Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the...

24
_____________________________________________________________________________ Maxim Integrated Products RR-1K Product Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from extensive reliability stress testing performed in 1996. It is separated into seven fabrication processes: 1) Standard Metal-Gate CMOS (SMG); 2) Medium-Voltage Metal-Gate CMOS (MV1); 3) Medium-Voltage Silicon-Gate CMOS (MV2); 4) 3μm Silicon-Gate CMOS (SG3); 5) 5μm Silicon- Gate CMOS (SG5); 6) 1.2μm Silicon-Gate CMOS; and 7) Bipolar (BIP) processes. Over 8,967,000 device hours have been accumulated for products stressed at an elevated temperature (135°C) during this period. The data in this report is considered typical of Maxim’s production. As you will see, Maxim’s products demonstrate consistently high reliability. December 1997

Transcript of Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the...

Page 1: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

_____________________________________________________________________________ Maxim Integrated Products

RR

-1K

ProductReliability Report

This report presents the product reliability data forMaxim’s analog products. The data was acquired fromextensive reliability stress testing performed in 1996. It isseparated into seven fabrication processes: 1) StandardMetal-Gate CMOS (SMG); 2) Medium-Voltage Metal-GateCMOS (MV1); 3) Medium-Voltage Silicon-Gate CMOS(MV2); 4) 3µm Silicon-Gate CMOS (SG3); 5) 5µm Silicon-Gate CMOS (SG5); 6) 1.2µm Silicon-Gate CMOS; and 7) Bipolar (BIP) processes.

Over 8,967,000 device hours have been accumulated forproducts stressed at an elevated temperature (135°C)during this period. The data in this report is consideredtypical of Maxim’s production. As you will see, Maxim’sproducts demonstrate consistently high reliability.

December 1997

Page 2: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

2 ______________________________________________________________________________________

______________________________________Table of ContentsFabrication Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

SMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3MV1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3MV2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3SG3, SG5, AND SG1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3Bipolar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Reliability Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3Table 1: Maxim Process Reliability Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Process Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4Reliability Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Reliability Program Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Step 1: Initial Reliability Qualification Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Step 2: Ongoing Reliability Monitor Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Step 3: In-Depth Failure Analysis and Corrective Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Designed-In High Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Wafer Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8Failure-Rate History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8Infant Mortality Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Table 2: Infant Mortality Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Reliability Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Merits of Burn-In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Table 3: Life Test Result of Maxim Products for Each Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Table 4: Life Test Data Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Life Test at 135°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Humidity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1385/85 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Pressure Pot Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13HAST Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Temperature Cycling Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13High-Temperature Storage Life Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Hybrid Products Reliability Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Process Variability Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14Reliability Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Table 5: Life Test Data—SMG Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14Table 6: Life Test Data—MV1 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14Table 7: Life Test Data—MV2 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14Table 8: Life Test Data—SG3 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14Table 9: Life Test Data—SG5 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15Table 10: Life Test Data—SG1.2 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15Table 11: Life Test Data—Bipolar Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15Table 12: 85/85 (THB) Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15Table 13: Pressure Pot Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16Table 14: HAST Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17Table 15: Temperature-Cycling Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17Table 16: High-Temperature Storage Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18Table 17: Hybrid Products Life Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18Table 18: Hybrid Products Temperature-Cycling Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Appendix 1: Determining Acceleration Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19Definition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19How to Use the Arrhenius Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Appendix 2: Determining Failure Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20Definition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20Calculating Failure Rates and FITs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20Including Statistical Effects in the FIT Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Page 3: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

______________________________________________________________________________________ 3

________________________Fabrication ProcessesMaxim is currently running the following sevenmajor fabrication processes:

SMG (Standard Metal-Gate CMOS) MV1 (Medium-Voltage Metal-Gate CMOS) MV2 (Medium-Voltage Silicon-Gate CMOS) SG3 (3-Micron Silicon-Gate CMOS) SG5 (5-Micron Silicon-Gate CMOS) SG1.2 (1.2-Micron Silicon-Gate CMOS) Bipolar (18/12-Micron)

SMGSMG is a 6-micron, 24V, metal-gate CMOSprocess. It has conservative design rules, but isappropriate for many SSI and MSI circuit designs.This very popular fabrication process is used toproduce many of Maxim’s products.

MV1MV1 is a 12-micron, 44V, metal-gate CMOSprocess, used exclusively to produce our analogswitch product line.

MV2MV2 is a 5-micron, 44V, silicon-gate CMOS process,also used in our analog switch production line.

SG3, SG5, and SG1.1SG3 is a 3-micron, 12V, silicon-gate CMOS process.SG5 is a 5-micron, 20V, silicon-gate CMOS process.SG1.2 is a 1.2-micron, 6V, silicon-gate CMOSprocess. SG3, SG5, and SG1.2 have become ourfuture process standards.

BipolarBipolar is an 18-micron, 44V or 12-micron, 24V bipo-lar process, used chiefly for precision references, opamps, and A/D converters.

_______________________Reliability MethodologyMaxim’s quality approach to reliability testing is con-servative. Each of the seven fabrication processeshas been qualified using the following industry-stan-dard tests: Life Test, 85/85, Pressure Pot, HAST, High-Temperature Storage Life, and Temperature Cycling(Table 1). Each process has been qualified andproven to produce inherently high-quality product. Maxim’s early conservative approach includedburn-in as a standard stage of our production flow.

Burn-in ensured that our customers were receivinga quality product. Now, with the addition of our ownsophisticated fabrication facility, we have improvedthe innate product quality to the point where burn-in adds little reliability value.Each time a new fabrication process is introduced atMaxim, an Infant Mortality evaluation (burn-in evalu-ation) is initiated at the same time as process qualifi-cation. Through this Infant Mortality evaluation wecan identify fabrication process defects at an earlystage of production. Using the data in Table 2 (InfantMortality Evaluation Results) and Figure 9 (InfantMortality Pareto Chart) we can identify which cate-gory should next be improved. The data showndemonstrates the positive direction of Maxim’s quali-ty standards. It illustrates our continued dedicationto providing the lowest overall-cost solution to ourcustomers, through superior quality products.Maxim’s SMG, MV1, MV2, SG3, SG5, SG1.2, andBipolar processes clearly meet or exceed the per-formance and reliability expectations of the semi-conductor industry. These processes are qualifiedfor production. Cross-sectional views of theseseven processes are shown in Figures 1–7.

___________________________Reliability Program

Maxim has implemented a series of Quality andReliability programs aimed at building the highestquality, most reliable analog products in the industry.

Reliability Program StepsAll products, processes, packages, and changes in

TEST NAME CONDITIONSSAMPLING PLAN

ACC/SS

Life Test +135°C/1000 hrs. 1/77

85/85+85°C, 85% R.H.,1000 hrs. with Bias

1/77

Pressure Pot+121°C, 100% R.H.,2 ATM, 168 hrs.

0/77

TemperatureCycling

-65°C to +150°CAir-to-Air/1000Cycling

1/77

High-Temp.Storage Life

+150°C/1000 hrs. 1/77

TABLE 1. MAXIM PROCESS RELIABILITY TESTS

Page 4: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

4 ______________________________________________________________________________________

(1) SMG (Refer to Figure 1) Layer Description Dimension1 P-Well Diffusion 10µm2 P+ Diffusion 2µm3 N+ Diffusion 2µm4 Gate-Oxide Growth 900Å5 Threshold Implant6 Contact Etch7 Metallization 1µm (Al, Si-1%)8 Passivation 0.8µm (Si3N4 over SiO2)

(2) MV1 (Refer to Figure 2) Layer Description Dimension0 Buried Layer 10µm1 EPI Deposit 19µm2 P-Well Diffusion 10µm3 P+ Diffusion 3µm4 N+ Diffusion 3µm5 Gate-Oxide Growth 1975Å6 Threshold Implant7 Contact8 Metallization 1µm (Al, Si-1%)9 Passivation 0.8µm (Si3N4 over SiO2)

(3) MV2 (Refer to Figure 3)Layer Description Dimension1 Buried Layer 24.0µm2 P Well 10.0µm3 P+ Diffusion 1.5µm4 N+ Diffusion 1.5µm5 Gate-Oxide Growth 1000Å6 P-Ch Threshold Adjust7 Polysilicon 4500Å8 NLDD9 PLDD10 N+ Ohmic11 Contact12 Metal 1.0µm13 Passivation 0.8µm

(4) SG3 (Refer to Figure 4)Layer Description Dimension1 P Well 6.0µm2 PNP Base3 Zener Implant4 Active Area 1.5µm5 P Guard6 N Guard7 P-Ch Threshold Adjust8 Poly 2 7000Å9 Poly 1 4000Å10 N+ Block11 P+ Select12 Thin Film13 CrSi Contact14 Contact15 Metal 1.0µm16 Passivation 0.8µm (Si3N4 over SiO2)

