Procedures For Performing PEM Single Cell Testing

download Procedures For Performing PEM Single Cell Testing

of 70

Transcript of Procedures For Performing PEM Single Cell Testing

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    1/70

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    2/70

    FSECs Procedures

    For Performing PEM Single Cell Testing

    Test protocol for Cell Performance TestsWork Performed Under

    DOE Contract # DEFC3606GO16028

    April 8, 2009

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    3/70

    EXECUTIVESUMMARY

    This document defines, indetail, a test protocol for performing protonexchange membrane(PEM)singlecelltesting. Developmentofthistestprotocol isapartoftherequirementsofFSECs Task 5, Characterize MEA Performance, under DOE Contract #DEFC3606GO16028.ThistestprotocolhasbeenevaluatedandisusedatFSECforsinglecelltesting.Under this contract, FSEC will perform singlecell tests to assess the relative merits of thecandidate membranes that are submitted by the Task 1 team members. These tests will beconductedatoperatingconditionsthatareofinteresttotheDOEand,whereappropriate,willberunusingidenticalproceduresonalltestedcells. Task1teammembersthatarecontinuingbeyond the Go No Go milestone are requested to review this document and identifyconditionsthatareofconcern.FSECwilliteratewiththeseTask1teammemberstoresolvetheseconcernsResearchers following the test protocol will be able to reproduce results that have beenobtainedbyFSEC.

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    4/70

    Contents1.OverviewofFSECsProceduresforPerformingPEMSingleCellTesting...................................6

    1.1IntroductionToTheTestProtocolforPEMCellScreeningTest.......................................... 61.2ComponentstobeDelivered............................................................................................... 61.3DetailsoftheCell................................................................................................................. 61.4Membrane,CCM,andGDLThicknessMeasurement.......................................................... 81.5CellAssembly....................................................................................................................... 91.6PreTestIntegrityTest........................................................................................................ 101.7TestsPerformedonEachCell............................................................................................10

    1.7.1LinearSweepVoltammetry,CyclicVoltammetry,AndCellConditioning.................101.7.2PerformanceVerificationTest...................................................................................131.7.3PosttestIntegrityTest ...............................................................................................151.7.4PosttestAnalysis....................................................................................................... 151.7.5CellDataReport......................................................................................................... 16

    1.8FuelCellHydrogenSafetyPlan..........................................................................................162.DaybyDayPEMMEATestSequence.......................................................................................19

    2.1AssembletheCell............................................................................................................... 192.2Day1................................................................................................................................... 192.3Day2................................................................................................................................... 202.4Day3................................................................................................................................... 202.5Day4(at1.5atm)............................................................................................................... 202.6Days5,6,and7(at1.5atm)..............................................................................................212.7Day8(at1.5atm)............................................................................................................... 212.8Day9................................................................................................................................... 22

    AppendixA:GurleyNumberProcedure....................................................................................... 23A1ReferenceMaterials............................................................................................................ 23A2Introduction........................................................................................................................ 23A3MaterialsandEquipment................................................................................................... 24

    A3.1Materials..................................................................................................................... 24A3.2Equipment................................................................................................................... 24A3.3QualityControl ............................................................................................................25

    A4MainGasketPreparation.................................................................................................... 25A5PreparationofSubgaskets ..................................................................................................25A6PreparationofGasDiffusionLayerSamples......................................................................26A7CleaningofFuelCellComponents......................................................................................26A8AssemblyProcedure........................................................................................................... 26A9LeakingCheckProcedure.................................................................................................... 29A10DataProcess...................................................................................................................... 29

    A10.1DataSheetGurleyNumberCalculations..................................................................30A11Acceptance........................................................................................................................ 30

    2

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    5/70

    AppendixB:PEMFuelCellUnitCellAssemblyProcedure...........................................................31B1ReferenceMaterials............................................................................................................ 31B2BillofMaterials................................................................................................................... 31

    B2.1Materials..................................................................................................................... 31B2.2Equipment................................................................................................................... 31

    B3Objectives............................................................................................................................ 32B4GeneralInstructions............................................................................................................ 32B5PreparationforCellAssembly.......................................................................................... 32B6AssemblingtheCellFuelCellTechnology(FCT)HardwareSet.......................................32

    AppendixCProcedureforLeakTestingaSingleCellAfterAssembly..........................................34C1ExternalLeakTest............................................................................................................... 34

    C1.1Procedure ....................................................................................................................34C2InternalLeakTest................................................................................................................ 35

    C2.1ProcedureforInternalLeakTest................................................................................. 35AppendixDPEMFCUnitCellTest .................................................................................................37

    D1ReferenceMaterials........................................................................................................... 37D2BillofMaterials................................................................................................................... 37

    D2.1Materials..................................................................................................................... 37D2.2Equipment................................................................................................................... 37

    D3Objectives........................................................................................................................... 37D4GeneralInstructions........................................................................................................... 38

    D4.1FuelCellSystemConfiguration ...................................................................................38D4.2ExplanationoftheTestStation................................................................................... 38D4.3HardwareSpecifications.............................................................................................39D4.4DataFilingNamingConventions................................................................................. 39D4.6NomenclatureofTestConditionTemperatures......................................................... 39D4.7HandlingofGasTanks................................................................................................. 40

    D5Day1Test........................................................................................................................... 40D5.1SetupCellHardwareontheTestStation.................................................................... 40D5.2PreparationofCellTestontheTestStation............................................................... 40D5.3OperationofComputertoStartUpCell .....................................................................40D5.4CrossoverandCyclicVoltammetryTestsat25/25/25...............................................42D5.5HumidificationoftheMembrane............................................................................... 44D5.6OperationoftheCellinBreakInMode...................................................................... 45D5.7

    Cool

    Down

    Procedure.................................................................................................

    45

    D6Day2Test........................................................................................................................... 46

    D6.1CrossoverandCyclicVoltammetryTestsat25/25/25...............................................46D6.2PolarizationCurveMeasurementat80/80/73(Air/O2Alternating)..........................46D6.3CrossoverandCyclicVoltammetryTestsat80/80/73...............................................48D6.4Holdat400mA/cm2Overnight.................................................................................. 49

    D7Day3Test........................................................................................................................... 49D7.1PerformanceMeasurementat80/80/73(Air/O2Alternating,1.5atm).....................49

    3

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    6/70

    D7.2PerformanceMeasurementat100/90/90(Air,1.5atm)...........................................49D7.3HoldOvernightat400mA/cm2..................................................................................49

    D8Day4Test........................................................................................................................... 49D8.1PerformanceMeasurementat100/90/90(O2/AirAlternating,1.5atm)...................49D8.2CrossoverandCyclicVoltammetryTestsat120/90/90.............................................49D8.3PerformanceMeasurementat120/90/90(Air/O2Alternating,1.5atm)..................49D8.4HoldOvernightat400mA/cm2..................................................................................49

    D9Day5Test........................................................................................................................... 49D9.1CrossoverandCyclicVoltammetryTestsat100/90/90.............................................49D9.2PerformanceMeasurementat100/90/90(Air/O2Alternating,1.5atm)...................49D9.3StabilityTest(Days5,6,and7).................................................................................... 50

    D10Day8Test....................................................................................................................... 50D10.1CrossoverandCyclicVoltammetryTestsat100/90/90...........................................50D10.2PerformanceTestat100/90/90(Air/O2Alternating,1.5atm)................................. 50D10.3CoolDown................................................................................................................. 50

    D11Day9Test......................................................................................................................... 51D11.1CrossoverandCyclicVoltammetryTestsat25/25/25.............................................51D11.2LeakTest................................................................................................................... 51D11.3ResistanceTest......................................................................................................... 51D11.4ShutDownandRemovefromTestStand................................................................. 51D11.5PostTestAnalysis..................................................................................................... 51

    D15Troubleshooting:HardwareProblems.............................................................................51D16ChartSummarizingDaytoDayActivities......................................................................... 53

    AppendixEFluorideConcentrationMeasurementsTestProcedure........................................... 54E1CheckingElectrodeOperation.......................................................................................... 54

    E1.1SuggestedEquipment.................................................................................................. 54E1.2Procedure.................................................................................................................... 54

    E2FluorideConcentrationMeasurements.............................................................................. 54E2.1DirectCalibration......................................................................................................... 54E2.2CalibrationCurve......................................................................................................... 55E2.3MeasuringSampleswithConcentrationsGreaterthan1ppm..................................56E2.4MeasuringSampleswithConcentrationsLessthan1ppm........................................57

    E3ElectrodeCleaningandStorage.......................................................................................... 58E3.1ElectrodeCleaningI..................................................................................................... 58E3.2ElectrodeCleaningII .................................................................................................58E3.3

    Electrode

    Storage

    I......................................................................................................

    58

    E3.4ElectrodeStorageII.....................................................................................................58

    AppendixFSafetyPlan................................................................................................................. 59F1ScopeofWork..................................................................................................................... 60F2IdentificationofSafetyVulnerabilities................................................................................ 61F3RiskMitigationPlan............................................................................................................. 62

    F3.1OrganicVaporExposure ..............................................................................................624

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    7/70

    F3.2CatalystHandling......................................................................................................... 62F3.3HydrogenLeaks........................................................................................................... 62F3.4StandardOperatingProcedures.................................................................................. 63F3.5PreviousExperienceWithHydrogen........................................................................... 64F3.6SafetyPerformanceMeasurementandManagementofChangeReviews................64F3.7EmployeeTraining....................................................................................................... 64F3.8EquipmentIntegrity..................................................................................................... 65F3.9MaintenanceofSafetyDocumentation......................................................................65

    F4CommunicationPlan........................................................................................................... 66F4.1EmergencyResponsePlan........................................................................................... 66F4.2IncidentReportingandLessonsLearned....................................................................66

    F5SampleHandlingandTransport.......................................................................................... 67F6References........................................................................................................................... 67

    AppendixGFacilitiesandInstrumentation..................................................................................68G1MembraneFabrication........................................ 68G2MembraneElectrodeAssemblyFabrication...................................................68G3ElectrochemicalCharacterization.................................................................... 68G4MaterialsCharacterization..............................................................................68

    5

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    8/70

    1.1 Introduction to the Test Protocol for PEM Cell TestsPEM singlecell testing for performance, durability and accelerated stress is conducted on aFeeforServicebasisatanumberofgovernmentaswellascommerciallaboratories. TheseservicesareavailablefortheindividualTask1teammemberswithcustomerspecificprotocolstomeettheirindividualtestingrequirements.ThisdocumentdefinesthePEMtestproceduresthatwillbeusedatFSECforconductingthescreeningteststhatarerequiredunderFSECsTask5CharacterizeperformanceofMEAoftheDOEprogramDEPS366095020. ThepurposeofthistestingistoassesstherelativemeritsofthecandidatemembranesthataresubmittedbytheTask1teammembers.ThesetestswillbeconductedatoperatingconditionsthatareofinteresttotheDOE. ThegoalistoshowthecurrentcapabilityofthesemembranesratherthansimplytoprovideaGo/NoGoratingagainsttheProgramRequirements. Afurtherobjectiveofthisprotocol istoclearlydefinetheoperatingconditionstowhichthe individualmembraneswill be subjected. This allows the details to be understood by the DOE; and, with thisinformation, each team member can set limits of processing and operation based on thecapabilities

    of

    their

    individual

    membranes.

