Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi...

12
11/10/2015 1 COMPOSITE MATERIALS AND APPLICATIONS Kendari, 8 Oktober 2015 Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 OUTLINE COMPOSITE MATERIALS: Classes and types of composites Strength of composites Composite productions APPLICATIONS INTRODUCTION INTRODUCTION ENGINEERING MATERIALS METALS: FERROUS & NON FERROUS CERAMICS & GLASSES POLYMERS & ELASTOMERS COMPOSITES History of Materials Science & Engineering materials closely connected our culture the development and advancement of societies are dependent on the available material s and their use earl y civilizations designated by level of materials development initially natural material s develop techniques to produce material s with superior qualities (heat treatments and addition of other subs tances) 6 History of Materials Science & Engineering

Transcript of Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi...

Page 1: Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 ... Concern

11/10/2015

1

COMPOSITE MATERIALS AND APPLICATIONS

Kendari, 8 Oktober 2015

Prodi TEKNIK MESINUNIVERSITAS HALUOLEO

Prof. Ir. Hadi Sutanto, MMAE., Ph.D.

2

OUTLINE

• COMPOSITE MATERIALS: Classes and types of compositesStrength of compositesComposite productions

• APPLICATIONS

• INTRODUCTION

INTRODUCTION

ENGINEERING MATERIALS

METALS: FERROUS & NON FERROUS CERAMICS & GLASSES POLYMERS & ELASTOMERS COMPOSITES

History of Materials Science & Engineering• materials closely connected our culture• the development and advancement of societies are dependent on the

available materials and their use• earl y civil izations designated by level of materials development

• initially natural materials• develop techniques to produce materials with superior qualities (heat

treatments and addition of other substances)6

History of Materials Science & Engineering

Page 2: Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 ... Concern

11/10/2015

2

Brick : Ramses II, EGYPT 1279 - 1212 BC

Material productionConcern 1: Resource consumption, dependence

96% of all material Usage

20% of Globalenergy

Sources: Granta Design, Cambridge, UK.

Carbon to atmosphereConcern 2: Energy consumption, CO2 emission

20% of allcarbon toatmosphere

Sources: Granta Design, Cambridge, UK.

Why study materials?• applied scientists or engineers must make material choices

• materials selection

– in-service performance

– deterioration

– economics

BUT…really, everyone makes material choices!

aluminum glass plastic

Materials Science and Engineering

structure

properties• material characteristic• response to external

stimulus

• mechanical, electrical,

thermal, magnetic,

optical, deteriorative performance• behavior in a particular

application

• arrangement of internal components

• subatomic• atomic

• microscopic

• macroscopic (bulk)

• method of

preparing material

processing

characterization

TETRAHEDRON

12

© 20 03 Bro oks /Cole Pub lish ing / Tho mso n Learn ing™

Page 3: Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 ... Concern

11/10/2015

3

13

Application of the tetrahedron of materials science and engineering to sheet steels for automotive chassis. Note that the microstructure-synthesis and processing-composition are all interconnected and affect the performance-to-cost ratio

© 2

003

Bro

ok

s/Cole P

ub

lishin

g / T

ho

mso

n L

earnin

g™

14

ex: hardness vs structure of steel• Properties depend on structure

Data obtained from Figs. 10.30(a)and 10.32 with 4 wt% C composition,and from Fig. 11.14 and associateddiscussion, Callister 7e.Micrographs adapted from (a) Fig.10.19; (b) Fig. 9.30;(c) Fig. 10.33;and (d) Fig. 10.21, Callister 7e.

ex: structure vs cooling rate of steel• Processing can change structure

Structure, Processing, & Properties

Har

dn

ess

(B

HN

)

Cool ing Rate (ºC/s)

100

200

300

400

500

600

0.01 0.1 1 10 100 1000

(d)

30 mm(c)

4 mm

(b)

30 mm

(a)

30 mm

15

1. Pick Application Determine required Properties

2. Properties Identify candidate Material(s)

3. Material Identify required Processing

Processing: changes structure and overall shapeex: casting, sintering, vapor deposition, doping

forming, joining, annealing.

Properties: mechanical, electrical, thermal,magnetic, optical, deteriorative.

Material: structure, composition.

The Materials Selection Process

COMPOSITE MATERIALS

Venn diagram of three basic material types plus composites

18

Composites• Combine materials with the objective of

getting a more desirable combination of properties

– Ex: get flexibility & weight of a polymer plus the strength of a ceramic

• Principle of combined action

– Mixture gives “averaged” properties

Page 4: Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 ... Concern

11/10/2015

4

Some examples of composite materials: (a) plywood is a laminar composite of layers of wood veneer, (b) fiberglass is a fiber-reinforced composite containing stiff, strong glass fibers in a softer polymer matrix ( 175), and (c) concrete is a particulate composite containing coarse sand or gravel in a cement matrix (reduced 50%).