(5) SG5 (Refer to Figure 5)Layer Description Dimension1 P-Well Diffusion 8µm2 PNP Base Drive 3 Zener Implant 4 Active Area/Field Ox 1µm5 N Guard 6 P Guard 7 Threshold Adjust 8 Gate-Oxide Growth 750Å9 Polysilicon 1 4400Å10 Cap Oxide 1000Å11 Polysilicon 2 4400Å 12 N+ Implant (Source/Drain)13 P+ Implant (Source/Drain)14 Chrome/Si Thin-Film Deposit15 Contact 16 Metallization 1µm17 Passivation 0.8µm (Si3N4 over SiO2)

(6) SG1.2 (Refer to Figure 6)Layer Description Dimension0 Mark Layer on P Substrate1 N+ Buried Layer 4µm2 P+ Buried Layer 6µm3 P Well 2.8µm4 NPN Base5 PNP Base6 Active Area7 P Guard8 N Guard9 Gate-Oxide Growth 230Å10 Poly 1 4200Å11 Poly 2 4200Å12 NMOS LDD13 N+ Implant (Source/Drain) 0.3µm14 P+ Implant (Source/Drain) 0.3µm15 Thin Film (Chrome/Si)16 Contact17 TF Contact18 Metal 1 6000Å19 Metal 1 Options20 Via21 Metal 2 1.0µm22 Passivation 8000Å

(7) BIP (Refer to Figure 7)Layer Description Dimension1 N+ Buried Layer 4.5µm2 P+ Isolation 20µm3 P Base 3µm4 N+ Emitter 2.5µm5 Capacitor 1500Å6 Contact Etch7 Aluminum 11kÅ (Al, Si-1%)8 Passivation 8kÅ (Si3N4 over SiO2)

_______________________________________________________________________Process TechnologiesThis section defines the layer-by-layer construction steps used in the fabrication of each process.

Page 5: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

______________________________________________________________________________________ 5

����������������������������������������

������������������������������

������������������������������������������

��������������������������������������������

������������������������������������������������������������

������������������������������������������������

��������������������������������������������������

N-CHANNEL P-CHANNEL

N+ N+ N+ N+P+ P+P+P+

P WELL

Si3N4/SiO2 = 0.8µm

TFIELD OX = 1.15µm

2µmTMETAL = 1µm

TGOX = 900Å 10µm

Figure 1. SMG Process

������������������������������������

����������������������������������������

������������������������������������������������������������

��������������������������������������������

����������������������������������������������������������������

����������������������������������������������������

��������������������������������������������������

N-CHANNEL P-CHANNEL

N+ N+ N+ N+P+ P+P+P+

P WELL

Si3N4/SiO2 = 0.8µm

TFIELD OX = 1.15µm

3µmTEPI = 19µmTMETAL = 1µm

TGOX = 1975Å

10µm

10µm

SUBSTRATE

Figure 2. MV1 Process

TPOLY = 4500ÅTMETAL = 1.0µm

P-CHANNELN-CHANNEL

Si3N4/Si02 = 0.8µm

������������

�������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

��������������������������������������������������

����������

TREFLOW 0X = 0.8µm

����������

N-SUBSTRATE

P+

BURIED LAYER

P WELL = 10µm

TGOX = 1000Å

TEPI = 16µm

P+N+P+

18µ

N+N+P+ N+P+

1.5µm

��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��

����@@@@����ÀÀÀÀ����@@@@����ÀÀÀÀ����@@@@����ÀÀÀÀ����@@@@����ÀÀÀÀ����@@@@����ÀÀÀÀ����

TFIELD 0X = 0.8µm

Figure 3. MV2 Process

Page 6: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

6 ______________________________________________________________________________________

N-CHANNEL

P-SUBSTRATE

P-CHANNEL

��������� ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��������������������������������

���������

���������

���������

���������

���������

���������

���

METAL 2 = 8000Å METAL 1 = 6000ÅVIA POLY 1 = 4200Å

POLY 2 = 4200Å

FEILD OXIDE

PECVDOX & SOG

N EPI

P WELL

PBL = 6µm

N+ GUARDP+ P+ P+N+ N+ N+

TGOX = 230Å

N+ BURIED LAYER = 4µm

BPSG & UNDERCOAT

P WELL

����

Figure 6. SG1.2 Process

�����������������������������������������������������������������

������������������������������������������������������������

����������������������������������������

�����������������������������������������������������������������

����@@@@����ÀÀÀÀ����@@@@����ÀÀÀÀ����@@@@����ÀÀÀÀ����@@@@����ÀÀÀÀ����@@@@����ÀÀÀÀ����������

��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��

N-CHANNEL

N-SUBSTRATE

P-CHANNEL

����@@@@����ÀÀÀÀ����@@@@����ÀÀÀÀ����@@@@����ÀÀÀÀ����@@@@����ÀÀÀÀ����@@@@����ÀÀÀÀ����

N+

Si3N4/Si02 = 0.8µm

TFIELD 0X = 0.9µm

TREFLOW 0X = 1.3µm

P+P+N+P+N+ N+

POLY 2 = 7000Å

POLY 1 = 4000Å

TMETAL = 1.0µm1.5µm

P+

P WELL = 6µm

TGOX = 450Å

Figure 4. SG3 Process

������

������������������������������������������������

������

��������������������������������������������

N+ N+ N+ N+P+ P+P+

P WELL = 8µm

Si3N4/SiO2 = 0.8µm

TFIELD OX = 10,000Å

1µmTMETAL = 1µm

TGOX = 750Å

���������

����������

������������������������������������������������

������������������������������������������������

������������

��������

TPOLY OX = 1000ÅPOLY 1

POLY 2

Figure 5. SG5 Process

Page 7: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

______________________________________________________________________________________ 7

manufacturing steps must be subjected to Maxim’sreliability testing before release to manufacturing formass production. Our reliability program includesthe following steps:

Step 1: Initial Reliability Qualification Program Step 2: Ongoing Reliability Monitor Program Step 3: In-Depth Failure Analysis and

Corrective Action

Tables 5–11 show the results of long-term Life Testsby process and device type. Tables 12–16 showthe results of the 85/85, Pressure Pot, HAST,Temperature Cycling, and High-TemperatureStorage Life tests, by device type. Tables 17 and18 show hybrid product reliability.

Step 1: Initial Reliability Qualification ProgramMaxim’s product reliability test program meets EIA-JEDEC standards and most standard OEM reliabili-ty test requirements.Table 1 summarizes the qualification tests that arepart of Maxim’s reliability program. Before releasingproducts, we require that three consecutive manu-facturing lots from a new process technology suc-cessfully meet the reliability test requirements.

Step 2: Ongoing Reliability Monitor ProgramEach week Maxim identifies three wafer lots perprocess per fab to be the subjects of reliability moni-tor testing. Each lot is Pressure Pot tested, and testedto 192 hours of High-Temperature Life (at 135°C). Ona quarterly basis, one wafer lot per process per fab isidentified and subjected to the same long-term relia-bility tests as defined in Table 1. Test results are fedback into production.

Step 3: In-Depth Failure Analysis and Corrective Action

Our technical failure-analysis staff is capable of ana-lyzing every reliability test failure to the device level. Ifan alarming reliability failure mechanism or trend isidentified, the corrective action is initiated automati-cally. This proactive response and feedback ensuresthat discrepancies in any device failure mechanismare corrected before becoming major problems.

Designed-In High ReliabilityA disciplined design methodology is an essentialingredient of manufacturing a reliable part. Noamount of finished-product testing can create relia-bility in a marginal design.To design-in reliability, Maxim began by formulating aset of physical layout rules that yield reliable productseven under worst-case manufacturing tolerances.These rules are rigorously enforced, and every circuitis subjected to computerized Design Rule Checks(DRCs) to ensure compliance.Special attention is paid to Electrostatic Discharge(ESD) protection. Maxim’s goal is to design everypin of every product to withstand ESD voltages inexcess of 2000V, through a unique protection struc-ture. In the case of our RS-232 interface circuits,products can even withstand ±15kV ESD using thehuman-body model, ±8kV ESD using IEC1000-4-2contact discharge, or ±15kV ESD using IEC1000-4-2air-gap discharge. Maxim tests each new productfor designed 50mA latchup protection.Designs are extensively simulated (using bothcircuit and logic simulation software) to evaluateper formance under worst-case condit ions.Finally, every design is checked and recheckedby independent teams before being released tomask making.