    To

    the

    extent

    that

    all

    membranes

    are

    tested

    to

    the

    same protocol, the results provide a fair and accurate evaluation of the performancecapabilities of each configuration. It is understood that the fabrication history for themembranes,aswellasthecharacteristicsoftheinterfacingcellcomponents,thecellassemblyprocedures, and the cell operating history can have a significant impact on the cellperformance.The impactofthesehistories isnormalized inthisprotocolbyusing identicalproceduresonallthecells.FSEChasfollowedthisprotocolonnumerouscellsandthistestprotocolproducedrepeatableresults.1.2ComponentstobeDeliveredTask 1 team members deliver sample membranes developed under this DOE program. Asufficientnumberofpiecessized12cmby12cm(4inchesby4inches)willbesubmittedtoenabletheteststobecompleted.Thesemembranes,alongwiththefabricatorsconstraintsforfurther processing, are represented to the DOE as the Task 1 team members best effort ofperformanceunderthisprogram.1.3DetailsoftheCellThetestCCM isfabricatedusingmembranesprovidedbytheTask1teammembers.PriortofabricationoftheCCM,membranesampleswillbeexaminedforuniformity(nobubbles,debris,fogginess, stretches, cracks, and thickness variations), gascrossover, and flexibilitytoensurethemembranesaresuitablefortesting. SamplepieceswillbecutfromthemembraneandsenttoBekktech,LLCandScribnerAssociatesforconductivitytestingandtoMaterialScienceattheUniversity of Central Florida for SEM/EDAX characterization. A diagram depicting how eachsuppliedmembranewillbeused isshown inFigure1.1.TheCCM is fabricatedbysprayingacatalystink(ionomer,Pt/C,methanolmixture)onamembranetoachieveanominalloadingof0.4mgPt/cm2 ofTEC10E50EPt50wt%catalystsupportedonahighsurfaceareacarbon(SA=800m2/g)suppliedbyTKK. FSEChasachievedbaselineperformancebymixingthecatalyst

    6

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    9/70

    CCM

    Conductivity 1

    Conductivity 2

    Coupon

    Extra 12 cm

    12cm

    4 cm

    5 cm 5 cm

    4 cmcm

    4 cm

    8 cm

    8 cm

    with 32% 1100 EW Nafion using methanol and then spraying using a nitrogendriven spraygun,whichiscarriedbyanumericallycontrolledX/Zplotter.TheCCMisthendriedat100oC,heattreatedat136oCandcompressivelypressed5.1atm(75psi)compressivepressureforfiveminutes,andthenprotonatedusinga0.5Msulfuricacidsolutionandwashedindistilledwater.AsecondCCMandtwocouponsaremadeatthesametime,with identicalprocessing. ThissecondCCMandonecouponwillbereturnedtothemembranefabricatoruntestedfortheirevaluationandanalysis.FSECwillcommunicatewiththeteammembersaboutthefabricationconstraintsforeachmembraneandanattemptwillbemadetoaccommodatethemembranerequirementsandthesupplierwishes,whilestillachievingcomparableresults.Dependingonthemembranecompositionandthesupplierrequirements,itmaybenecessarytoadjustthetypeofionomer,ionomerloading,dryingtemperature,hotpresstemperatures,andsolvent.

    CCM

    Conductivity

    #1

    Conductivity

    #2

    Coupon

    Extra 12 cm

    4 cm

    5 cm 5 cm

    4 cm4 cm

    4 cm

    8 cm

    8 cm

    12cmFigure1.1.Depictionofmembranesamplepieces.CCMandcouponpieceswillbesprayedatthesametime.ConductivitypieceswillbesenttoScribnerandAssociatesandBekktechfortesting.The singlecell hardware (25 cm2) used for this program was manufactured by Fuel CellsTechnologies Incorporated (FCT) www.fuelcellstechnologies.com. It consists of a pair ofgraphitebipolarplateswithaserpentineflowpattern,goldcoatedcurrentcollectorplates,andaluminumpressureplates. Thedesignoftheanodebipolarplateflowfieldhasbeenrotated90togiveacrossflowpatternandthedimensionsoftheserpentineflowfieldforbothanodeand cathode have been modified (width and depth) to decrease pressure drop. All otheraspectsofthishardwareareasoriginallydesignedbyFCT.

    7

    http:///reader/full/www.fuelcellstechnologies.comhttp:///reader/full/www.fuelcellstechnologies.com
  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    10/70

    Figure1.2.Bipolarplates(anode,leftandcathode,right)showingsingleserpentineflowfield.All the MEAs for these cells use type 10BB gasdiffusion layers purchased from SGL Carbon(Sigracet)Eachofthesegasdiffusionlayersweretestedforthroughplanepermeabilitypriortouse,followingtheprocedure inAppendixA.Theminimumacceptablepermeabilityforthecathode GDL is given by a Gurley Number of 0.024 L/min/cm H2O/cm2. The anode GDLpermeability is allowed to be much lower. The cell seals are made of a stackup of Teflongaskets

    with

    the

    thickness

    of

    the

    gaskets

    thinner

    than

    the

    cell

    assembly

    giving

    apinch

    of

    230

    to250m (910mils).1.4Membrane,CCM,andGDLThicknessMeasurementThethicknessofthemembrane,CCM,andGDLsaremeasuredusingaMitutoyoGauge(Figure1.3).ComponentthicknessesaredefinedusingaverageofatleastninereadingsevaluatedovertheentirecomponentatlocationsshownonthetemplateinFigure1.4. Themembrane,CCM,or GDL is sandwiched between thin sheets of Teflon of known thickness when making themeasurements. Thetemplateisusedtomaintaintheconsistencyofthelocationofsuccessivemeasurements.TheTeflonsheetsaremeasuredfirstandthenthemembrane,CCM,orGDLisinsertedbetweenthemandasecondsetofreadingsistaken.Subtractingthefirstreadingfromthesecondprovidesthecomponentthickness.

    8

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    11/70

    Figure1.3.MitutoyoGaugeformeasuringthicknessofmembranes,CCMs,MEAs,andGDLsX XX

    XX X

    X X X

    MeasureeachMembranein9placesTaketheaverage

    Figure1.4.Templateformeasuringthicknessofmembrane,CCM,GDL,andMEA1.5CellAssemblyFigure1.5showsanexpandedviewofacompletePEMfuelcellhardware. Thedesignofthehardwareisfor25cm2cells. Forthisprogram,cellsareassembledbyhandusingbipolarplates,load plates, and end plates purchased from FCT. Prior to assembly, GDLs are tested forpermeability, and cut to the required size. Teflon sheets are also die cut to size, and themembraneisspraycoatedwithamixtureofTKKplatinumoncarboncatalysttoformtheCCM.CCMshave0.4mg/cm2 catalystoneachelectrodeforthescreeningtests;howevertheycanbefabricated with catalyst loadings down to 0.05 mg/cm2 by the same processing equipment.After all components have been prepared, cleaned and documented, cells are assembled asdefinedintheAssemblyProcedure includedasAppendixB. Cellpinch,whichestablishesthecompressive loadontheactiveareaoftheMEA iscontrolledbyselectingTeflon sealinggasketsthatarethinnerthanthesumofthecomponentthicknessesintheactiveareaofthecell.Thispinch isacriticalparameterforcellassemblyand iscontrolledbyselectingTeflongasketsofappropriatethicknessasshowninFigure1.6.

    9

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    12/70

    15 6515 65 15 85 15 6

    15 95 15 7515 75 15 7515 95

    15 6515 55

    15 9515 6516 16 15

    15 85 16 1 15 9

    2 2

    2 45

    2 25

    2 45

    2 75

    2 9

    2 45 2 755

    9 4

    165

    9 8

    9 351 4

    1

    9 5

    9 7

    Figure1.5.ExpandedviewofPEMfuelcellhardware

    1234

    56

    4321

    7

    5

    1. EndPlate2. Goldcoatedcopperplate3. BipolarPlate4. TeflonGasket5. GasDiffusionLayer6. MEA7. M6Bolt

    GDGDLL ThThiicckknneessss CCMCCMThThiicckknneessss398398 402 396

    405 400400 400405

    398395

    405

    398

    406

    400

    402 409 404All numbers are in m.

    Cathode

    Anode

    The gasketswere each 310m

    566257

    627074

    62 7064

    PiPinncchh239

    254245249

    237254

    254

    241

    246Measure each componentin 9 placesBuildcellwith229254mpinchPinch= TGDL(Anode)+ TGDL(Cathode)+ TCCM TGaskets

    Figure1.6.Schematicshowingsamplecalculationofpinchbymeasuringthicknessesofeachcomponentusingthetemplate.1.6Pre-TestIntegrityTestAfter the cell is built and before it is delivered to the test stand, it is externally leaktested,internally leaktested, and electrically isolationtested, each according to the procedures inAppendicesCandD. Thesetestsaretoensurethatthecellintegrityissufficienttowarrantthetesteffortandtoestablishapretestbaselinedatabase. Afterthecellismountedintheteststand,theexternalleaktestofthecellandthestand,andtheresistancetestsofthecelland

    10

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    13/70

    thestandarerepeatedtovalidatetestreadiness. Allowable limitsforthesetestshavebeenestablishedbyacombinationofFSECscumulativetestexperienceandanimpactanalysisoftheworstcaselevelofleakageandcellresistanceoncellperformance. TheselevelswerealsoverifiedbythecurrentFSECdatabase.1.7TestsPerformedonEachCell1.7.1 Linear Sweep Voltammetry, Cyclic Voltammetry (CV), and Cell ConditioningPriortoperformanceevaluation,electrochemicalactivearea(ECA)andH2 crossover(CO)testsareperformedonthecellatambientpressureatroomtemperatureand100%RH,80oCand~100%RH,100oCand69%RH,and120oC and 35%RH.Thecathode istheworkingelectrodeandtheanode,usinghydrogen,isthecounteraswellasthereferenceelectrode. Flowsof0.4L/min of hydrogen and nitrogen are introduced to the anode and cathode side of the cell,respectively. The CV is conducted at a scan rate of 30 mV/s between zero and 0.8 V todetermine the ECA. Hydrogen crossover is measured by the limiting current density methodwith H2 flowing on the anode and nitrogen on the cathode. The cell potential is scannedpotentiodynamically at 4 mV/s from zero to 0.8 V. A PAR 263A potentiostat and CorrWaresoftware is used to control the potential. The crossover test shows both the level of gasdiffusionthroughthemembraneandanyelectricalshort.Thelevelofdiffusionisgivenbytheflatportionofthecurveandthelevelofshortiscalculatedfromtheslopinglinearrelationshipbetween the applied voltage and the measured current, specifically the measured currentbetween0.3Vand0.8V. Shortsmustbelessthantheequivalentof10mAtobeallowable,andtoclarifytheCVdata,thelinearslopesresultingfromtheseelectricalshortsareremovedfromthedata. Figure1.7showssampleCOdataandFigure1.8showssampleECAdataasafunction of cell temperature. In the CV data, the hydrogen desorption peaks can easily beobservedatroomtemperature.CVandCOtestswererepeatedbeforeeachtestconditiontoprovidedatainsupportofthecellanalysis.