23

• Composites:-- Multiphase material w/significant

proportions of each phase.

• Dispersed phase:-- Purpose: enhance matrix properties.

MMC: increase y, TS, creep resist.CMC: increase KcPMC: increase E, y, TS, creep resist.

-- Classification: Particle, fiber, structural

• Matrix:-- The continuous phase-- Purpose is to:

- transfer stress to other phases- protect phases from environment

-- Classification: MMC, CMC, PMC

metal ceramic polymer

Reprinted with permission fromD. Hull and T.W. Clyne, An Introduction to Composite Materials, 2nd ed., Cambridge University Press, New York, 1996, Fig. 3.6, p. 47.

Terminologywoven fibers

cross section view

0.5 mm

0.5 mm

24

Composite Survey

Large-

particle

Dispersion-

strengthened

Particle-reinforced

Continuous

(aligned)

Aligned Randomlyoriented

Discontinuous

(short)

Fiber-reinforced

Laminates Sandwich

panels

Structura l

Composites

Adapted from Fig. 16.2, Callister 7e.

Page 5: Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 ... Concern

11/10/2015

5

25

Composite Survey: Particle-I

• Examples:Adapted from Fig. 10.19, Callister 7e. (Fig. 10.19 is copyright United States Steel Corporation, 1971.)

- Spheroidite steel

matrix: ferrite (a)

(ductile)

particles: cementite(Fe 3 C )

(brittle)60 mm

Adapted from Fig. 16.4, Callister 7e. (Fig. 16.4 is courtesy Carboloy Systems, Department, General Electric Company.)

- WC/Co cemented carbide

matrix: cobalt (ductile)

particles: WC (brittle, hard)V m :

10-15 vol%! 600 mm

Adapted from Fig. 16.5, Callister 7e. (Fig. 16.5 is courtesy Goodyear Tire and Rubber Company.)

- Automobile tires

matrix: rubber (compliant)

particles: C (stiffer)

0.75 mm

Particle-reinforced Fiber-reinforced Structural

26

Composite Survey: Particle-II

Concrete – gravel + sand + cement- Why sand and gravel? Sand packs into gravel voids

Reinforced concrete - Reinforce with steel rerod or remesh- increases strength - even if cement matrix is cracked

Prestressed concrete - remesh under tension during setting of concrete. Tension release puts concrete under compressive force

- Concrete much stronger under compression. - Appl ied tension must exceed compressive force

Particle-reinforced Fiber-reinforced Structural

threadedrod

nut

Post tensioning – tighten nuts to put under tension

27

• Elastic modulus, Ec, of composites:-- two approaches.

• Application to other properties:-- Electrical conductivity, e: Replace E in equations with e.-- Thermal conductivity, k: Replace E in equations with k.

Adapted from Fig. 16.3, Callister 7e. (Fig. 16.3 is from R.H. Krock, ASTM Proc, Vol. 63, 1963.)

Composite Survey: Particle-III

lower limit:

1

E c

=Vm

E m

+Vp

E p

c m m

upper limit:

E = V E + VpE p

“rule of mixtures”

Particle-reinforced Fiber-reinforced Structural

Data: Cu matrix

w/tungsten particles

0 20 40 6 0 80 10 0

150

20 0

250

30 0

350

vol% tungsten

E(GPa)

(Cu) (W)

28

Composite Survey: Fiber-I

• Fibers very strong– Provide significant strength improvement to material

– Ex: fiber-glass

• Continuous glass filaments in a polymer matrix

• Strength due to fibers

• Polymer simply holds them in place

Particle-reinforced Fiber-reinforced Structural

29

Composite Survey: Fiber-II

• Fiber Materials– Whiskers - Thin single crystals - large length to diameter ratio

• graphite, SiN, SiC

• high crystal perfection – extremely strong, strongest known• very expensive

Particle-reinforced Fiber-reinforced Structural

– Fibers

• polycrystalline or amorphous

• generally polymers or ceramics

• Ex: Al2O3 , Aramid, E-glass, Boron, UHMWPE

– Wires

• Metal – steel, Mo, W

30

Fiber Alignment

aligned

continuous

aligned random

discontinuous

Adapted from Fig. 16.8, Callister 7e.

Page 6: Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 ... Concern

11/10/2015

6

31

• Aligned Continuous fibers• Examples:

From W. Funk and E. Blank, “Creep deformation of Ni3Al-Mo in-situ composites", Metall. Trans. A Vol. 19(4), pp. 987-998, 1988. Used with permission.