Wafer InspectionAll wafers are fabricated using stable, proven

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������

N+ N+ N+ N+P+ P+P+

P BASE = 3µm

SiO2 /Si3N4 = 0.8µm

NPN

N+ BURIED LAYER = 4.5µm

N+ EMITTER = 2.5µm

P+ ISOLATION = 20µm

��������

������

��������

����������������������

������������

P+P+P+ ISOP+ ISO P+ ISO P+ ISO

N+ BURIED LAYER = 4.5µm

Al/Si (1%) = 11kÅ

N EPI = 17µm

LATERAL PNP VERTICAL PNP

P SUBSTRATE <111>

Figure 7. Bipolar Process

Page 8: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

8 ______________________________________________________________________________________

processes with extremely tight control. Each wafermust pass numerous in-process checkpoints (suchas oxide thickness, alignment, critical dimensions,and defect densities), and must comply with Maxim’sdemanding electrical and physical specifications.Finished wafers are inspected optically to detect anyphysical defects. They are then parametrically testedto ensure full conformity to Maxim’s specifications.Our parametric measurement system is designed tomake the precision measurements that will ensurereliability and reproducibility in analog circuits. We believe our quality-control technology is the bestin the industry, capable of resolving current levelsbelow 1pA, and of producing less than 1pF capaci-tance. Maxim’s proprietary software allows automaticmeasurement of subthreshold characteristics, fastsurface-state density, noise, and other parameterscrucial to predicting long-term stability and reliability.Every Maxim wafer is subject to this rigorous screen-ing at no premium to our customers.

Failure-Rate HistoryThe graph below (Figure 8) illustrates Maxim’s Failures-in-Time (FIT) rate performance. It also

highlights the progressive improvements made inthis FIT rate, a trend that we expect to see contin-ue, thanks to our established continuous-improve-ment methodology.

Infant Mortality EvaluationMaxim evaluates each process and product family’sInfant Mortality rate immediately after achievingqualified status. Through Infant Mortality analysis, wecan identify the common defects for each process orproduct family. For an illustration of Maxim’s lowInfant Mortality rate, refer to Table 2. Figure 9 is anInfant Mortality pareto chart showing each categoryof failures; categories are prioritized based on rela-tive frequency.

______________________________Reliability DataMerits of Burn-In

Figure 10 plots Failure Rate versus Time for themetal-gate CMOS process. The plot is based onTable 3’s Life Test data and Table 2’s Infant Mortalityevaluation data, both applied to a General Reliabilitymodel. From this data, the benefit of productionburn-in can be derived.

Sept '85 May '86 July '87 April '88 Mar '90 Mar '91 Jan '92

2.882.68

4.79

5.63

6.80

7.497.52

2

1

3

4

5

6

7

8

2.47

Jan '93

2.51

1.311.29 1.25

Jan '94 Jan '95 Jan '96 Jan '97

FIT

RATE

Figure 8. Maxim FIT Rates Over Time

Page 9: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

______________________________________________________________________________________ 9

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

1

2 1

5

11

1313

18

31

MARGINAL ASSEMBLY LEAKAGE UNKNOWN SCRATCH GATE OXIDE TEST MASK ESD

CATEGORY

NU

MB

ER

OF

DE

FE

CT

S

Figure 9. Infant Mortality Pareto Chart

Page 10: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

10 _____________________________________________________________________________________

TABLE 2. INFANT MORTALITY EVALUATION RESULTS

ANALYSIS

XRCAAB184CXRCAAB217QXRCBAA208QXROCAA045QXROBAB029QXROBAC030Q

135135135135135135

11,698 9642

11,83412,62910,2167912

1421120

854141698711950

DG201ACJDG211CJDG212CJDG509ACJDG508ACJDG508ACJ

PPMFAILURES

1-MARGINAL LEAKAGE4-MARGINAL LEAKAGE2-MARGINAL LEAKAGE7-ISOFF CONTAMINATION, 1-HIGH ICC, 3 TIMING1-IDON, IDOFF

SSBI TEMP (°C)LOTPRODUCT

63,931 20 312.8Subtotals

30,888 3 97Subtotals

XRLADB016AXRLADB017BXRLADB018B

135135135

10,33810,48210,068

102

970

199

DG411DY 1-MARGINAL LEAKAGE

2-MARGINAL LEAKAGE

34,290 2 58.3Subtotals

XDDCAA096AXDDCAA102A XDDAAA097A XDDAAA098AXDDBAA099B

135135 135 135135

68866824669469276959

02000

0.02930.00.00.0

ICM7218CIPI

ICM7218AIPI

ICM7218BIPI

1-MARGINAL LEAKAGE, 1-UNKNOWN

27,130 3 110Subtotals

BDDACZ012QBDDACA015BBDDBCZ010Q

135135135

11,6743101

12,355

111

8532280

ICM7218AIPI

ICM7218BIPI

1-UNKNOWN1-UNKNOWN1-UNKNOWN

33,011 2 60.6Subtotals

XPPAJQ003BR XPPAJQ003CXPPAJQ006AXPPAJQ007B

135135135135

8446447

12,39013,330

0200

0.03100.00.0

MAX1232CPA1-DIE SCRATCH, 1-PACKAGE CRACK

128,330 20 155.8Subtotals

XPWAAA039AAXPWAAA040AAXPWAAA044ABXPWAAA048ABXPWAAA050AAXPWAAA074AA

XPWAAA147A

XPWAAA147BXPWBAA012A

XPWBAA012B

XKMAAA005QXKMCAA007AXKMAAA008A

150150150125125150

150

150150

150

135135135

532456275831557557684643

10,372

10,78910,070

10,929

15,7276277

30,888

010223

2

03

3

211

0.0177.70.0

358.7346.7646.1

192.8

0.0297.9

274.5

12715932

MAX232CPE

MAX232CPEMAX202CPEMAX232CPE

1-INTERMITTENT BOND WIRE OPEN (HEEL OF WEDGE BOND)

2-BOND WIRE SHORT FAILURES1-MECHANICAL DAMAGE, 1-GATE-OXIDE DEFECT1-INTERMITTENT BOND OPEN (HEEL OF WEDGE BOND), 1-GATE-OXIDE DEFECT,1-MARG. HIGH RIN THRESHOLD (CAUSE UNKNOWN)1-BOND WIRE OPEN WEDGE BONDS @ LEADFRAME,1-HIGH IEE DUE TO GATE-OXIDE DEFECT

1-LOW R1IN RESISTANCE SCRATCH ON DIE,1-HIGH IEE GATE-OXIDE DEFECT,1-HIGH R2IN RESISTANCE ERR. FUSE BLOWN1-HIGH R1IN RESISTANCE ERR. FUSE BLOWN,1-T1OUT STUCK HIGH UNKNOWN DAMAGE IN FA,1-R2IN INPUT THRESHOLD MARG. FAIL2-UNKNOWN1-UNKNOWN1-UNKNOWN

28,313 10 353.2Subtotals

XPYAJA208A

XPYAJA208BA

XPYAJA209A

XPYAJA208B

150

150

150

150

9443

4702

9873

4295

4

3

3

0

423.6

638.0

303.9

0.0

MAX690CPA 1-AC FAILURE NO SCRATCH,2-MARGINAL HIGH RESET THRESHOLD NO SCRATCH,1-FUNCTIONAL FAILURE DUE TO DIE SCRATCH2-DIE SCRATCH ON SILICON SUBSTRATE,1-DIE SCRATCH ON METAL LINES1-RESET THRESHOLD DUE TO DIE SCRATCH,1-MARGINAL IBAT NO SCRATCH,1-GATE-OXIDE RUPTURE POSSIBLY ESD DAMAGE

10,712 3 280Subtotals

NEAABZ003BNEAAVN020BNEAABZ003A

135135135

201031915511

102

4970

363

MAX1044CPA 1-UNKNOWN

2-UNKNOWN

MV1 PROCESS

MV2 PROCESS

SMG PROCESS

Page 11: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

_____________________________________________________________________________________ 11

Product Reliability Report

TABLE 2. INFANT MORTALITY EVALUATION RESULTS (continued)