    i/mAcm-2

    0.015

    0.010

    0.005

    0.000

    -0.005

    -0.010

    -0.015

    Crossover

    0.0 0.2 0.4 0.6 0.8 1.0

    E / V

    25/25/25 0.28 mA/cm2 (pretest)

    80/80/73 0.76 mA/cm2

    100/90/90 0.73 mA/cm2

    120/90/90 1.98 mA/cm2

    25/25/25 196 Ohm cm2 (post-test)

    Indicativeofashort

    Figure1.7.COdataatdifferentcelltemperatures.LinearsweepvoltammogramofFSEC1;scanrate=2mV/s,0.4L/min(H2/N2),Tcell=25,80,100,120oC,workingelectrode=cathode,counter/reference=anode.

    11

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    14/70

    ECA

    -0.02

    -0.015

    -0.01

    -0.005

    0

    0.005

    0.01

    0 0.2 0.4 0.6 0.8 1

    E / V

    i/mAcm-2

    25/25/25 39.3 m2/g

    80/80/73 35.6 m2/g

    100/90/90 22.3 m2/g

    Figure1.8.ECAdataasafunctionofcelltemperature.CyclicVoltammogramofFSEC1;scanrate=30mV/s,0.4L/min(H2/N2),Tcell=25,80,100oC,workingelectrode=cathode,counter/reference=anode.Analysisofthecyclicvoltammogramprovidesameasureoftheelectrochemicalsurfacearea

    (ECA)ofthecathode. PeriodicallyrepeatingthistestduringtheprogramprovidesahistoryofthechangesincathodeECAforsampleMEAsasafunctionofafixedtesthistory.Analysisofthesetestresultsshowscomparativemeritsofthesubmittedmembranes.It is recognized that the initial testing of CO/CV prior to conditioning the CCM does notrepresentthefullpotentialofthecell,butthesetestsprovideimportantdataabouttheinitialconditionofthecell.Inaddition,thisdataisrequiredasinputfortheanalysisofthecellduringoperation.AftertheCO/CVtest,thecell isheatedto80oCandthesaturatorsareheatedto80oC for the anode and 73 oC for the cathode, and the cell is conditioned for operation byaddingwatertotheelectrolyte. Thisisatwostepprocedure,wherewaterisfirstaddedasavaporfromsaturatedgases(hydrogenontheanodeandnitrogenonthecathode),andsecondbyoperationofthecellatafixedvoltageof0.55Vandrunonhydrogen/air. Eachstepisforthreehours,which,forNafion,hasproventobesufficienttowetuptheelectrolyte.After the electrolyte has been wetup, a series of performance curves are run at ambientpressureandhighstoichiometry. Thesetestsarerunatnear100%RHwiththecellat80oC.The air dew point is a few degrees lower than the cell temperature to avoid flooding thecathode.Performance sweeps are taken on H2/Air,H2/O2, andH2/Air out to ILim. or IMax. The limitingcurrent,ILim,isthecurrentwhenthecellvoltagebecomes0.3V.Thisvalueisusedratherthat0Vtoavoiddamagetothecell.Themaximumcurrent, IMax,isbasedontheteststandreactant

    12

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    15/70

    flowcapabilityat2000mA/cm2.TherepeatoftheH2/Airsweepsallowsperformancebetweenthetwoteststobecomparedtoshowthatthecellhasreachedastablestartingperformancepoint,andtoindicatethatthedifferencesbetweentheairandtheoxygenperformanceisbeingmeasuredaccurately. Testpointsareheldforfiveminutesduringthistestingasacompromisebetweenfullystabledataandareasonableamountoftotaltesttime.Thecellisthenheldatthesesameconditions(80oC,80oC,73oC)whiletheinitialtestdataisreviewedandthecellintegrityisjudgedtobesufficienttoproceedwiththeremainderofthetesting. Ifthecellperformanceisnotadequate,itiscooledtoroomtemperature,theCO/CVisrepeatedandfurtherdataanalysisisconductedtodeterminethenextsteps.1.7.2 Performance Verif ication TestThe purpose of the Performance Verification Test is to provide data on cells operating at aseries of conditions that are at the DOE goals or that represent significant progress towardthose goals and show the relative merits of each of the candidate membranes at thoseconditions. Havingconditionedthecellandverifieditsintegrity,thePerformanceVerificationTestisstartedwithoutshuttingdown. Thecellispressurizedto1.5atmosphereswhileholdingthecelltemperatureandtheanodeandcathodesaturatortemperaturesat80oC,80oC,73oCrespectively; and a series of H2/Air, H2/O2, H2/Air performance sweeps are taken at highstoichiometry(above3tominimizetheeffectsofreactantutilization). Followingthesetests,thecellandsaturatorsareheatedto100oC,90oC,90oC,whichchangestheinletRHatthecellto69%.Thethreeperformancesweepsaretakenandthetemperaturesareincreasedagainto120 oC, 90 oC, 90 oC to further reduce the relative humidity to 35%. In all cases, the cell isreturnedto100 oC,90 oC,90 oC andheldat 400mA/cm2 overnighttoevaluate the stabilitybetween the different sets of lower relative humidity tests. Cell temperatures are held at100oC,90oC,90oCinpreparationforthestabilitytest.1.7.2.1 Polarization Curve

    Figure1.9showstypicalperformancedata,whichshowsthreecharacteristicregions. Thefirst(lowcurrentdensityregion) isdominatedbyactivationoverpotential losses,thesecond(midcurrentdensity)isdominatedbyresistancelosses,andthethird(highcurrentdensityregion)isdominatedbymasstransportlosses. Analysisofthesecurves,andthechangestothevariousregionsofthecurves,asthetestingprogresses,provideskeyinsightsintotheperformanceandstabilityofthemembraneaswellasthecatalystlayerandthecatalystmembraneinterface.Fuel Utilization and air Utilization have significant impacts on the shape of these curves.Although

    utilizations

    used

    are

    higher

    than

    the

    goal

    values,

    this

    data

    is

    valuable

    in

    comparing

    performancewithlowerfuelandairflows.ThehighestobtainablecurrentdensityisILim,whichisanimportantinputtotheanalysisoftheinternalresistanceofthecathode.

    13

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    16/70

    FSEC1 CCM @ 120oC _1.5atm

    Catalyst: TKK 45.5 Pt% 0.4mgPt/cm2

    y = -0.0353Ln(x) + 1.0085

    R2= 0.9985

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1 10 100 1000 10000

    Current Density(mA/cm2)

    CellVoltage

    (V)

    Air Vcell

    Air_iR_Free

    O2_iR_Free

    Air_Cathod Resistance Corrected

    O2_Cathode Resistance Corrected

    Air_Ilim Correct

    O2_Ilim Correct

    Figure1.9. Typicalperformanceforaloadcalibrationsweep1.7.2.2 Stability Test

    A64hourendurancetestisrunonthe25cm2 fuelcellunderH2/Air.Theoperatingconditionsare 400mA/cm2, 100 oC,1.5 atm,and 69% RH for both the H2 andairreactants. The cell ismaintainedataconstantcurrentwhilecellperformanceandresistancearemeasured. Initialandfinalelectrochemicalactivearea,fuelcrossover,andperformancearedeterminedatcelloperatingtemperature.Waterfromtheexitstreamsiscondensed,collected,andanalyzedforfluorideionconcentration.TypicalcellvoltageandcellresistancestabilitycurvesareshowninFigure1.10. Thevoltageandresistancearebothexpectedtobestablethroughoutthestabilitytest.AnychangeinperformanceorresistanceisaresultofMEAdegradationduetochemicalandmechanicalstress.

    14

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    17/70

    Vta

    V

    0.9 250100/90/90

    400 mA cm-1

    0.8

    Voltage

    /V0.7

    0.6

    200

    Resistanc

    e

    mOhmcm

    2

    1500.5

    0.4100

    0.3

    Voltage0.2 500.0

    0 20 40 60

    Resistance

    80

    0

    Time / h

    0.1

    Figure1.10.Typicalperformanceandcellresistancestabilitycurve.VoltageandresistanceofFSEC3,0.2L/min(H2/Air),Tcell= 90oC,%RH=30,i=400mA/cm2.1.7.3 Post-Test Integri ty TestAfterthecellistested,andbeforeitisremovedfromtheteststand,theexternalleaktestofthe cell and the stand, and the resistance tests of the cell and the stand are repeated toquantifytheendoftestcondition. Inaddition,beforethecellisdisassembled,it isexternallyleaktested,internallyleaktested,andelectricalisolationtestedonthebench,eachaccordingto the procedures in Appendices C and D. Bolt torque is also measured. These tests are todetermine the changes in the cell integrity as a result of the protocol testing. These testsprovidedataonsomeofthechangestothemembraneaswellasdataexternaltotheMEAthatisneededtosupportthecellanalysis.1.7.4 Post-test AnalysisFSEC has developed and verified a process to evaluate sources of polarization, mainlyassociated with the cathode, in hydrogen/air proton exchange membrane fuel cells and iscurrentlyusingthisprocesstoanalyzecellperformanceandguidedevelopmentefforts.Thisprocess quantifies the six sources of polarization using data from the standardized testprogram. Nonelectrode ohmic overpotential, electrode ohmic overpotential, nonelectrodeconcentration

    overpotential,

    electrode

    concentration

    overpotential,

    activation

    overpotential

    from the Tafel slope, and activation overpotential from catalyst activity are analyticallyseparatedintotheirdistinctelements.Theanalysisisbasedonhydrogen/airpolarizationcurvesofaninhousemembraneelectrodeassembly(MEA)usinghydrogen/oxygenpolarizationcurvesas a diagnostic tool. The analysis results compare three cell temperature/relative humidity/oxygenpartialpressure(pO2,atm)conditions:80C/100%RHanode/75%RHcathode,100C/69%RH,and 120C/35% RH, which represent near fullyhumidified, moderately humidified, and lowhumidifiedconditions,respectively,at1.5atmoperatingpressure. Thetechniqueisusefulfor

    15

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    18/70

    diagnosing the main sources of loss in MEA development work, especially for hightemperature/low relative humidity operation where several sources of loss are presentsimultaneously. Thefollowingverificationtestdataandanalysisisreported.1.7.5 Cell Data Report

    The experimental testing of a new membrane will result in the following data to enable theevaluationofmembraneperformanceinacell: Cellbuildverificationtestdata

    o Electronicresistanceforshortdeterminationo Externalleakagerateo Internalleakagerate

    Cellcharacterizationatstartupo Cyclicvoltammetryat25oCtoenableelectrochemicalareadeterminationo Linear sweep voltammetry at 25 oC for crossover and electronic resistance

    determination Performancetestdata

    o Cellvoltageandcellresistance(OCVto0.3V)atthefollowingconditions: H2/O2andH2/Airreactantsat1.5atm,80oC/80oC/73oC(100%RH) H2/O2andH2/Airreactantsat1.5atm,100oC/90oC/90oC(69%RH) H2/O2andH2/Airreactantsat1.5atm,120oC/90oC/90oC(35%RH)

    o AtabulationofcellcurrentdensityandresistanceusingH2/Airreactantsat0.7Vfor the above three conditions (This tabulation is provided to enable rapidmembranecomparisons.)

