, 60 , 1)

P2 (3, 180 , -1)

d = 6.403 [m]

2 2 2

1 2 1 2 1 2d x x y y z z

cos

sin

x

y

z z

1

1

1

4cos 60 2

4sin 60 3.4641

1

x

y

z

2

2

2

3cos 180 3

3sin 180 0

1

x

y

z

Find d = distance between points

Given: Cylindrical coordinates (, , z)with distances in meters

29

This formula only works in rectangular

coordinates!

Page 30: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example

Given: v = -310-8 (cos2 / r4) [C/m3] , 2 < r < 5 [m]

Solution:

2

2

0 0

28 2

20 0

28 2

20 0

, sin

13 10 cos sin

13 10 cos sin

v

V

b

v

a

b

a

b

a

Q dV

r r drd d

drd dr

d dr dr

x

y

z

b

a

a = 2 [m], b = 5 [m]

Find Q

“A sphere with a hole in it”

30

Note: The integrand is separable and the limits are fixed.

Page 31: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example (cont.)

2 22

0 0

2

0

2

00

1 cos 2cos

2

1 sin 2

2 4

1 1

1 13/10

sin cos 2

bb

aa

d d

drr r

a b

d

Q = -5.65510-8 [C]

31

Note: The average value of cos2 is 1/2.

22

0

1cos 2

2d

Page 32: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example

Derive ˆˆ cos sinz r

1 2 3

ˆˆz r A A A

1 ˆˆA z r

2 ˆA z

3ˆˆA z

Let

32

Then

Dot multiply both sides with ˆˆ, ,r

Page 33: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example (cont.)

1

1

ˆˆ

ˆˆ cos

cos

A z r

z r

A

2

2

ˆ

ˆ cos2

sin

A z

z

A

3

3

ˆˆ

ˆ 0

0

A z

z

A

ˆˆ cos sinz r Result:

x

y

z

rz

z

x

y

z

x

y

z

z

33

1 2 3

ˆˆz r A A A

Page 34: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example

Derive ˆ ˆ ˆ ˆsin cos sin sin cosr x y z

1

2

3

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆˆ

A r x x r

A r y y r

A r z z r

component of

component of

component of

Let 1 2 3ˆ ˆ ˆ ˆr x A y A z A

An illustration of finding the x component of r

34

Dot multiply both sides with ˆ ˆ ˆ, ,x y z

x

y

z

r

L

Page 35: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example (cont.)

ˆ ˆ cos sin cosr x L

ˆ ˆ ˆ ˆsin cos sin sin cosr x y z Result:

ˆ ˆ sin sin sinr y L

Hence

cos sin2

L

Similarly,

ˆ ˆ cosr z

Also,

35

x

y

z

x

L

r

( / 2) -

Page 36: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example (Part 1)

Find VAB using path C shown below.

2ˆ ˆ ˆ3 2 1E x xy y xy z z

2

02

1

3

1

3 1 1

B B

AB x y z

A A

B

A

AB

V E dr E dx E dy E dz

xy dx xy dy

y x dy dx

V x x x x dx

x

y

1

11y x

x

y

z

C

(0,1,0)

(1,0,0)

.E (x,y,z)

B

A

Top view

36

(This is not an electrostatic field.)

Page 37: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example (cont.)

02

1

02 2 3

1

12 2 3

0

13 2

0

3 1 1

3 3 2

3 3 2

2

1 1 1 3 4 12 52

4 3 2 12 12

ABV x x x x dx

x x x x x dx

x x x x x dx

x x x dx

Completing the calculus:

VAB = -5/12 [V]

37

Page 38: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example (cont.)Alternative calculation (we parameterize differently):

38

0 1

2

1 0

3

B B

AB x y z

A A

V E dr E dx E dy E dz

xy dx xy dy

0 12

1 0

0 12 2 3

1 0

3 1 1

3 3

3 1 11

2 3 4

ABV x x dx y y dy

x x dx y y dy

1y x

VAB = -5/12 [V]

Page 39: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example (Part 2)

Find VAB using path C shown below.

2ˆ ˆ ˆ3 2 1E x xy y xy z z

2

02 2

0

0 1

1 0

3

3 3

0 0

0

B B

x y z

A A

B

A

B

A

E dr E dx E dy E dz

xy dx xy dy

xy dx xy dy xy dx xy dy

dx dy

(same field as in Part 1)

VAB = 0 [V]39

x

y

z

C

(0,1,0)

(1,0,0)

E (x,y,z)

B

A

Page 40: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example

VAB = -7/6 [V]

Find VAB using an arbitrary path C in the xy plane.

2ˆ ˆ ˆ3 2E x x y y z z

2

0 12

1 0

1 12

0 0

3

3

3

1 13

2 3

7 / 6

B B

x y z

A A

B

A

AB

E dr E dx E dy E dz

x dx y dy

x dx y dy

V x dx y dy

Note: The path does not have to be parameterized: Hence, only the endpoints

are important.

The integral is path independent!

(This is a valid electrostatic field.)

40

x

y

z

C

(0,1,0)

(1,0,0)

E (x,y,z)

B

A

Page 41: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example ˆ ˆ 2E x x y y

ˆˆ ˆ

ˆ 3

cos 3cos

sin 3sin

ˆˆˆ cos sin

ˆˆˆ sin cos

B

AB

A

V E dr

dr d d zdz

d

x

y

x

y

Ax

C

3 [m]

B

y

Find VAB using path C shown below.

41

Page 42: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example (cont.)

VAB = 9/2 [V]

ˆ ˆˆ ˆcos sin 3cos sin cos 2 3sinE ˆ 3dr d

Note: The angle must change continuously along the path. If we take the angle to be / 2 at point B, then the

angle must be - at point A.

42

/2

/2

/2

9sin cos

9sin 2

2

cos 29

2 2

9 1 1 9

2 2 2 2

ABV d

d

9 18 sin cos 9sin cosE dr d d

ˆ ˆ 2E x x y y

Page 43: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example (cont.)

ˆ ˆ 2E x x y y

Ax

C

3 [m]

B

y

Question: Is this integral path independent?

B

AB

A

V E dr

43

Let’s examine this same electric field once again:

Note: The answer is yes because the curl of the electric field is zero, but we do not know this yet.

Page 44: Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.

Example (cont.) ˆ ˆ 2E x x y y

Ax

C

3 [m]

B

y

Let’s find out:B

AB

A

V E dr

0 3

3 0

2

2

99

2

9 / 2

B B

x y z

A A

B

A

E dr E dx E dy E dz

x dx y dy

x dx y dy

Yes, it is path independent!

VAB = 9/2 [V]

44