23,039 6 260Subtotals

24,582 4 162

ANALYSIS

Subtotals

XKNACA009AXKNACA011AXKNACB016C

135135135

865496896239

121

115206160

MAX485CPA 1-LEAKAGE2-UNKNOWN1-UNKNOWN

XEVAJA035AXEVANA046AXEVANB048B

135135135

982382015015

150

1026100

MAX667CPA

PPMFAILURES

1-PARAMETRIC1-PARAMETRIC, 4-FUNCTIONAL1-UNKNOWN

SSBI TEMP (°C)LOTPRODUCT

15,156 2 131Subtotals

XIKGBA037AXIKDBB028CXIKEBB033BXIKHBB036B

135135135135

4590 3347 6470 749

1010

217 0

154 0

MAX488ECPAMAX490ECPAMAX491EEPDMAX489EEPD

1-UNKNOWN

1-UNKNOWN

45,599 14 307Subtotals

XETAZZ063Q

XETAZZ058QXETAZA075AXETAZA099Q

135

135135135

10,016

10,18114,97710,425

6

143

599

98267288

MAX232ACPE

MAX232ACPEMAX202ACPEMAX232ACPE

2-BOND WIRE SHORT TO DIE EDGE,1-BOND WIRE SMASH, 1-DIE SCRATCH,1-HIGH ICC, 1-LOW SLEW RATE1-OXIDE DEFECT2-DIE SCRATCH, 2-UNKNOWN3-HIGH ICC

28,393 7 246.5Subtotals

XFPAUB004AXFPAVA011QXFPAVA009Q

135135135

55926565

16,236

205

3580

308

MAX452CPAMAX454CPDMAX455CPP

2-VOS

4-VOS, 1-FUNCTIONAL FAILURE

34,838 5 143Subtotals

XPKABB254AXPKABB261AXPKABB263A

135135135

10,84811,65712,333

212

18486162

MAX732CPA 1-AC FAILURE, 1-UNKNOWN1-AC FAILURE1-AC FAILURE

38,086 7 184Subtotals

BDRAAZ014ABDRAAZ026BBDRAAZ029A

135135135

10,09116,64811,347

331

29718088

MAX7219CN 3-UNKNOWN3-UNKNOWN1-UNKNOWN

19,752 4 202Subtotals

VWHABB074CVWHABB079DVWHABB083AVWHABB083B

135135135135

4100465064154587

1102

2432150

436

MAX901BCPE 1-LEAKAGE1-HIGH ICC

2-PARAMETRIC

26,689 4 150Subtotals

NHUABO013ANHUABO007ANHUABO004B

135135135

726294509977

220

2752120

MAX202CPE 2-FUNCTIONAL, UNKNOWN1-MASKING DEFECT, 1-UNKNOWN

26,582 4 152Subtotals

NDOBCO005ANDOBCO005JNDOBCO006ANDOBCN009A

135135135135

425746304255

13,440

1300

2356480 0

MAX202ECPE 1-DIE SCRATCH1-BAUD CRATER, 2-UNKNOWN

18,680 3 160Subtotals

XTOACZ010AXTOACA014QXTOACB015B

135135135

702667594895

120

1422950

MAX705CPA 1-HIGH ICC2-PARAMETRIC

34,908 7 200Subtotals

XAABCA009AXAAACA013AXAAACA016A

135135135

12,50511,87310,530

322

239168189

MAX712CPEMAX713CPE

3-PARAMETRIC2-PARAMETRIC1-FUNCTIONAL, 1-PARAMETRIC

NTABGO01O 135 12,033 2 166MAX692ACPA 2-PARAMETRIC

12,033 2 166Subtotals

704,942 132 187Combined Totals

SMG PROCESS (continued)

SG3 PROCESS

SG5 PROCESS

SG1.2 PROCESS

BIP PROCESS

Page 12: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

12 _____________________________________________________________________________________

Table 3’s data summarizes the reliability effect ofproduction burn-in. Essentially, only four units out of8,967 were found to be outside the specificationafter 1000 hrs of operation at 135°C. This is equal toan FIT rate of 0.13 at 25°C. In comparison, the Infant Mortality rate is equal to132 units out of 704,942 after 12 hrs at 135°C, whichhas an equivalent FIT rate of approximately 0.794. Inpractical terms, 0.019%/six years (or 0.003%/year) ofthe total population would be found as defectivethrough the first six years of operation, with an addi-

tional 0.009%/year failing over the remaining life ofthe product.

Life Test at 135°CLife Test is performed using biased conditions thatsimulate a real-world application. This test esti-mates the product’s field performance. It establish-es the constant failure-rate level and identifies anyearly wearout mechanisms. The tested product iskept in a controlled, elevated-temperature environ-ment, typically at 135°C. This test can detectdesign, manufacturing, silicon, contamination,

120

100

80

60

40

20

0

1 10 20 30 40 50 60 70 80 90 100

TIME (k HOURS)

FAIL

UR

E R

ATE

(FI

T)

0.09

0.54

0.45

0.13

0.54

0.28

0.26

FIT@25°C

1.59

9.23

7.68

2.24

9.36

4.89

4.4

FIT@55°C

0

0

0

0

1

2

1

REJECTS

2250

385

467

1602

846

1618

1799

SMG

MV1

MV2

SG3

SG5

SG1.2

BIP

SAMPLE SIZEPROCESS

0.13 2.348967TotalFigure 10. Failure Rate at the Field(55°C for Metal-Gate CMOS Process)

Note 1: A/D Converters, D/A ConvertersNote 2: Voltage References, Operational Amplifiers, Power-Supply Circuits, Interface, Filters, Analog Switches, and Multiplexers

TABLE 4. LIFE TEST DATA SUMMARY

60% CONF. LEVEL

32.5

111.3

3.62

135.3

X2 60%VALUE

1.60

1.51

4.0

1.42

Converters (Note 1) 73 11 5399 24 24.7 1.21

Linear (Note 2) 251 46 19,530 94 96.4 1.31

Timers/Counters/ Display Drivers 3 0 240 2 1.38 1 .52

Sum Total of All Product Lots 327 57 25,169 116 118.8 1.25

X2 90%VALUE

FIT @ 25°CPRODUCT

FAMILY

NUMBER OF

LOTS

NUMBER OF

FAILURES

TOTALUNITS

TESTED

DEGREE OF

FREEDOM90%

CONF. LEVEL

TABLE 3. LIFE TEST RESULT OF MAXIM PRODUCTS FOR EACH PROCESS

(Combined Test Conditions: 135°C and 1000 Hrs.)

Page 13: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

_____________________________________________________________________________________ 13

metal integrity, and assembly-related defects.

Test Used: High-Temperature Life and Dynamic Life Test (DLT)

Test Conditions: 135°C, 1000 hrs., inputs fed byclock drivers at 50% duty cycle

Failure Criteria: Must meet data sheet specifications

Results: See Tables 5–11Humidity Test

The most popular integrated circuit (IC) packagingmaterial is plastic. Plastic packages are not her-metic; therefore, moisture and other contaminantscan enter the package. Humidity testing measuresthe contaminants present and the product’s resis-tance to ambient conditions. Contaminants can beintroduced during both wafer fabrication andassembly, and they can negatively affect productperformance. Pressure Pot, 85/85, and HAST testsare used for this evaluation.

85/85 TestMaxim tests plastic-encapsulated products with an85/85 test to determine the moisture resistance capa-bility of our products under bias conditions. This testcan detect the failure mechanisms found in Life Test.In addition, it can detect electrolytic and chemicalcorrosion.

Test Used: 85/85Test Conditions: 85°C, 85% Relative Humidity,

biased,1000 hrs.Failure Criteria: Must meet all data sheet

parametersResults: See Table 12

Pressure Pot TestThis test simulates a product’s exposure to atmos-pheric humidity, which can be present during bothwafer fabrication and assembly. Although an IC iscovered with a nearly hermetic passivation layer(upper-surface coat), the bond pads must beexposed during bonding. Pressure Pot testingquickly determines if a potentially corrosive contami-nant is present.

Test Used: Pressure PotTest Conditions: 121°C, 100% RH, no bias,

168 hrs.Failure Criteria: Any opened bond or visual

evidence of corrosionResults: See Table 13

HAST TestHighly Accelerated Steam and Temperature (HAST)testing is quickly replacing 85/85 testing. It serves thesame basic function as 85/85 in typically 10% of thetime, making HAST tests useful for immediate feed-back and corrective action.

Test Used: HASTTest Conditions: 120°C, 85% RH, biased,100 hrs.Failure Criteria: Must meet all data sheet

specificationsResults: See Table 14

Temperature Cycling TestThis test measures a component’s response to tem-perature changes and its construction quality. Thetest cycles parts through a predetermined tempera-ture range (usually -65°C to +150°C). Both fabricationand assembly problems can be discovered usingTemperature Cycling, but the test typically identifiesassembly quality.

Test Used: Temperature CyclingTest Conditions: -65°C to +150°C, 1000 cyclesFailure Criteria: Must meet all data sheet

specificationsResults: See Table 15

High-Temperature Storage Life TestThis test evaluates changes in a product’s perfor-mance after being stored for a set duration (1000hrs.) at a high temperature (150°C). It is only usefulfor failure mechanisms accelerated by heat.