    Stabilitytestdatao Cellvoltageandresistancefor100hoursatthefollowingconditions:

    H2/Airreactantsat400mA/cm2,150kPa,100oC,69%RHo Cyclicvoltammetrytoenableposttestelectrochemicalareadeterminationo Linear sweep voltammetry for posttest crossover and electronic resistance

    determinationo Fluoridepresentinexhaustcondensate

    1.8FuelCellHydrogenSafetyPlanFlorida Solar Energy Center (FSEC) complies with the University of Central Florida (UCF)ChemicalHygienePlan(CHP),asrequiredbyOSHA. Thisplananditsassociateddocumentation(Safety Standards for Hydrogen and Hydrogen Systems SSHHS) provides a writtendescription

    of

    safety

    policies

    and

    procedures

    that

    all

    university

    laboratory

    personnel

    must

    follow. Allfacultyresearchers,studenttraineesandvisitingscientistsandengineersworkingatFSEC's hydrogen research laboratories are provided with training and a copy of SSHHSdocument. SSHHS document contains guidelines for hydrogen system design, materialselection, operation, storage, handling and transportation. Furthermore, FSEC's hydrogenlaboratoriesandfieldfacilitymeetand/orexceedthedesignandsafetyrequirementsimposedbytheFloridaStateFireMarshallandallthestateandfederalcodes(NFPA45StandardonFireProtection for Laboratories Using Chemicals, NFPA 50A Standard for Gaseous Hydrogen

    16

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    19/70

    SystemsatConsumerSites,andNFPA70NationalElectricCode)forhandlinglargevolumesofhazardousandflammablegasesandchemicalsincludingbothgaseousandliquidhydrogen. Inaddition, FSECs hydrogen field facility has been upgraded with explosion proof electricalsystemsandmeetsNFPA50BCodeLiquefiedHydrogenSystemsatConsumerSites.Beforeeachnewresearchactivity is initiated,thepersonnelsafetyatandnearthe facility isreviewedandemergencyproceduresimplementedattheearliestplanninganddesignstages.Advanceplanningforavarietyofemergenciessuchasfiresandexplosionsareconductedandproper procedures developed and implemented. All hydrogen systems will be instrumentedandcheckedfor:

    i. Processmonitoringandcontrol.ii. Collectionofperformancedata.iii. Providingwarningsand/oralarmsforoutoflimitsconditions.iv. Earlydetectionofhazardouscondition(s).v. Compatibilitywithhydrogenservice.vi. Establishmentoflocaland/orremoteoperationandmonitoringofthehydrogensystem.vii. Havingappropriaterange,accuracy,andresponsetime.

    The SafetyAssessmentReviewshallbeupdatedanytimeasystemorprocess ischanged.Anannualfacilityinspectionshallbeconductedanddocumented.AformalOperatingandSupportHazardAnalysis shall be performedas directed by the UCFEnvironmental Health and SafetyOffice.Significanthazardsidentifiedshallbeeliminatedorreducedtoacceptablerisklevels.Mr.RandyFowler istheFSEC'sHydrogenR&DLaboratories'operationalandsafetymanager.Hehasattendedandcompletedthefollowingsafetyrelatedcoursesandtrainingactivities:

    i. A full day course on HazMat and received his certification on spill control andrespirators.

    ii. HassuccessfullycompletedNASAHydrogenSafetyclass.iii. AttendedtheLabSafetyBasicsandBeyondatPITTCON.iv. Taken and passed UCF's Chemical Safety and Environmental Management for

    Laboratoriesclass.v. HaspostsecondaryvocationalcertificategivenbytheBrevardCommunityCollegeon

    ChemicalLaboratorySpecialist,Decemberof2002.Mr.

    Fowler

    oversees

    the

    enforcement

    of

    all

    hydrogen

    and

    chemical

    safety

    procedures

    and

    trainingofthegraduateresearchstudentsworkinginFSEC'shydrogenlaboratories. Inaddition,acomprehensivesafetyplanwillbedevelopedandsubmittedtoDOEatthetimeofcontractaward. Inpreparationforthisplan,thefollowingstepswillalsobetaken:

    TheChemicalHygienePlan(CHP)willbereevaluated,modifiedasneededandperiodicallycheckedforcompliance.

    Astandardoperatingprocedure(SOP)willbeestablishedforallexperimentsandoperationstakingintoaccounthazardlevelofmaterialstobeused.

    17

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    20/70

    ProcedureswillbedevelopedforreportinganyeventsordeviationsfromSOP. Failureriskmitigationplanwillbedevelopedbasedonvulnerabilitiesidentified

    byModesandEffectsAnalysis.

    18

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    21/70

    2.DaybyDayPEMMEATestSequence2.1AssembletheCell TheSampleMEA

    - Fromteammemberstwopieces12cmx12cm(4.75x4.75) AnodeandCathodeCatalyst

    - TKK46%Ptcatalyst- 0.4mg/cm2- 32wt%Nafion1100binder- Spray- 136

    oCheattreat

    - Protonation- Twoidentical:Onetested/Onereturneduntested

    GDL- SGL10BB Pinch0.25mm+/0.02mm(0.01+/0.001)

    TeflonGasketLayup FCTCell

    - HardwareSinglepassserpentine- Crossflowcathodehorizontal- FSECbarandgroovedimensions

    BoltLoad- Starpattern- 4.5Nmtorque(40inchpounds)

    PretestConductivity

    TestedatBekkTech

    2.2Day1 Measuremechanicalcrossover

    - 100Ohms- AnodetoCathode>30Ohms

    Mountinteststand- ResistanceAnode/Cathodetoground>100Ohmsacceptable

    RoomtemperatureCOandCV WetUp

    - 80/80/73 H2/N23hNoLoad H2/Air~3h0.55V

    19

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    22/70

    Cooldowntoroomtemperature- HoldonN2/N2

    2.3Day2 RoomtemperatureCOandCV Heatup

    - H2/N2- 80/80/73oC- Ambientpressure

    Measure- Opencircuitvoltage(OCV),- Performance(voltsvs.current)curve(VI)- Cellresistance(bycurrentinterrupt)

    StoichiometryAnode3,Cathode3.6

    H2/Air H2/O2 H2/Air COandCVat80/80/73oC Holdovernightat400mA/cm22.4Day3 Pressurizeto1.5atm Measureat80/80/73oC

    - OCV,VIcurve,cellresistance Stoichiometry

    Anode3,Cathode3.6 H2/Air H2/O2 H2/Air Heatto100/90/90oC COandCVat100/90/90oC Measure

    - OCV,VIcurve,cellresistance Stoichiometry

    Anode3,Cathode3.6

    H2/Air

    Holdovernightat400mA/cm22.5Day4(at1.5atm) RunVIcurveat100/90/90oC

    - Stoichiometry Anode3,Cathode3.6

    - H2/Air

    20

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    23/70

    - H2/ O2- H2/Air

    Heatto120/90/90oC RecordCOandCVat120/90/90oC Measure

    - OCV,VIcurve,cellresistance Stoichiometry

    Anode3,Cathode3.6 H2/Air H2/O2 H2/Air Coolto100/90/90oC Holdovernightat400mA/cm22.6Day5,6,7(at1.5atm)StabilityTest RecordCOandCVat100/90/90oC Measure

    - OCV,VIcurve,cellresistance Stoichiometry

    Anode3,Cathode3.6 H2/Air H2/O2 H2/Air Startstabilitytest

    - 1.5atm- 100/90/90oC- H2/Air- 400mA/cm2

    Stoichiometry- Anode3,Cathode3.6

    Measureduringstabilitytest Cellvoltage Fluorideemissionrate(FER)inreactantexhausts

    2.7Day8(at1.5atm) RecordCOandCVat100/90/90oC Measure

    - OCV,VIcurve,cellresistance Stoichiometry

    Anode3,Cathode3.6 H2/Air H2/O2 H2/Air

    21

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    24/70

    Cooldowntoroomtemperature H2/N22.8Day9 RoomtemperatureCOandCV Resistancetest

    - Anodetoground- Cathodetoground

    Removethecell Measuremechanicalcrossover

    -

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    25/70

    Appendix A: Gurley Number TestProcedures

    DocumentNumberWP0012WPQRSA1.ReferencematerialsA1.1MinKyuSong,PEMFCUnitCellAssemblyforNTMembraneandETEKElectrode,March13,2001,UconnA1.2B.Mueller,E.DeCastroetc.,CARBONCLOTHGASDIFFUSIONBACKINGSFORHIGHPERFORMANCEPEFCCATHODES,ElectrochemicalSocietyProceedingsVolume9827A2.IntroductionFor porous and/or fibrous gas filtration media, resistance to flow is often used as acharacteristicmeasureforqualitycontrolandperformance.GurleyNumberbasicallymeasuresgaspermeationratethroughthegasdiffusionbackingsamples.TheGurleynumberrepresentsthegasflowrate(inLPM)foraGasDiffusionLayersampleatafixedpressuredifference(incmofH2O)throughafixedareaofsample(cm2),andthusindicatestheresistancetogasflow.Samplesofgasdiffusion layerswerecutandfitted intoamanifoldofmaingasketsandsubgaskets,suchthattheuncoatedsideofthebackingisorientedtowardsthenitrogeninletandthatthereisnopinchontheGasDiffusionLayer.Thetotalgasketthicknesshasconsiderableinfluence on the pressure distribution pattern over the active area on both inlet and outletsides. Therefore, it is very important to employ enough thickness gaskets to get relativelyuniformpressuredistribution,resultinginmoremeaningfulGurleynumbers.Priortoevaluationofabackingsample,thesysteminherentresistancetogasflowisevaluatedbymeasuringpressuredropacrossthecelloverarangeofflowrates.Thissystemresistancetoflowisusedasacorrectioninthesubsequentmeasurementofbackinggasflowcharacteristics.TheconfigurationofthesystemisillustratedasinFigureA1.