-- Metal: g'(Ni3Al )-a(Mo)by eutectic solidification.

Composite Survey: Fiber-III

Particle-reinforced Fiber-reinforced Structural

matrix: a (Mo) (ductile)

fibers: g’ (Ni3Al ) (brittle)

2 mm

-- Ceramic: Glass w/SiC fibersformed by glass slurry

Eglass = 76 GPa; ESiC = 400 GPa.

(a)

(b)

fracture surface

From F.L. Matthews and R.L. Rawlings, Composite Materials; Engineering and Science, Reprint ed., CRC Press, Boca Raton, FL, 2000. (a) Fig. 4.22, p. 145 (photo by J . Davies); (b) Fig. 11.20, p. 349 (micrograph by H.S. Kim, P.S. Rodgers, and R.D. Rawlings). Used with permission of CRCPress, Boca Raton, FL.

32

• Discontinuous, random 2D fibers• Example: Carbon-Carbon

-- process : fiber/pitch, thenburn out at up to 2500ºC.

-- uses: disk brakes, gas turbine exhaust flaps, nosecones.

• Other variations:-- Discontinuous, random 3D-- Discontinuous, 1D

Adapted from F.L. Matthews and R.L. Rawlings, Composite Materials; Engineering and Science, Reprint ed., CRC Press, Boca Raton, FL, 2000. (a) Fig. 4.24(a), p. 151; (b) Fig. 4.24(b) p. 151. (Courtesy I.J. Davies) Reproduced with permission of CRC Press, Boca Raton, FL.

Composite Survey: Fiber-IV

Particle-reinforced Fiber-reinforced Structural

(b)

fibers lie

in plane

view onto plane

C fibers:

very stiff very strong

C matrix:

less stiff less strong

(a)

33

• Critical fiber length for effective stiffening & strengthening:

• Ex: For fiberglass, fiber length > 15 mm needed

Composite Survey: Fiber-V

Particle-reinforced Fiber-reinforced Structural

c

fd

15length fiber

fiber diameter

shear strength of

fiber-matrix interface

fiber strength in tension

• Why? Longer fibers carry stress more efficiently!Shorter, thicker fiber:

c

fd

15length fiber

Longer, thinner fiber:

Poorer fiber efficiency

Adapted from Fig. 16.7, Callister 7e.

c

f d

15length fiber

Better fiber efficiency

(x) (x)

34

Composite Strength:Longitudinal Loading

Continuous fibers - Estimate fiber-reinforced composite

strength for long continuous fibers in a matrix

• Longitudinal deformation

c = mVm + fVf volume fraction but

e c = e m = e f isostrain

Ece = Em Vm + EfVf longitudinal (extensional)

modulus

mm

ff

m

f

VE

VE

F

F f = fiber

m = matrix

35

Composite Strength:Transverse Loading

• In transverse loading the fibers carry less of the load - isostress

c = m = f = e c= e mVm + e fVf

f

f

m

m

ct E

V

E

V

E

1transverse modulus

36

• Estimate of Ec and TS for discontinuous fibers:

-- valid when

-- Elastic modulus in fiber direction:

-- TS in fiber direction:

efficiency factor:-- aligned 1D: K = 1 (aligned )

-- aligned 1D: K = 0 (aligned )

-- random 2D: K = 3/8 (2D isotropy)-- random 3D: K = 1/5 (3D isotropy)

(aligned 1D)

Values from Table 16.3, Callister 7e. (Source for Table 16.3 is H. Krenchel, Fibre Reinforcement, Copenhagen: Akademisk Forlag, 1964.)

Composite Strength

c

f d

15length fiber

Particle-reinforced Fiber-reinforced Structural

(TS)c = (TS)mVm + (TS)fVf

Ec = EmVm + KEfVf

Page 7: Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 ... Concern

11/10/2015

7

37

Composite Production Methods-I

• Pultrusion– Continuous fibers pulled through resin tank, then

preforming die & oven to cure

Adapted from Fig. 16.13, Callister 7e.

38

Composite Production Methods-II

• Filament Winding– Ex: pressure tanks

– Continuous filaments wound onto mandrel

Adapted from Fig. 16.15, Callister 7e. [Fig. 16.15 is from N. L. Hancox, (Editor), Fibre Composite Hybrid Materials, The Macmillan Company, New York, 1981.]

©2

00

3 B

roo

ks/

Co

le,

a d

ivis

ion

of

Th

om

son

Lea

rnin

g,

Inc.