Test Used: High-Temperature Storage LifeTest Conditions: 150°C, 1000 hrs. unbiased Failure Criteria: Must meet all data sheet

specifications Results: See Table 16

_________________Hybrid Products Reliability Data Maxim’s hybrid product reliability data is presented inTables 17 and 18. Table 17 is the Life Test data forproducts tested in 1996. Table 18 is the TemperatureCycling test data for hybrid products.

_____________________Process Variability ControlReliability testing offers little value if the manufactur-ing process varies widely. A standard assumption,which is often false, is that test samples pulled fromproduction are representative of the total population.Sample variability can be lessened by increasing thenumber of samples pulled. However, unless aprocess is kept “in control,” major variations caninvalidate reliability test results, leading to incorrect

Page 14: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

conclusions and diminishing the integrity of failure-rate estimates. Uncontrolled processes also make itdifficult to prove failure rates of less than 10 FIT.Maxim monitors the stability of critical process para-meters through the use of computerized StatisticalProcess Control (SPC). Over 125 charts are moni-tored in-line during wafer production. Additionally,over 100 process parameters are monitored at WaferAcceptance. Maxim has a target CapabilityCoefficient (Cpk) goal of 1.5, which is equivalent to7ppm. In addition to SPC, Maxim uses Design ofExperiments (DOE) to improve process capability,

optimize process targeting, and increase robustness.

RR

-1K

Product Reliability Report

14 _____________________________________________________________________________________

______________________________________________________________________Reliability Test Results

TABLE 5. LIFE TEST AT 135°C/1000 HRS. FOR THEMETAL-GATE CMOS PROCESS (SMG)

Note: Products included in this Life Test data are: A/D Converters, OperationalAmplifiers, Power-Supply Circuits, Interface, and Display Drivers/Counters.

TABLE 7. LIFE TEST AT 135°C/1000 HRS. FOR THEMEDIUM-VOLTAGE SILICON-GATE CMOS PROCESS (MV2)

TABLE 6. LIFE TEST AT 135°C/1000 HRS. FOR THE MEDIUM-VOLTAGE METAL-GATE CMOS PROCESS (MV1)

Note: Products included in this Life Test data are: Analog Switches andAnalog Multiplexers.

TABLE 8. LIFE TEST AT 135°C/1000 HRS. FOR THE3µm SILICON-GATE CMOS PROCESS (SG3)

0000000000000000000000000

192

02250

777777777440075777778808077777465807780807679778079

SAMPLESIZE

8 PDIPTO99

8 PDIP14 PDIP16 PDIP16 WSO16 PDIP8 SO8 SO

16 PDIP16 PDIP16 PDIP8 SO8 SO

16 PDIP28 SSOP28 SSOP8 SO

16 PDIP8 SO

28 SSOP8 SO

16 PDIP8 PDIP

14 PDIP

9551955195529552955396029603961296139616962296239623962496269627963196339634963596359636963896409641

MAX634ICM7555MAX8211MAX421MAX232MAX232MAX202EMAX8211MAX232MAX850MAX202EMAX202EMAX850MAX8211MAX232MAX211EMAX211EMAX8212MAX232MAX850MAX211MAX844MAX232MAX667MAX654

PKG.DATECODE

DEVICE TYPE

Totals

0000000000000000000000000

1000

0

0000000000000000000000000

FAILURES (HRS)

0

500

00000

192

0385

7477807777

SAMPLESIZE

16 PDIP16 PDIP16 PDIP16 PDIP16 PDIP

96129626963796389638

DG201DG302MAX359DG509DG301

PKG.DATECODE

DEVICE TYPE

Totals

00000

1000

0

00000

FAILURES (HRS)

0

500

000000

192

0467

777777797780

SAMPLESIZE

16 PDIP16 PDIP16 PDIP8 SO

16 PDIP20 PDIP

955396119626963796379638

DG411MAX305MAX303MAX319MAX303MAX333

PKG.DATECODE

DEVICE TYPE

Totals

000000

1000

0

000000

FAILURES (HRS)

0

500

0000000000000000000000

192

01602

79767978778077707079705079798077656580773877

SAMPLESIZE

8 PDIP8 PDIP8 PDIP8 PDIP8 PDIP

18 PDIP8 PDIP8 PDIP8 PDIP8 PDIP8 PDIP8 PDIP

14 PDIP14 PDIP8 PDIP

16 SO28 SSOP36 SSOP16 SO8 PDIP

28 SSOP8 PDIP

9551955296069611961196139613961596159615961596159615961596169616962396249624962696309640

MAX708MAX706MXD1210MAX4501MAX4502MAX3222MAX707MAX4503MAX4504MAX4514MAX4516MAX4517MAX4518MAX4519MAX4515MAX797MAX785MAX782MAX797MAX705MAX785MAX706

PKG.DATECODE

DEVICE TYPE

Totals

0000000000000000000000

1000

0

0000000000000000000000

FAILURES (HRS)

0

500

Page 15: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

TABLE 12. TEMPERATURE AND HUMIDITY (85/85)TEST RESULTS

RR

-1K

Product Reliability Report

_____________________________________________________________________________________ 15

TABLE 11. LIFE TEST AT 135°C/1000 HRS. FOR THEBIPOLAR PROCESS (BIPOLAR)

Note: Products included in this Life Test data are: Voltage References andOperational Amplifiers.

TABLE 9. LIFE TEST AT 135°C/1000 HRS. FOR THE5µm SILICON-GATE CMOS PROCESS (SG5)

Note: Products included in this Life Test data are: A/D Converters, D/AConverters, Interface, and Switched Capacitor Filters.

TABLE 10. LIFE TEST AT 135°C/1000 HRS. FOR THE1.2µm SILICON-GATE CMOS PROCESS (SG1.2)

001

000000

192

Gate oxidedefect

NOTES

1846

7780221

777979777680

SAMPLESIZE

16 PDIP8 PDIP

18 PDIP

16 PDIP20 PDIP16 PDIP16 PDIP16 PDIP16 PDIP

955296069607

961396199619962996399648

MAX232ATSC427MAX528

MAX232AMX7534MAX232AMAX232AMAX232AMAX232A

PKG.DATECODE

DEVICETYPE

Totals

000

000000

1000

0

000

000000

FAILURES (HRS)

0

500

0000000 000000000100000

192

Lifted bond

NOTES

11799

77798077457780 807677807777757380738080797720

SAMPLESIZE

TO528 PDIP8 PDIP8 PDIP8 SO8 PDIP8 PDIP

TO2208 PDIP8 PDIP8 PDIP8 PDIP8 PDIP8 PDIP8 PDIP8 PDIP8 PDIP8 PDIP

14 PDIP8 SO8 PDIP

18 PDIP

9549 96019603960496079608 96099612 9612 9613 9614 9618 96189621962396249625 9627963196379638964

MX580MAX477MXL1013MAX400MAX471REF02MAX471MAX724MAX872MAX4111MAX471MXL1013MAX675REF02REF02MAX872MAX471MAX492MX636MAX4102REF02MXL1001

PKG.DATECODE

DEVICETYPE

Totals

0000000000000000000000

1000

0

0000000000000000000000

FAILURES (HRS)

0

500

000000000

0000000000001

192

Mask defect

Thresholdshift

NOTES

11618

777777776968587977

68585180807577797780777780

SAMPLESIZE

8 SO8 SO

24 PDIP24 PDIP

5 SOT235 SOT235 SOT238 PDIP

28 SSOP

5 SOT235 SOT23

16 PDIP24 PDIP24 PDIP28 SSOP28 SSOP24 PDIP24 PDIP24 PDIP24 PDIP24 PDIP24 PDIP

9546 9548 9553960196019602960296049613

9621962296249630963396339640964196429643964496459646

MAX619MAX619MAX7219MAX7219MAX8864SMAX8864TMAX8863TMAX811LMAX1600

MAX8864SMAX8863TMAX1247MAX7219MAX7219MAX1600MAX1604MAX7219MAX7219MAX7219MAX7219MAX7219MAX7219

PKG.DATECODE

DEVICETYPE

Totals

000000000

0000000000000

1000

0

000000001

0000000000000

FAILURES (HRS)

1

500

0000000000000000000000

000

192

Leakage

High biascurrent

NOTES

01800

73397477777777444226454545777777774577457777

76384577777245

SAMPLESIZE

8 PDIP8 SO8 PDIP8 SO

16 PDIP8 PDIP8 PDIP

24 PDIP8 SO

16 WSO24 PDIP8 PDIP8 SO8 PDIP8 PDIP

16 PDIP8 SO8 PDIP

16 PDIP8 PDIP8 PDIP

16 PDIP

8 SO8 SO8 SO8 SO8 PDIP

16 PDIP8 PDIP

9546954795489550955395529552955395489604960196049607960896139611961296189624962396269626