    23

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    26/70

    FlowMeterDigital

    NeedleMeterCell

    ValveAssembly

    SlantPressureGuage

    FigureA1.ApparatusforMeasuringGurleyNumberA3.MaterialsandEquipmentA3.1 Materials

    Teflonfilm(0.25mm(10mil)thickness) Krytox(Dupontperformancelubricants,TeflonGrease) GasDiffusionLayers SnoopLiquidLeakDetector Ethyl Alcohol 200 Proof, Absolute (Dehydrated) USP Grade, Pharmco Products

    INC DeionizedWater(From153FuelCellsLaboratoryERI)

    A3.2 Equipment

    ElectronicDigitalMicrometer(Mitutoyo) CARVERHydraulicPress(UnitModel#3912) ClickerDies TorqueWrench(05.6Nm,0to50inlbs) 3/8inchNutDriver NutPlate

    Tweezers

    Knife SingleCellParts

    GraphiteFlowChannelGoldPlatedCopperPlatesInsulatorSleevesM6Bolts/M6NutsFlatWashers

    24

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    27/70

    A3.3. Quality control (test and cri ter ia)

    QS0012GasPermeability,GasDiffusionLayer.

    A4.MainGasketPreparationTo ensure sealingoverthegasdiffusion layeredges, themaingasketthickness should beatleast51m(2mil)thinnerthanthegasdiffusionlayerthickness.Ingeneral,thecarbonpapersandcarbonclothsfallintherangebetween356and457m(14and18mil).Inthiscase,a254m(10mil)thickTeflonmaingasketwouldbeappropriate.However,itisimportanttokeepinmindthatweshouldalwaysusealittlethinnermaingasketthangasdiffusionlayers.Usingclickerdieandhydraulicpress,makeanormalsizegasket,thenmake it6.5mm(1/4)largeroneachside.Usinga25cm2cellasanexample,anormalgasketwouldbelikeinFigA2a.Aftermadelarger,thegasketwouldlooklikeinFigA2b.

    OriginalGasket EnlargedGasket

    Outsidedimension:9.5x9.5cm2Insidedimension:5.2x5.2cm2 Outsidedimension:9.5x9.5cm

    2Insidedimension:6.5x6.5cm2

    a bFigureA2.PreparationofMainGaskets(5.25.2cm2cellsize)A5.PreparationofSub-gasketsSubgasketsaredesignedwitha5.8cmx5.8cminsidedimensionandtheoutsidedimensionisthesameasfornormalgaskets.However,itisveryimportanttoprepareenoughthickgasketstoguaranteethatwecanhaveauniformpressuredistributionontheactivearea,whichwillleadtoameaningfulGurleyNumber.Thecorrecttotalthicknessdependsontheactivearea,andonthephysicalpropertiesofgasdiffusionlayers.It isalso importanttoalternatethinandthickgaskets inthefinalassemblytoensurepropersealingbythegaskets.

    25

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    28/70

    From experience, for 5 cm2, 6.25 cm2, and 25 cm2 cells, 3810m (150 mil) of total gasketthicknessisenoughtogenerateauniformpressuredistribution.Supposethethicknessofthemaingasketis254m(10mil).Wecoulduseseven254m(10mil)gaskets,thenone254m(10mil)maingasket.Thetotalgasketthicknesswouldbe1778+1778+254=3810m(70+70+10=150mil).A6.PreparationofGasDiffusionLayersamplesGasDiffusionLayersshouldbestrictlycutaccordingtothesizeofthemaingasket(FigureA2b,6.5x6.5cm).Toensurepropersealingontheedgesofthegasdiffusionlayer,itisimportanttomakesurethatthesampleandthemaingasketmatchesnicely.A7.CleaningofFuelCellComponents

    i. Rinsethegoldplatedcopperplate,graphiteflowchannelblockandTeflongasketswithdeionizedwaterbysoftbrushing.

    ii. Washthemwithethanol.iii. Drythematroomtemperature.

    A8.AssemblyProcedureNote.AllpartsshouldbeorientedasshowninFigureA3.

    i. LubricatethesurfaceofthreadofM6BoltsusingKrytoxTeflongrease.Note.VerifynutsturnfreelyonM6boltsbeforeplacingboltinthenutplate.

    ii. PlaceM6boltsheaddownintheNutPlate.iii. PutflatwashersonthroughtheNuts.iv. PlaceInsulationSleevesonthroughtheNuts.v. PlaceGoldPlatedCopperAlloyPlateon.vi.

    Put

    Bipolar

    Plate

    on.

    vii. Put1778m(70mil)Teflonsubgasketon(7layers,254mor10milforeach).

    Note.Alignnotchesineachgasket.viii.Putthemaingasket(254mor10milthick)onandalignsubgasketsandmain

    gasket.ix. Putthegasdiffusionlayeronthemaingasket.Makesuretheyfitnicelyandthe

    coatedsidefacesup.x. Putanother254m(70mil)Teflonsubgasketontop(7layers,254mor10milfor

    each).Note.Alignnotcheswithfirstsevengasketlayers(step7).

    xi. Puttheotherbipolarplateon.xii. Puttheothergoldplatedcopperalloyplateon.xiii.Putinsulationsleevesin.xiv. Putflatwasherson.xv. PlaceNutson.TightennutsusingaTorqueWrenchandNutDriverinthesequence1

    to8asshowninFigureA4.Apply2.8Nm(25inlb)torqueforeachbolt.Note.Nutsmustturnfreelybyhandbeforeapplyingtorque.

    26

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    29/70

    Note.Besuretoputthecellontothenutplatetotightennuts.Afterthat,itcanbehardtotakethecelloff. Inthiscase,putascrewdriverbetweenthecellandthenutsplateandgentlymove thescrewdriverupward (onboth sides),the cell willbeeasily takenoutofthe nutplate.Also,usenutplatetoloosenthenuts.

    xvi.ConnectgastubesasinFigureA3.

    ToSlantGauge N2Low Pressure OutEnd

    N2In ToSlantGaugeHigh

    PressureEndFigureA3.CellConnectionsinGurleyTest

    27

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    30/70

    1

    23

    45

    67

    8

    M6Bolt

    GoldPlatedCopperPlate

    BipolarPlate

    GasDiffusionLayerand MainGasket

    Teflon

    SubGaskets

    M6Nuts

    Teflon

    SubGasket

    GoldPlatedCopperPlate

    BipolarPlate

    NutPlate

    FigureA4.CellAssemblyExplosionViewinGurleyTest

    28

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    31/70

    A9.LeakingCheckProcedureEveryconnectionshown inFigureA3shouldbe leaktestedbeforetakingmeasurements.Forthecell itself,thegasketsideshouldbetestedtomakesurethere isno leak inbetweenthegaskets.Theleaktestprocedureisasfollows:

    i. Verifythatthepressuredropmeterisinhorizontalposition(thatshouldbecheckedusingalevel),andtheslantliquidlevelisat0positionwithnopressureapplied.

    Note.Verifyneedlevalveisclosed.ii. OpenN2gas,keeppressure~0.68atm (10psi).iii. Adjustpressuredropat0.05inchH2O.Openvalveslowly,makesurethatpressure

    dropcanbeheldat0.05inchslantliquidexactly.iv. HoldSnooptubeendatconnectionandsqueezeuprightbottletoapplysolidstream

    ofSnoopliquidleakdetector.Bubblesformifconnectionleaks.Bubblesizeindicatesapproximateleaksize.

    Note.Fordifferentsizegasketsanddifferentgasdiffusionlayers,pressuredropacrossthecellmayvarytremendouslywhenmeasuringGurleyNumber.Sincepressuresdropandflowratehaveanearlylinearrelationship,ingeneral,pressuredropcanbeusedasacontrolfactortotakeflowratemeasurements.v. FillreservoirwithSnoopLeakdetectorSolutionifitisnotenough.vi. TurnOnDigitalFlowmeter,pressballgently,andmakesurethatonesinglebubbleis

    generatedatonetime.vii. Repeatuntiltheflowrateisrelativelyconstant(0.03L/min.),andthesurfaceof

    flowmeteriswetenough.Recordtheflowrateresultontheform(below).viii. Adjustpressuredropat0.1,0.15and0.2inchH2O,repeatsteps(12).

    A10.Dataprocessi.CalculateGurleyNumberwiththeaverageofflowratewithequation1.

    FlowRate(LPM )GurleyNumber = . (1)

    Pr essureDrop * 2.54 *ActiveArea

    ActiveAreaistheareaofsubgasketopeningarea,for25cm2cellis5.85.8cm2.ii.CalculateAverageGurleyNumber(GN), ifthePercentRelativeStandardDeviation(%

    RSD)ofGurleyNumber>10%,atallpressuredrop,needREDOit. (x xi )2

    n 1RSD = 100% , (2)

    x

    wherex GNaverage,ximeasuredGNatadjustpressuredropat0.05,0.1,0.15and0.2inchH2O.

    29

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    32/70

    A10.1 Data sheet Gurley number calculations:Samplenumber:GDLDate:

    Pressure DropLPM 0.05 0.1 0.15 0.2

    LPM1LPM2LPM3LPM4LPM5Avr.LPM GNAverage

    GurleyNumber(GN)RSD %

    RSDAccept 10%GDLAccept 0.100.18GDLReject 0.18A11.AcceptanceInspectinaccordancewithQS0012GasPermeability,GasDiffusionLayer.

    30

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    33/70

    Appendix B: PEM Fuel Cell Unit CellAssembly Procedure

    25 cm2DocumentNumberWPxyzB1ReferencematerialsJ.C.Lin,PreparationandCharacterizationofCompositeProtonExchangeMembranesforFuelCellApplication,Ph.D.Thesis,UConn(2000).B2BillofMaterialsB2.1 Materials

    i. Acatalystcoatedmembrane(CCM)consistingof Apieceofmembrane(eitherFSEC1,FSEC3,NRE211,NRE212,Nafion112,etc.) Acathodecatalystlayerononeside(~0.4mg/cm2),activeareaof25cm2. Ananodecatalystsprayedontotheotherside(~0.4mg/cm2),activeareaof25cm2.

    ii. Onepieceofgasdiffusionlayer,5.8x5.8cm2,withGurleynumberofatleast0.024L/min/cmH2O/cm

    2forCATHODEGDL

    iii. Onepieceofgasdiffusionlayer,5.8x5.8cm2,withGurleynumberofatleast0.01L/min/cmH2O/cm

    2forANODEGDL

    iv. Teflonfilm(25.4m(1mil)thickness)v. Krytox(Dupontperformancelubricants,TeflonGrease)vi.