T

ho

mso

n L

earn

ing™

is a

trad

emar

k u

sed

her

ein

un

der

lic

ense

. Comparison of the yield

strength of dispersion-strengthened sintered

aluminum powder (SAP) composite with that of two conventional two-phase

high-strength aluminum alloys. The composite has

benefits above about 300°C. A fiber-reinforced aluminum composite is

shown for comparison.

©2003 Brooks/C ole, a divis ion of Thomson Learning, Inc. Thomson Learning™is a trademark used herein under license.

A comparison of the specific modulus and specific strength of several composite materials with those of metals and polymers.

41

• Stacked and bonded fiber-reinforced sheets

-- stacking sequence: e.g., 0º/90º-- benefit: balanced, in-plane stiffness

Adapted from Fig. 16.16, Callister 7e.

Composite Survey: Structural

Particle-reinforced Fiber-reinforced Structural

• Sandwich panels-- low density, honeycomb core-- benefit: small weight, large bending stiffness

honeycombadhesive layer

face sheet

Adapted from Fig. 16.18,Callister 7e. (Fig. 16.18 isfrom Engineered MaterialsHandbook, Vol. 1, Composites, ASM International, Materials Park, OH, 1987.)

Page 8: Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 ... Concern

11/10/2015

8

Hexagonal core

OxCore-over expanded in height coreFlexCore-exceptional formability

Composite Materials

45

• CMCs: Increased toughness

Composite Benefits

fiber-reinf

un-reinf

particle-reinfForce

Bend displacement

• PMCs: Increased E/r

E(GPa)

G=3E/8K=E

Density, r [mg/m3].1 .3 1 3 10 30

.01

.1

1

10102

103

metal/ metal alloys

polymers

PMCs

ceramics

Adapted from T.G. Nieh, "Creep rupture of a silicon-carbide reinforced aluminum composite", Metall. Trans. A Vol. 15(1), pp. 139-146, 1984. Used with permission.

• MMCs:Increasedcreepresistance

20 30 50 100 20010 -10

10 -8

10 -6

10-4

6061 Al

6061 Al w/SiC whiskers

(MPa)

ess (s-1)

APPLICATIONS

Some Applications of Composite Materials Current Markets and Applications

Sources: SPI Composite Institute

Page 9: Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 ... Concern

11/10/2015

9

Rocket ARIANNE V

Static test in EMPA

Switzerland

Waterfront Structure and Decking Industry

Bridge decks

The Lion Gate Bridge,Vancouver, Canada

Highway Structure

Auto Skyway

Deck weight comparison per SF

Posts

Guard Rail

Page 10: Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 ... Concern

11/10/2015

10

FRP Composite Utility Poles

Pressure Vessel

Pipeline Infratructure

Pipes

Composite Turbine Blades for Wind Energy

Materials of Brake Pads

Page 11: Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 ... Concern

11/10/2015

11

Natural Fibers

Why Composites Inspection?

Much larger percentage of using composites in the world

Need to detect discontinuities that may lead to premature failure

Composites fail in catastrophically with little or no warning (different manner than metals)

Classifications of Inspections

Nondestructive Inspection- Visual- Ultrasonic- Infrared- Shearography- Thermography

Destructive Testing- Coupon Testing

66

• Composites are classified according to:-- the matrix material (CMC, MMC, PMC)-- the reinforcement geometry (particles, fibers, layers).

• Composites enhance matrix properties:-- MMC: enhance y, TS, creep performance-- CMC: enhance Kc

-- PMC: enhance E, y, TS, creep performance• Particulate-reinforced:

-- Elastic modulus can be estimated.-- Properties are isotropic.

• Fiber-reinforced:-- Elastic modulus and TS can be estimated along fiber dir.-- Properties can be isotropic or anisotropic.

• Structural:-- Based on build-up of sandwiches in layered form.

• Applications and Inspections

Summary

Page 12: Prodi TEKNIK MESIN - TM-UHOtm.eng.uho.ac.id/assets/download/151013104651Bahan Kuliah Umum...Prodi TEKNIK MESIN UNIVERSITAS HALUOLEO Prof. Ir. Hadi Sutanto, MMAE., Ph.D. 2 ... Concern

11/10/2015

12

67

Sources:• Materials Science and Engineering: An Introduction

W.D. Callister, Jr., 8th edition, John Wiley and Sons, Inc.

(2010).

• Introduction to Materials Science for Engineers,

J.F. Shackelford, Prentice Hall International, Inc., (1996).

• The Science and Engineering of Materials, 4th ed

Donald R. Askeland – Pradeep P. Phulé (2007)

• Principles and Composite Material Mechanics,

Ronald F. Gibson, McGraw-Hill Inc., (1994).• Mechanics of Composite Materials,

Robert M. Jones, Taylor & Francis, (1999).

Thank You for

Your Attention