9624963696379633964096379638

MAX619MAX921MAX619REF01DG411MAX8211MAX706MAX7219MAX478MAX202EMAX7219MAX400MAX471REF02MAX707MAX305MAX8211MAX675MAX1247REF02MAX705MAX303

MAX8211MAX8212MAX692MAX8212MAX706MAX303REF02

PKG.DATECODE

DEVICETYPE

Totals

0000000000000000000000

000

1000

0

0000000000000001000001

0000000

FAILURES (HRS)

2

500

Page 16: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

16 _____________________________________________________________________________________

TABLE 13. PRESSURE POT TEST AT 121°C/100% RH15 PSIG/168 HRS. (ALL PLASTIC PACKAGES) TABLE 13 (continued)

00000000000000000000000000000001

00000000000001

000000

FAILURES (HRS)168

High input offsetvoltage

Capacitoropen

NOTES

26167

4545454545774545454542777777454577777745774545457745457745454577

7777454577807777777777777777

777745777777

SAMPLESIZE

16 PDIP8 PDIP

16 PDIP16 PDIP3 SOT238 PDIP

28 SSOP28 SSOP3 SOT23

16 PDIP16 SO24 PDIP18 PDIP8 SO8 SO

20 WSO28 SSOP20 WSO8 PDIP8 SO

16 PDIP8 SO

16 PDIP8 SO

16 SO20 WSO16 PDIP16 SO16 PDIP8 PDIP

16 PDIP8 PDIP

8 PDIP28 SSOP16 SO8 PDIP

28 SSOP36 SSOP24 PDIP16 SO24 PDIP24 PDIP24 PDIP28 SSOP24 PDIP20 PDIP

24 PDIP24 PDIP24 PDIP20 DIP20 WSO20 WSO

96269626962696269626962796279627962896299630963096339633963396359635963696369636963696369636963796379637963796389638963896399639

96399640964096409640964196429642964396449644964496459645

964596469646964696499650

MAX232MAX705DG302MAX303MAX809LMAX492MAX1630MAX211EMAX809LMAX232AMAX232AMAX7219MAX620MAX734MAX8212MAX203MAX211MX7226MAX487MAX8212MAX232MAX488DG301MAX692AMAX519MAX203MAX303MAX797MAX232REF02MAX232AMAX492

MAX817LMAX1604MAX232AMAX706MAX1604MAX782MAX7219MAX797MAX7219MAX7219MAX235MAX211MAX7219MAX203

MAX235MAX235MAX7219MAX233MAX233AMAX233A

PKG.DATECODE

DEVICETYPE

Totals

00000000000000000000000000000000000000000000000000000000

FAILURES (HRS)168 NOTES

4545454345454536454545454545204545766053454545777745774243594577774545454545457744454545447377777772452545767745

SAMPLESIZE

16 PDIP8 SO8 SO8 SO

40 PDIP40 PDIP40 PDIP8 SO8 PDIP8 PDIP

16 PDIP16 PDIP24 PDIP16 WSO

TO22024 PDIP28 SSOP16 WSO5 SOT235 SOT23

16 PDIP8 PDIP8 PDIP8 SO8 SO

16 PDIP8 SO8 SO3 SOT235 SOT23

16 PDIP8 PDIP8 PDIP

28 SSOP8 PDIP

16 PDIP8 PDIP

16 PDIP3 SOT23

TO2203 SOT23

16 SO8 PDIP8 PDIP

16 SO14 SO8 PDIP5 SOT235 SOT235 SOT238 PDIP

16 PDIP8 SO8 PDIP8 PDIP

16 SO

95289546954895489549954995499550955295529553955395539601960196019601960296029602960396049604960496079608961196119611961296129612961296129613961396139613961396149614961596189618962196219621962196229622962396249624962496259626

MX7574MAX619MAX619MAX478MAX246MAX245MAX247REF01MAX8211MAX706DG411MAX232MAX7219DG303MAX726MAX7219MAX1600MAX232MAX8863TMAX8864SMAX202EMAX400MAX811LMAX471MAX850MAX232AMAX850MAX8211MAX809LMAX8864TMAX305MAX471MAX872MAX786REF02MAX232MAX707DG201MAX809LMAX724MAX809LMAX243MXL1013MAX675MAX243MAX511REF02MAX8864SMAX8863TMAX4501REF02MAX1247MAX8211MAX872MAX471MAX232A

PKG.DATECODE

DEVICETYPE

Page 17: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

_____________________________________________________________________________________ 17

TABLE 14. HAST TEST RESULTS120°C/85% RH/BIASED/100 HRS.

TABLE 15. TEMPERATURE CYCLING -65°C TO +150°C 1000 CYCLES

(ALL PACKAGE TYPES)

000000000000000000000000000000000000000000000000000000000000000000000

168

04436

747545457745777777457777457745477744604544454545777744777777777777777744454444727767444577777777777777774577777776457745777777777577454545

SAMPLESIZE

8 SO8 SO8 SO

TO528 SO

TO998 PDIP

16 PDIP8 PDIP

14 PDIP16 PDIP16 PDIP24 PDIP16 WSO24 PDIP5 SOT23

16 WSO5 SOT235 SOT23

16 PDIP16 WSO8 PDIP8 PDIP8 SO8 PDIP

16 PDIP3 SOT23

16 PDIP8 PDIP

TO2208 PDIP

16 PDIP16 PDIP8 PDIP8 PDIP3 SOT238 PDIP8 PDIP8 PDIP5 SOT235 SOT235 SOT238 PDIP

16 PDIP8 SO8 PDIP8 PDIP

16 PDIP8 PDIP

16 PDIP16 PDIP8 PDIP

28 SSOP16 PDIP14 PDIP8 SO

28 SSOP8 SO

16 PDIP8 SO

16 PDIP16 PDIP8 PDIP

16 PDIP8 PDIP8 DPIP

24 PDIP24 PDIP24 PDIP

954695489548954995509551955295529552955295539553955396019601960196029602960296039604960496049607960896119611961296129612961296139613961396149614961896189621962196229622962396249624962496259626962696269626962796279629963196339635963696369637963796389638963996399640964496459646

MAX619MAX619MAX478MX580REF01ICM7555MAX8211MAX232AMAX706MAX421DG411MAX203MAX7219DG303MAX7219MAX8864SMAX232MAX8864TMAX8863TMAX202EMAX202EMAX400MAX811LMAX471REF02MAX305MAX809LDG201MAX8211MAX724MAX872MAX232AMAX232MAX707MAX471MAX809LMXL1013MAX675REF02MAX8864SMAX8863TMAX4501REF02MAX1247MAX8211MAX872MAX471MAX232MAX705DG302MAX303MAX492MAX1630MAX232AMX636MAX8212MAX211MAX488DG301MAX692AMAX303MAX232REF02MAX232AMAX492MAX706MAX7219MAX7219MAX7219

PKG.DATECODE

DEVICE TYPE

Totals

000000000000000000000000000000000000000000000000000000000000000000000

168

0

000000000000000000000000000000000000000000000000000000000000000000000

FAILURES (HRS)

0

168

00000000000000000000000000001

000000000

FAILURES (HRS)100

Capacitoropen

NOTES

1946

2425252525252525252525252525252525252525252325252525252525

252525252525252425

SAMPLESIZE

5 SOT2316 WSO5 SOT235 SOT238 PDIP

16 WSO14 PDIP16 PDIP

TO2208 PDIP8 PDIP

28 SSOP8 SO8 SO

16 WSO5 SOT235 SOT235 SOT238 PDIP8 PDIP

24 PDIP8 PDIP

28 SSOP16 PDIP20 PDIP20 WSO28 SSOP8 SO

20 WSO

16 PDIP16 PDIP20 WSO24 PDIP24 PDIP24 PDIP24 PDIP24 PDIP20 WSO

96019602960296029604960796119612961296129614961796189620962096219622962296249625962696279627962996299635963596369637

963896399640964496459645964696469651

MAX8864SMAX232MAX8864TMAX8863TMAX811MX636MX636DG201MAX724MAX872MAX471MAX786MAX4123MAX4125MAX202MAX8864SMAX8863TMAX4501MAX872MAX471MAX235MAX492MAX211EMAX232AMAX233AMAX203MAX211MAX488MAX203

MAX232MAX232AMAX203MAX235MAX7219MAX235MAX235MAX7219MAX233A

PKG.DATECODE

DEVICETYPE

Totals

Page 18: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

TABLE 17. HYBRID PRODUCTS LIFE TEST 135°C/1000 HRS

TABLE 18. HYBRID PRODUCTS TEMPERATURE CYCLING -65°C TO +150°C/1000 CYCLES

TABLE 16. HIGH-TEMPERATURE STORAGE LIFE TEST 150°C/1000 HRS. (ALL PACKAGE TYPES) TABLE 16 (continued)