    Deionized

    Water

    and

    ethanol

    for

    washing

    B2.2 Equipment

    i. AsinglecellhardwaresetAFuelCellTechnology(FCT)hardwaresetconsistsof: Twouniquelymachinedgraphiteflowfields(withFSEClowdeltaPserpentine

    grooves) Twoaluminumendplates1.27cm()thickness Twogoldplatedcurrentcollectors0.32cm(1/8)thickness Fourplasticrubbertubes0.95cm(3/8)long,0.2mmindiameter(calledlineup

    pins) Fourblackrubberorings(tosealallthelineuppins) EightStainlessscrews Eightblackrubberinsulatingsocks(oneforeachscrew)

    ii. DigitalBalance(METTLERAE240,S/NG56273)iii. ElectronicDigitalMicrometer(Mitutoyo)iv. TorqueWrench(0to5.6Nmor0to50inlbs)

    31

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    34/70

    B3Objectives:TodescribehowtoassembleaPEMfuelcellunitcell(calledMembraneElectrodeAssembly,MEA)usingaNafionbasedmembraneandSGL10BBGDLs.

    B4General

    Instructions

    Lubricatetheboltseverytwocellstomakecertaintherightamountoftorqueisappliedto

    thecell(notthefrictionforce) Alignment of all components vertically is VERY CRITICAL. Take care to ensure good

    alignment(even if itmeansSTARTINGOVER, ifyoufeelunsure). MisalignmentwillcausethecelltofailandwastealltheeffortoftheCCMpreparation.

    B5PreparationforCellAssemblyi. Checkthatthehardwaresetcontainsalltheparts.Separatethecathodepartsand

    anodepartsaslabeled.ii. Clean the surface of the two graphite flow fields with ethanol. Take care not to

    leaveexcessethanolinflowfieldspriortoassembly.iii. MeasurethethicknessoftheCCMbyplacingitbetweentwo1milTeflon films(for

    surfaceprotection)andmeasuretheoverallthicknesswithaMitutoyocaliper.ThensubtractofftheTeflon filmthickness.MeasureATLEAST9VALUESandobtainanaveragevalue.

    iv. RepeatStepiiiforcathodeGDLandanodeGDL.v. Setthedesiredamountofpinchinthiscase,229254m(910mils)vi. CalculatethetotalthicknessofneededTeflongasketsby:

    Totalthicknessofthegaskets=(Tccm+TGDL,C,+TGDL,A)PinchTotalthicknessofeachside(CathodeandAnode)=Totalthicknessofthegaskets/2

    Note 1. If the total thickness of the gaskets is an ODD number, make total cathode gasketthicknessLESSthantotalanodegasketthickness.Note2.Usually(Tccm+TGDL,C,+TGDL,A)isintheorderof762889m(3035mils)

    vii. PreparedifferentcombinationsofTeflongaskets(availableas25,51,76,127,and254mor1,2,3,5and10mil)forthecathodeandanodesides.

    Note.Cuteachgasketusinganappropriatelydesigneddiespecifictoeachhardwaredesign.viii. CutbothGDLstothesizethatwillfitPERFECTLY(within0.3mm)insidethemiddle

    openingofthepreparedgaskets.Theopening isslightlybigger(12mm)thanthecellactivearea).

    B6Assembling

    the

    Cell

    Fuel

    Cell

    Technology

    (FCT)

    hardware

    set

    RefertoFigureB1.

    i. Placefourboltsthroughthecathodeendplateforalignmentofcellparts.ii. Placethecathodeendplatewithboltsatthebottomonasturdysurface.iii. Placethecathodegoldplatedcurrentcollectorplateontopofthecathodeend

    plate.iv. Placethetwolineuptubesandtwooringsintolineupholesofthecathodeend

    platetoaligntheendplatewiththecathodegoldplatedcurrentcollector.32

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    35/70

    v. Placethecathodegraphiteflowfieldontopofthecathodegoldplatedcurrentcollector(withthegroovedsideup).

    vi. Placethesetofcathodegasketsontop.MakeSUREitalignswellwithalltheboltholes.Usea1cmlongpieceofscotchtapetoattachthegasketstotheflowfieldplatetoensurealignmentinthecell,IFNECESSARY.

    vii. PlacethecathodeGDLinthemiddleofthesetofgaskets(microporouslayersideUP).

    viii. PlacetheCCMontop(ANODEsideUP);alignthecatalystactiveareainthemiddleofthegasketmiddleopening.

    ix. Placethesetofanodegasketsontop.MakeSUREitalignswellwithallthebolt/nutholes.

    x. PlacetheanodeGDLontop,alignitwiththeanodeGDL(microporouslayersideDOWN).

    xi. Placetheanodeflowfieldplateontop(groovesideDOWN).xii. Placetheanodegoldplatedcurrentcollectorplateontop.xiii. Placetheanodeendplateontop(withthetwoplasticlineuptubesandoringsin

    place.xiv. Tightenalltheboltsinacrosswiseorstarpattern.Insixcycles:

    A. Tightenlooselybyhand(avoidovertighteningandapplyingtoomuchtorque)B. Tightenwithatorquewrench,setto1.1Nm(10inlbs),byfeelingtheclickC. Tightenwithatorquewrench,setto2.3Nm(20inlbs),byfeelingtheclickD. Tightenwithatorquewrench,setto3.4Nm(30inlbs),byfeelingtheclickE. Tightenwithatorquewrench,setto4.5Nm(40inlbs),byfeelingtheclickF. Recheckallboltswiththetorquewrenchsetat4.5Nm(40inlbs),byfeelingthe

    clickxv. Theassembledcellisnowreadyforasinglecellperformancetest.

    1234

    56

    4321

    7

    5

    1. EndPlate2. Goldcoatedcopperplate3. BipolarPlate4. TeflonGasket5. GasDiffusionLayer6. MEA7. M6Bolt

    FigureB1.Expandedviewofassembledfuelcell

    33

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    36/70

    Appendix C: Procedure for Leak Testing aSingle Cell after Assembly

    DocumentNo.WP0023andWP0024C1ExternalLeakTestC1.1 Procedure

    i. SetupperFigureC1ii. ConnectN2tohydrogensidewithaflowmeterfollowedbyanisolationvalve.iii. Connectgasoutlinetohydrogenside,withaninlettotheair/O2sideiv. Connectgasoutlinetoair/O2sidewitha0to0.39atm(0to300mmHg)pressure

    gaugefollowedbyanisolationvalve.v. Pressurizethehydrogenandair/oxygensidesto0.03,0.07,0.14,0.2atm(0.5,1,2,

    3psi)withnitrogen,respectively.vi. Recorddataoftheflowmeter.vii. LeakcheckwithDIwater,writedownwherethebubblescomefrom.Canuse

    Snooponplumbingconnection,notoncell.viii. Ifnoleakcanbeobservedandflowmeterremainsatzero,closethevalve,record

    pressuredropin5min.0300mmHg

    SingleCell

    N2Supply

    Valve

    VentP Valve

    Flowmeter

    FigureC1. SetupforExternalLeakTest

    34

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    37/70

    C2InternalLeakTestC2.1 Procedure for Internal Leak

    i. Verifythatexternalcellleakagesatisfiestherequirementsii. SetupFigureC2iii. ConnectN2inlettothehydrogenside,withaflowmeterfollowedbyanisolation

    valveiv. Connectgasoutlettothehydrogensidewitha00.39atm(0300mmHg)pressure

    gaugefollowedbyanisolationvalvev. Connectbubblemetertoairsidevi. Closethehydrogenventandpressurizethehydrogensideto0.03,0.07,0.14,0.2

    atm(0.5,1,2,3psig)withN2,respectivelyvii. Checktheflowrateattheair/oxygenventwiththebubbleflowmeterandflow

    meter,recorddataondatasheetviii. Ifnoleakcanbefoundandflowmeterremainsatzero,closethevalveandrecord

    pressuredropin5min.C2.2 Procedure for Internal Leak

    i. SetupFigureC2ii. ConnectN2inlettotheair/oxygenside,withaflowmeterfollowedbyanisolation

    valveiii. Connectgasoutlettoair/oxygenside,witha00.39atm(0300mmHg)pressure

    gaugefollowedbyanisolationvalve,otheroutletshouldbeclosediv. Connectbubblemetertohydrogensidev. Closetheair/oxygenventandpressurizethehydrogensideto0.03,0.07,0.14,0.2

    atm(0.5,1,2,3psig)withN2,respectivelyvi. Checktheflowrateatthehydrogenventwiththebubbleflowmeterandflow

    meter,recorddataondatasheetvii. Ifnoleakcanbefoundandflowmeterremainsatzero,closethevalveandrecord

    pressuredropin5min.

    35

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    38/70

    SingleCellAssemblyValve

    VentN2Supply Bubble

    MeterFlowmeter

    Singlecell

    0 300mmHg

    ValveVent

    P

    FigureC2: SetupforInternalLeakTest

    36

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    39/70

    Appendix D: PEMFC Unit Cell Test

    D1.Referencematerialsi.

    FuelCell

    Test

    System

    Configuration,

    Scribner

    Associates,

    Inc.

    ii. FuelCellforWindows:FuelCellTestSoftware,ScribnerAssociate,Inc.iii. Operating Manual of Fuel Cell for Windows, Fuel cell Test Software, Scribner

    Associatesmodel890loadsystems,Version2.0iv. ScribnerAssociatesInc. 850CFuelCellTestSystemOperatingManualv. ConfigurationandApplicationManualofFuelcellTestSystemConfigurationvi. OperatingManualofCorrWareforWindows,Electrochemistry/Corrosion Software,

    ScribnerAssociatesInc.,Version2.2vii. The Princeton Applied Research Potentiostat/Galvanostat Model 263A Operating

    ManualD2.BillofMaterialsD2.1 Materials

    D2.1.1Gasesi.Nitrogen Ultrahighpurity(99.999%),AirgasN.E.ii.Oxygen ZeroGrade(99.8%),AirgasN.E.iii.Air ZeroGrade(90%),Compressed,AirgasN.E.iv.Hydrogen Ultrahighpurity(99.999%),AirgasN.E.

    D2.1.2Deionizedwater FacilityDIwaterD2.2 Equipment

    i.FuelCellTestStationii.FuelCellTestLoadBoxiii.ScribnerSeries890Bor850CElectronicLoadandDataAcquisitionSystemiv.ScribnerModel871ReformateSimulator(optionalnotactive)v.IBMPCwithNationalInstrumentsGPIPPCIInterfaceandGPIBCablevi.CellCableSetsvii.Potentiostat/GalvanostatModel263,PrincetonAppliedResearchviii.Insulationjacket(Cloth)ix.Aplasticjackx.Wrench(13mm)xi. Multimeter, OMEGA, HHM25 KIT, OMEGA ENGINEERING INC. STAMFORD CT,

    U.S.A.xii.Plasticbottlefordeionizedwater

    D3ObjectivesTodescribetheperformancetestprocedureofaPEMfuelcell.

    37

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    40/70

    Theoverallobjectiveofthistestsequenceistodeterminetheperformancecharacteristicsofasingle,benchscale,protonexchangemembranefuelcelloverarangeoftemperaturesfrom80oCto120oC.Thecellactiveareais25cm2.D4GeneralInstructionsBeforethecellismountedintheteststand,areviewshouldbeperformedoftheproceduresdescribed below and a check made of the availability of all of the materials and facilities toperformthetestprogram.D4.1 Fuel Cell System Configuration

    OCathode

    AirOutletAnodeOutlet

    N

    TestStationH2ReformateFigure D1. Schematic of Fuel Cell System Configuration

    D4.2 Explanation of the test station

    Gasesflowthroughmassflowcontrollerandhumidifiertothefuelcell. GasflowrateiscontrolledbyMKS1179Amassflowcontrollers

    Gastemperatureandhumidityareadjustedbyspargingthegasesthroughstainlesssteelhumidifiertanks.

    5

    5

    5

    5

    5

    3wayvalve

    So enoi valve Massflowcontroller

    Bypass

    Condenser

    Condenser

    Humidifier

    Humidifier

    Backpressureregulator

    Vent

    LoadIBM

    FuelCellSolenoidvalve

    Solenoidvalve

    Massflowcontroller

    Checkvalve

    Checkvalve

    Heater

    Heater

    Vent

    38

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    41/70

    Thehumidifiedgasesareintroducedtothefuelcellhardware. Thegasesdiffusetotheelectrodesthroughgasdiffusionlayerwhiletheyarecirculating

    alongthegaschannel. Theexhaustedgasespassthroughthebackpressureregulatorandthentothevent.

    D4.3 Hardware SpecificationsD4.3.1ElectronicLoadSystem:

    LoadCurrentRange 10,25,100A, fullscaleLoadVoltage 20Vmax.LoadPowerRange 100WMinLoadResistance 0.5to1mIRMeasurement CurrentInterruptmethodCurrentMeasurement HallEffectDeviceLoadCooling Forcedair,oneorthreefans

    D4.3.2 PowerRequirementsandPhysicalMain Power 90 125 V AC, 50 60 Hz, 4 ALoadandDataUnit 17W10H21D(432553mm)Weight 3550lbs(1623kg)SystemInterfaceBox 8W3H10D

    D4.4 Data File Name ConventionThedatafilenamingconventionisBxxxDyyRzzAA,where BstandsforBUILD xxxrepresentsthe cell numberthat is assigned by the database upon entry ofthe cell

    assemblyrecordinformation DstandsforDAY yyrepresentsthenumberofdaysthatthecellhasbeentested

    (Donotcountdayselapsed,onlythedaysthatthecellhasbeenoperated:thefirstdaythatyouoperatethecellYY=1,ifyouoperatethecellthenextday,oranynumberofdayslater,thenYY=2,thethirddaythecellisoperated,YY=3,andsoon.)

    RstandsforRUN zzrepresentsthenumberoftherunduringday AArepresentthetypeofdatacollectedUsepropernomenclatureasfollows:

    COstandsforcrossover(toestimatehydrogencrossover) CVstandsforcyclicvoltammetry(toestimateECAelectrochemicalsurfacearea) VIstandsforvoltagecurrent(performanceorpolarizationcurve) CCstandsforconstantcurrent(constantcurrentoperation)

    D4.6 Nomenclature of the test condition (temperatures) is B/C/D :

    BreferstoTcellinoC Creferstoanodehumidifiercontrollertemperatures(bothtopandbottom)inoC Dreferstocathodehumidifiercontrollertemperatures(bothtopandbottom)inoC

    39

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    42/70

    Whenusercontrolsgaslines,theyarealways10oChigherthanTcell.D4.7 Handling of gas tanks

    At the beginning of EACH day, verify that all gas (N2, H2, Air, and O2) cylinders haveenoughpressure(Above13atmor200psi).

    AtthebeginningofDay1,OPENgastanksforN2,H2,andAir(allgasesusedthatday).Seteachgasregulatorat3.4atm(50psi).

    D5Day1TestD5.1 Setup Cell Hardware on the Test StationTimerequiredforthisstep:~30minutes

    i. Use a multimeter to measure the resistance between two graphite plates (anode andcathode).Waituntilthevalueisstabilizedandrecordtheexactvalue.

    Note.Thisstep istoseethattheresistancevalue ishighenough(~50ohm)thatthere isnoindicationofshort.Iftheresistanceislowerthan10ohm,rebuildthecell.

    ii. ConnectfourgastubestothefuelcellhardwareNote1.MakesurethatanodeandcathodeplatescorrespondtothoseoftheMEAinside.Note2.MakesurethereisnoleakontheINLETGASLINES.Checkwithsoapywater.D5.2 Preparation of cell test on the test stationTimerequiredforthisstep:~5minutes

    i. Inserttheoutsidethermocoupleintotheendofalittleholeonthegraphiteplateofthecellhardwareformeasuringthecellstemperature.

    Caution:Makesurethatthethermocouplestaysattheendoftheholeandusethescotchtapetokeepitinplace,ifneeded.Ifthethermocoupleisnotinplace,thecellwillbeOVERHEATEDtomaintainasetpointtemperature(acellfailure).

    ii. SwitchboththecathodeandanodegasvalvesontheteststationtoN2gas.D5.3 Operation of computer to start up cellTimerequiredforthisstep:~5minutes

    i. TurnonComputer1ANDFuelCellLoadUnit1.ii. SelecttheiconforFuelCellsoftwareonMSWindowsandopenit.iii. AmenuboxtitledSETUPCELL(SeeFigureD2)willpopup.Setcellsurfaceareaas

    APPROPRIATEfortheMEAtested(usually25cm2).Setcelltemperatureat25oCNote. If the Beep box is checked, FuelCell software program will produce a beep from thecomputerspeakerwhentheMinorMaxlimitsareexceeded.

    40

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    43/70

    FigureD2.SetupCellMenuiv. AnothermenuboxtitledSetupFuelFlow(SeeFigureD3)willpopup.

    Settheflowratesat: Anode- MinimumFlow:0.4L/min

    - Loadbasedflow:0L/min/cell+0.023L/min/Amp/cell(notusedinthiscase)- Temperature:25oC

    Cathode:- MinimumFlow:0.4L/min- Loadbasedflow:0L/min/cell+0.066L/min/Amp/cell(notusedinthiscase)

    Temperature:25oC

    41

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    44/70

    FigureD3.SetupFuelMenuD5.4 Crossover and Cyclic Voltammetry Tests

    Timerequiredforthisstep:~40minsNote.Thisisaseriesofteststodeterminethebasicsoundnessofthecelltoseeifitmeetsminimumrequirements.

    i. Onthesideoftheteststation,switchANODEgasvalvetoH2andCATHODEgasvalvetoN2.

    ii. ConnectWORKINGandSENSEelectrodestotheCATHODEandtheCOUNTERandREFERENCEelectrodestotheANODE.(SeeFigureD4)

    iii. TurnonthePrincetonAppliedResearch263A(ConnectedtoComputer3).iv. TurnonComputer3,whichisusedformeasuringshortcircuit,crossovercurrent

    andcyclicvoltammetry.v. SelecttheiconforCorrWare2softwareonthemainscreen,anddoubleclickitto

    activatetheprogram.vi. Rightclickat PotentiodynamicandselectSetupcelloption

    vii. Setcellsurfaceareato25cm2andthenclickOK(seeFigureD5)viii. RightclickatPotentiodynamicandselectSetupinstrumentoption.Set

    bandwidthtohighstability

    42

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    45/70

    ix. DoubleclickPotentiodynamictowaituntiltheOCPbecomeslowerthan0.1V.NamefileaccordingtotheIonomemDatabasefiles(SeeSectionD4.4)andselectwhereitwillbesaved.Select4mV/sasthescanrate.

    Note.Thisopencircuitvoltagevaluewouldbeshownattheupperrightcornerofthemenupanel

    x. SelectPotentiodynamicfromexperimenttypesandclickthebuttonforMeasureSelectedintoolbarandbeginthismeasurement

    Note.Thisgreenlabelisshowninthetoolbarofthemenupanel.xi. RightclickatCyclicVoltammogramandselectSetupinstrumentoption.Set

    bandwidthtohighspeed.xii. DoubleclickCyclicVoltammogramandnamefileaccordingtotheIonomem

    Databasefiles(SeeSectionD4.4)andselectwhereitwillbesaved.Select30mV/sasthescanrate.

    xiii. SelectCyclicVoltammogramfromexperimenttypes.xiv. ClickatthebuttonforMeasureSelectedintoolbarandbeginthismeasurement;xv. TurnoffthePAR263Awhenfinished.

    xvi. Disconnecttheelectrodes(working,counter,sense,andreference)fromthecellhardwareplates

    WorkingElectrode Counter

    Electrode

    Cathode

    AnodeFigureD4.ConnectionofElectrodewithFuelCellHardwareforCO/CVMeasurements

    43

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    46/70

    FigureD5.CorrWareSetupCellMenuD5.5 Humidification of the MembraneTimerequiredforthisstep:~3.5hoursNote.Thisstepisperformedtointroducewaterintothemembranetoimproveits ionicconductivityandreactantpermeability.

    i. SwitchtheANODEgasvalvetoH2andCATHODEgasvalvetoN2.ii. ConnecttheLOADLINEStothefuelcellhardware:

    Connectthecathode load line(red line)directlywiththecathodemetalplateofthe fuelcell.