RR

-1K

Product Reliability Report

18 _____________________________________________________________________________________

00000000000000000000000000000000000000000000000000000000000000000

192

4577434545454545454545454545454545444245454545454543454545454545454514144544734245454545454545454545454545454145454545454545457745

SAMPLESIZE

28 PDIP8 SO8 SO

TO528 SO8 PDIP

TO998 PDIP

16 PDIP8 PDIP

14 PDIP16 PDIP16 PDIP24 PDIP16 WSO24 PDIP5 SOT235 SOT235 SOT23

16 PDIP16 WSO8 PDIP8 PDIP8 SO8 PDIP

16 PDIP16 PDIP8 SO

TO2208 PDIP

16 PDIP16 PDIP8 PDIP8 PDIP

20 WSO20 WSO8 PDIP8 PDIP5 SOT235 SOT238 PDIP8 SO8 PDIP8 PDIP8 PDIP

16 PDIP16 PDIP8 PDIP

16 PDIP8 SO

20 WSO28 SSOP16 PDIP20 WSO16 PDIP16 PDIP8 PDIP

20 PDIP16 PDIP8 PDIP

20 WSO20 PDIP20 PDIP14 PDIP24 PDIP

95389548954895499550955195519552955295529552955395539553960196019601960296029603960496049604960796089611961296129612961296139613961396149617961896189621962196229623962496249625962696269626962796299633963596359636963796379638963896389639964096409641964496449644

MAX3480MAX619MAX478MX580REF01MAX634ICM7555MAX8211MAX232AMAX706MAX421DG411MAX232MAX7219DG303MAX7219MAX8864SMAX8864TMAX8863TMAX202EMAX202EMAX400MAX811LMAX471REF02MAX305DG201MAX8211MAX724MAX872MAX232AMAX232MAX707MAX471MAX233AMAX233AMAX675REF02MAX8864SMAX8863TREF02MAX8211MAX872MAX471MAX705DG302MAX303MAX492MAX232AMAX8212MAX203MAX211DG301MAX203MAX303MAX232REF02MAX233MAX232AMAX706MAX203MAX233MAX7219MAX681MAX235

PKG.DATECODE

DEVICE TYPE

00000000000000000000000000000000000000000000000000000000000000000

1000

00000000000000000000000000000000000000000000000000000000000000000

FAILURES (HRS)

500

0000000

192

03253

45454545444545

SAMPLESIZE

28 SSOP20 PDIP20 PDIP24 PDIP24 PDIP24 PDIP20 PDIP

9644964496459645964696469646

MAX211MAX203MAX203MAX235MAX235MAX7219MAX233

PKG.DATECODE

DEVICE TYPE

Totals

0000000

1000

0

0000000

FAILURES (HRS)

0

500

0000000000000000

192

01197

75777563637777777776777776767777

SAMPLESIZE

40 PDIP40 PDIP40 PDIP20 WSO20 WSO20 WSO20 PDIP20 WSO20 PDIP14 PDIP24 PDIP20 PDIP20 PDIP24 PDIP24 PDIP20 PDIP

9549954995499617961896359638964096419644964496449645964596469646

MAX246MAX245MAX247MAX233AMAX233AMAX203MAX233MAX203MAX233MAX681MAX235MAX203MAX203MAX235MAX235MAX233

PKG.DATECODEDEVICE TYPE

Totals

0000000000000000

1000

0

0000000000000000

FAILURES (HRS)

0

500

00000000000000000000

200

01334

4544457775757477434377457777767777777677

SAMPLESIZE

28 PDIP40 PDIP24 PDIP40 PDIP40 PDIP40 PDIP20 WSO20 WSO20 WSO20 WSO20 PDIP20 WSO20 PDIP16 PDIP24 PDIP20 PDIP20 PDIP24 PDIP24 PDIP20 PDIP

95389543954495499549954996179618963596379638964096419644964496449645964596469646

MAX3480MAX252MAX625MAX246MAX245MAX247MAX233AMAX233AMAX203MAX203MAX233MAX203MAX233MAX681MAX235MAX203MAX203MAX235MAX235MAX233

PKG.DATECODEDEVICE TYPE

Totals

00000000000000000000

1000

0

00000000000000000000

FAILURES (HRS)

0

500

Page 19: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

_____________________________________________________________________________________ 19

Appendix 1:_______________Determining Acceleration Factor

Definition of TermsAn acceleration factor is a constant used in reliabil-i ty prediction formulas that expresses theenhanced effect of temperature on a device’s fail-ure rate. It is usually used to show the difference(or acceleration effect) between the failure rate attwo temperatures. In simple terms, a statementsuch as, “The failure rate of these devices operat-ing at 150°C is five-times greater than the failurerate at 25°C,” implies an acceleration factor of 5.The acceleration factor used in the semiconductorindustry is a result of the Arrhenius equation statedbelow:Where:

K = an experimentally determined constantEa = the activation energyk = Boltzmann’s constantT1 = actual use temp. in degrees KelvinT2 = test temp. in degrees Kelvin

How to Use the Arrhenius EquationThe first step in using the Arrhenius equation givenabove is to determine an activation energy (Ea),which may be done in one of two ways. The first method involves using failure analysistechniques to determine the actual failure mecha-nism. The activation energies for many failuremechanisms have already been determined, andtabulated in published literature. Although allprocesses are not exactly the same, the activationenergy of a particular failure mechanism is mainlydetermined by physical principles. A publishedactivation energy will not be the exact figure asso-ciated with a particular process, but it will be a veryclose approximation.The dominant failure mechanisms in Maxim’s LifeTests have activation energies in the range of 0.8eVto 1.2eV. We have conservatively chosen 0.8eV forthe purposes of computing the acceleration factorsused in this report. Actual acceleration factors are

probably greater than those quoted.The second method of determining an activationenergy is empirical. Two groups of devices are testedat different temperatures, and the differencebetween their failure rates is measured. An exampleis shown below:

Group 1 = 9822 failures after 100 hrs. of operation at 150°C.

Group 2 = 1 failure after 100 hrs. of operation at 25°C.

The acceleration factor for this particular failuremechanism between these two temperatures is,therefore, 9822.Where:

Ea = the unknown activation energyk = 8.63 x 10-5eV/°KT1 = 25°C + 273°C or 298°KT2 = 150°C + 273°C or 423°K

Substituting:

Taking the natural log of both sides:

Therefore, Ea = 0.8eVAssuming that this activation energy represents thedominant failure mechanism of the device underconsideration, it may then be used to determine theacceleration factor between any two temperaturesas follows:Between 150°C and 70°C, for example:

Acceleration Factor = KeEak

1T1

1T2( )-

9822 = eEak

1T1

1T2( )-

9822 = eEa

8.63 x 10-51

2981

423( )-

9822 = e Ea x 11.49

Loge9822 = Ea x 11.49

= Ea Loge982211.49

Acceleration Factor = e0.8

8.63 x 10-51T1

1T2( )-

Page 20: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

20 _____________________________________________________________________________________

Where:T1 = 70°C + 273°C = 343°KT2 = 150°C + 273°C = 423°K

Substituting for T1 + T2 and solving for e yields theresult:

Acceleration Factor = 165

The acceleration factor between 150°C and 70°C is 165.

Appendix 2:_____________________Determining Failure Rate

Definition of TermsThe Mean Time Between Failures (MTBF) is theaverage time it takes for a failure to occur. For exam-ple, assume a company tests 100 units for 1000 hrs.The total device-hours accrued would be 100 x1000, or 100,000 device-hours. Now assume twounits were found to be failures. Roughly, it could besaid that the MTBF would equal:

MTBF = Total Device Hrs. = 100,000 = 50,000 hrs.Total No. of Failures 2

The Failure Rate (FR) is equal to the reciprocal ofthe MTBF, or:

FR = 1 = 1 = 0.00002MTBF 50,000

If this number is multiplied by 1 x 105, the failurerate in terms of percent per 1000 hrs. is obtained;i.e., 2%.A common reliability term also used to express thefailure rate is Failures-in-Time, or FIT. This is thenumber of failures per billion device-hours, and isobtained by dividing the Failure Rate by 10-9:

FR = FIT.10-9

Using the above example:FIT = 0.00002/10-9

= 20,000 The FIT rate is, therefore, shorthand for the numberof units predicted to fail in a billion (10-9) device-hours at the specified temperature.

Calculating Failure Rates and FITsThe failure rate can be expressed in terms of thefollowing four variables:A = The number of failures observed after testB = The number of hours the test was runC = The number of devices used in the testD = The temperature acceleration factor

(see Appendix 1)Using data in Table 2, a failure rate at 25°C cannow be calculated:A = 57B = 192C = 25,169D = 9822 (Assuming Ea = 0.8eV, and a test

temperature of 150°C)

Substituting:

FR = 57 = 1.20 x 10-9192 x 25,169 x 9822

Expressing this in terms of the FIT rate:FIT = 1.20

To determine the FIT rate at a new temperature, theacceleration factor (D) must be recalculated fromthe Arrhenius equation given in Appendix 1.

Including Statistical Effects in the FIT Calculation

Because a small random sample is being chosenfrom each lot, the statistical effects are significantenough to mention. With most published failure ratefigures, there is an associated confidence levelnumber. This number expresses the confidencelevel that the actual failure rate of the lot will beequal to or lower than the predicted failure rate.The failure rate calculation, including a confidencelevel, is determined as follows:

FR = X2

2DH

Where:X2 = the Chi square value

2DH = 2 times the total device hours= 2 x (B x C x D)

Page 21: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

_____________________________________________________________________________________ 21

The Chi square value is based on a particular typeof statistical distribution. However, all that isrequired to arrive at this value is knowing the number of failures. In this example, there were 57failures. The Chi square value is found using astandard X2 distribution table. The tabular valuesare found using the factors (1 - CL), where CL isthe desired confidence level, and 2(N + 1) is thedegree of freedom.

The value of (1 - CL) for a 60% confidence level is(1 - 0.60) = 0.40.

The number of degrees of freedom is 2(57 + 1) = 116.

The Chi square value found under the values of0.40 and 116 degrees of freedom is 119.

Therefore, the failure rate found using a 60% confi-dence level is:

FR = 119 = 1.25 x 10-99.49 x 1010

Expressed as Failure-in-Time rate:FIT = 1.25

Referring to Table 2, one can see that for Maxim’sproduct, there is a 60% confidence level that nomore than 1.25 units will fail per billion (109) device-hours of operation at 25°C.

Page 22: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

22 _____________________________________________________________________________________

NOTES

Page 23: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

RR

-1K

Product Reliability Report

_____________________________________________________________________________________ 23

NOTES

Page 24: Product Reliability Report - Maxim IntegratedProduct Reliability Report This report presents the product reliability data for Maxim’s analog products. The data was acquired from

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reservesthe right to change the circuitry and specifications without notice at any time.

_____________________________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

Alabama1-800-570-9738California(Northern California)(408) 737-0214(Southern California) 1-800-570-9732Colorado1-800-631-1070Connecticut1-800-416-7237Delaware1-800-570-9737Florida1-800-570-9738Georgia1-800-570-9738Idaho1-800-570-9731Illinois1-800-570-9735Indiana1-800-570-9735Iowa1-800-570-9735Kansas1-800-631-1070Kentucky1-800-570-9735Louisiana1-800-631-1070

Maine1-800-416-7237Maryland1-800-570-9737Massachusetts1-800-416-7237Michigan1-800-570-9735Minnesota1-800-570-9735Missouri1-800-631-1070Montana1-800-570-9731Nebraska1-800-631-1070New Hampshire1-800-416-7237New Jersey1-800-570-9737New York(Upstate)1-800-416-7237(Metro)1-800-570-9737North Carolina1-800-570-9738Ohio1-800-570-9735Oklahoma1-800-631-1070

Oregon1-800-570-9731Pennsylvania(Pittsburgh area)1-800-570-9735(Philadelphia/Other)1-800-570-9737Rhode Island1-800-416-7237South Carolina1-800-570-9738Texas1-800-631-1070Utah1-800-570-9731Vermont1-800-416-7237Virginia1-800-570-9737Washington1-800-570-9731Wisconsin1-800-570-9735

Maxim U.S. Sales Offices Maxim International Sales Representatives and Distributors

Maxim U.S. Franchised Distributors

Maxim Corporate Headquarters

Allied Electronics1-800-433-5700

Arrow Electronics1-800-777-2776

Bell/Milgray(310) 563-2300

CAM RPC(412) 963-6202

Digi-Key Corp.1-800-344-4539

Elmo Semiconductor(818) 768-7400

Hamilton Hallmark(214) 343-5000

Nu Horizons(516) 396-5000

Zeus Electronics(914) 937-7400

Maxim Integrated Products, Inc.120 San Gabriel DriveSunnyvale, CA 94086(408) 737-7600(408) 470-5841 (fax)

ArgentinaYEL SRL(1) 372 7163AustraliaVeltek Australia Pty., Ltd.(Victoria)(03) 9574 9300(Western Australia)(08) 9472 3855(New South Wales)(02) 9745 1400(Queensland)(07) 3216 0770(South Australia)(08) 8232 3922AustriaMaxim GmbH(Germany)0660-5954 (Toll Free)BelgiumMaster Chips(02) 219 5862BrazilIntectra (U.S.A.)(415) 967-8818CanadaMaxim IntegratedProducts(Western)1-800-241-4813(Central)1-800-416-7237(Eastern)1-800-416-7237Canada DistributorsArrow(514) 421-7411(613) 226-6903(418) 871-7500(416) 670-7769(604) 421-2333Bell/Milgray(905) 678-0958(514) 426-5900(604) 291-0044Hamilton Hallmark(604) 420-4101(416) 564-6060(514) 335-1000(613) 226-1700ChinaMaxim China(10) 620 10598China DistributorP & S27 7493500-6(Wuhan)27 7862631(Beijing)10 62549897(Shanghai)21 64712494(Shenzhen)755 3245517(Chengdu)28 5575657(Nanjing)25 6618571(Xi’an)29 5214247Czech RepublicSpezial-Electronic KG42 2 24342200DenmarkArrow-Exatec A/S44 92 70 0098 64 11 11

FinlandBerendsen Components Oy8 (0)9 4130 800FranceMaxim France01 30 60 91 60France DistributorsMaxim Distribution0800 05 04 27ASAP01 30 12 20 20GermanyMaxim GmbH(0130) 827925 (Toll Free)49 (089) 857 99-0Germany DistributorsMaxim Distribution(0130) 827925 (Toll Free)49 (089) 857 99-0Spezial-Electronic GmbH(05722) 203-0Hong KongMaxim IntegratedProducts, Inc.2376 3000IndiaSritech Information Technology Pvt Ltd.(Bangalore)80-640661(New Delhi)11-6162313(Pune)212-541484(Secunderabad)7741623 (Trivandrum)471-331376IrelandFMG Electronics03-56-64002IsraelTritech, Ltd.(09) 917 277ItalyMaxim Italy(039) 6058555Italy DistributorEsco Italiana ElectronicsSupply(02) 26 27 011JapanMaxim Japan Co., Ltd.(03) 3232-6141Japan DistributorsEaston Co., Ltd.(03) 3279-1922Internix, Inc.(03) 3369-1101Marubun Corp.(03) 3639-0677KoreaMaxim Korea(02) 508 1170MexicoHamilton Hallmark (USA)1-(210) 412-2047NetherlandsKoning En Hartman(015) 2609906New ZealandPower Technology Components Ltd.00649 8366-744

NorwayBerendsen Electronics22 08 85 00PolandUniprod, Ltd.(48) 32376459PortugalADM Electronics, S.A.(2) 9736957RussiaSpezial-Electronic KG(Moscow)007/095-433-2582/83007/095-438-7343/59(St. Petersburg)007/812-275-3860Singapore/Malaysia/ThailandMaxim Integrated Products,Inc. (Singapore)841-7117Electronic Resources Limited(Singapore)(65) 298-0888Electronic Resources(Thailand) Co., Ltd.(Bangkok)(66) 02 370 1280-90Electronic Resources(Malaysia) Sdn. Bhd.(Petaling Jaya)(60) 03-703 7274Electronic Resources(Malaysia) Sdn. Bhd. (Penang)(60) 04-656 2895South AfricaFairmont Electronics (Pty),Ltd.(011) 886 2920SpainMaxim Distribution900 99 44 44 (Tel. gratuito)ADM Electronics S.A.1-5304121SwedenEgevo AB(08) 795 9650SwitzerlandLaser & Electronics AG(01) 947 50 70TaiwanMaxim Taiwan(2) 2558-6801TurkeyInterex (U.S.A.)(415) 254-0627U.K.Maxim Integrated Products(U.K.), Ltd.0800 585 048 (Toll Free)(0118) 9303388U.K. DistributorsMaxim Distribution(0118) 93033882001 Electronic Components(01438) 742001Eurodis HB Electronics(01204) 555100UkraineSpezial-Electronic KG 0038/044-290-04-210038/044-290-99-05