    Connecttheanodeloadline(blackline)directlywiththeanodemetalplateofthefuelcell.Caution:Beverycertainthattheconnectionistight!

    iii. InserttheSENSELEADSintotheholesoftheleadsonthefuelcellhardware: Insertthecathodesenselead(redline)directlyintotheholeintheredlineattachedtothe

    cathodegraphiteplate Inserttheanodesenselead(blackline)directlyintotheholeintheblacklineattachedto

    theanodegraphiteplateCaution:NeverconnectthesenseleadstothetestfixturewithoutthelargeLOADconnectionsbeingmadefirst.Failuretodothiswiththeloadunitactivemayresultindamagetotheload.

    iv. ChangeallsetpointstotheHEATUPStep(40/50/50condition) Setcelltemperatureat40oC Set anode and cathode gas lines at 50 oC (If applicable). (Recall 10 oC higher than cell

    temperature) Setanodeandcathodehumidifiercontrollersat50oC.

    v. Afterthetemperaturesreachthesetpoints,holdittherefor5to10min.vi. Changeallsetpointstothe80/80/73condition:

    Setcelltemperatureat80oC

    44

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    47/70

    Set anode and cathode gas lines at 90 oC (If applicable). Anode and cathode gas linetemperaturesare510oChigherthancelltemperature(Tcell).

    Onthetestpanel,setanodehumidifiercontrollersat80oC(100%RH) Onthetestpanel,setcathodehumidifiercontrollersat73oC(75%RH)

    vii. Settheflowratesat: Anode

    - MinimumFlow:0.17L/min- Loadbasedflow:0L/min/cell+0.021L/min/cell(for3stoichiometryofH2)

    Cathode:- MinimumFlow:0.17L/min- Loadbasedflow:0L/min/cell+0.066L/min/cell(for4stoichiometryofAir)

    viii. Maintainatthiscondition(H2/N2,80/80/73)tohumidifytomembranefor3hours.D5.6 Operation of the Cell in a Break-In ModeTimerequiredforthisstep:~3hoursminimumNote.Thistestisperformedtoletthecellcometoasteadystatewhileoperatinginabenignwayasafuelcell.

    i. SettheconditiontoH2/N2,80/80/73oCcondition(maintainpreviousstep).ii. Onthesideoftheteststation,keeptheANODEgasvalveonH2 andswitchthe

    CATHODEgasvalvetoAir.iii. Wait until the cell voltage (which is the open circuit voltage at this point)

    stabilizes.(~3minutes).Thenrecordtheexactopencircuitvoltage.Note1.Thevalueofopencircuitvoltagewillincreasewiththetime.Justwaituntilitisstable.Note 2. NEVER leave the cell at the OCV (Open Circuit Voltage) for more than 5 minutes.Platinum and carbon will corrode and cause performance decay. While changing conditionswithfuel(hydrogen)andoxidant(air/O2)present,alwaysapplyloadat100400mA/cm2.ThisistonotleavethecellatOCVtoavoidcellcorrosion.

    iv. ClickApplyFuelandApplyLoadbuttons.v. Setthecellvoltageat0.55V.RecordtheTOTALcurrentdensitytoValue#1(t=0

    hours).vi. Holditforonehour,recordtheTOTALcurrenttoValue#2(t=1hour)vii. Holditforanotherhour,recordtheTOTALcurrenttoValue#3(t=2hours).viii. RepeattherecordingeveryhouruntiltheTWOlastcurrentvaluesarewithin5%

    ofeachother.(Usuallytakes35hours)D5.7 Cool-Down Procedure

    Timerequiredforthisstep:~1houri. Setthecelltemperatureto80/60/60oCNote1.Thecelltemperaturemustbeabout1020oCabovethesaturatortemperaturesduringcooldown.Note2.Watercanbeaddedtothesaturators,andinsulationcanberemovedfromthecelltopromotecooldown.

    ii. Whilewaitingfortemperaturestoreachthefirstsetpoints,disconnectthepositiveloadcable,toprotectfromcurrentleak.

    45

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    48/70

    iii. Settheminflowrateontheanodeandthecathodeat0.2L/min.iv. SwitchthecathodevalveonthesideofthestationtoN2forpurgingthecell.v. Waituntilthevoltagefallsto0.4V,thenswitchtheanodevalvesinthefrontpanel

    ofthestationtoN2forpurgingthecell.vi. Afterthetemperaturereaches80/60/60oC,setitto60/50/50,then50/40/40,then

    0/0/0.vii. Wait until the cell temperature, the humidifier temperatures, and the gas line

    temperaturesareallbelow50oC.viii. Turnoffthepowerofheaterforhumidifiers.

    ix. Settheanodeandcathodeflowratebacktozero.x. Click"Exit"toclosetheFuelCellsoftware.

    xi. TurnofftheFuelCellLoadUnitxii. Closeallvalvesofthegascylinders.

    xiii. Closeanodeandcathodevalvesoftheteststation.

    D6Day2TestD6.1 Crossover and Cyclic Voltammetry TestsTimerequiredforthisstep:~0.5hourRepeattheprocedureformeasuringCOandCVonday1.D6.2 Polarization curve measurement at 80 oC (Air/O2alternating)Timerequiredforthisstep:~7hours(Air/O2/Air)Note.Thistestisperformedtodeterminethecellperformanceatatmosphericpressure,whichistheconditionwheretheelectrolyteisnearsaturation.

    i. Settheflowratesasdoneforthehumidification.ii. KeeptheANODEgasvalveonH2 andswitchtheCATHODEgasvalvetoAir(1st Air

    run).iii. LetthecellreachOCV(~23min). RecordOCV.iv. ClicktheApplyFuelbuttononthemainwindowasshowninFigureD6.v. ClicktheApplyLoadbuttononthemainwindowasshowninFigureD6.

    vi. Apply400mA/cm2load. Maintainuntilvoltageisconstant.vii. IfnoexperimentsarelistedundertheSetupExperimentspanel,clickonNew

    button on the right of the panel, and select Arbitrary control. If there areexperimentslistedintheSetupExperimentspanel,doubleclickoneofthem.

    viii. ThemenuboxtitledSetupArbitraryControlExperimentwillpopupix. Chooseanameandlocationforthedatafile(filewiththeresultsoftheexperiment).x. Selectanappropriatecontrolsetupfilefortheexperiment,thenclickOK

    Note. ControlSetupfilesaretextfiles(i.e..txtfiles)thatareusedtocontroltheload. Wearecurrentlytestingthefollowing loads:0,10,20,40,60,80,100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,2000mA/cm2,heldateachpointfor5minutes.

    xi. ClicktheRunCellButtononthemainwindow

    46

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    49/70

    xii. SelectGraphsinmenubar,thenclickvsTimecommandandclickVoltageasshowninFigureD7.

    xiii. ThemenuboxtitledGraphs#1willpopup.xiv. Change Background data to Experiment data at the upperright corner of this

    menuboxxv. SoftwarestartsdataacquisitionforaCellVoltagevs.Timeplot

    xvi. Wait until the experiment is finished. While the experiment is in progress, checkregularlythatthewaterlevelinthehumidifierisnotbelowtheminimumlevel. AlsocheckthattheexperimentisprogressingwithoutjumpingtoOCV.

    xvii. Aftertheexperimentisfinished,theloadshouldreturntowhateverloadwasbeingusedpriortotheexperiment,inthiscase400mA/cm2.

    xviii. SwitchthecathodevalveonthesideofstationtoO2andwaituntilvoltagestabilizes.RepeatthemeasurementinO2(atthesametemperature).

    xix. After the measurement on O2 is finished, switch the cathode valve back to Air.Repeatthemeasurementforair(2ndAirrun).

    FigureD6.MainWindowforFuelCellsoftware

    47

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    50/70

    FigureD7.ChooseVoltagevs.TimegraphD6.3 Crossover and Cycl ic Voltammetry Tests at 80/80/73Timerequiredforthisstep:~0.5hourRepeatthecrossoverandcyclicvoltammetryprocedurefromday1at80/80/73.D6.4 Hold at 400 mA/cm2overnight

    D7Day3TestD7.1 Performance Measurement at 80/80/73 (Air/O2Alternating, 1.5 atm)Timerequiredforthisstep:~6hours

    i. Pressurizecellto1.5atm.ii. Runthecellatthe80/80/73conditionwithH2/Air.

    iii. Waituntilthewholesweepmeasurementisfinishedthenrepeatwithoxygenandagainwithair.

    D7.2 Performance Measurement at 100/90/90, Air, 1.5 atmTimerequiredforthisstep:~2hours

    i. Changethetemperaturestothe100/90/90condition(usingH2/Air) Setcelltemperatureat100oC

    48

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    51/70

    Setanodeandcathodegaslinesat110oC,ifapplicable Setanodehumidifiercontrollersat100oC

    ii. Apply400mA/cm2ofload,andwaituntiltemperaturesandvoltagestabilizeiii. StartthemeasurementoftheperformanceusingH2/air Waituntilthewholesweepmeasurementisfinished.

    D7.3 Hold over night at 400 mA/cm2

    D8Day4TestD8.1 Performance Measurement at 100/90/90 (O2/Air Alternating, 1.5 atm)Timerequiredforthisstep:~3hours

    i. Runtheperformancetestatthe100/90/90conditionwithH2/O2ii. Waituntilthewholesweepmeasurementisfinishedthenrepeatwithair.

    D8.2 Crossover and Cyclic Voltammetry Tests at 120/90/90Timerequiredforthisstep:~1hour

    i. Releasepressureoncelltoambientii. Changethetemperaturestothe120/90/90condition Setcelltemperatureat120oC Setanodeandcathodegaslinesat125oC(NOT10oChigherthanTcellasusual) Onthetestpanel,setanodehumidifiercontrollersat90oC(sameasprevious)

    iii. RepeattheCO/CVprocedureofDay2D8.3 Performance Measurement at 120/90/90 (Air/O2Alternating, 1.5 atm)Timerequiredforthisstep:~3hours

    i. Pressurizecellto1.5atm.ii. Changecathodegastoair

    iii. Apply400mA/cm2ofloadandwaituntilvoltagestabilizesiv. StartthemeasurementoftheperformanceusingH2/Airv. SwitchtoO2,apply400mA/cm2whilewaiting

    vi. RuntheperformancetestwithH2/O2thenwithH2/AirD8.4 Reduce Cell temperature to 100C and hold overnight at 400 mA/cm2

    D9Day5TestD9.1 Crossover and Cyclic Voltammetry Tests at 100/90/90

    Timerequiredforthisstep:~1houri. Releasepressureoncelltoambient

    ii. Changetemperatureto100/90/90conditioniii. RepeatthecrossoverandcyclicvoltammetryprocedureofDay1

    D9.2 Performance Measurement at 100/90/90 (Air/O2Alternating)Timerequiredforthisstep:~6hoursminimum(Air/O2)

    i. Pressurizecellto1.5atm

    49

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    52/70

    ii. Changecathodegastoairiii. Apply400mA/cm2ofloadandwaituntilvoltagestabilizesiv. StartthemeasurementoftheperformanceusingH2/Airv. Whenmeasurementisfinished,switchtoO2andapply400mA/cm2whilewaiting

    vi. RuntheperformancetestwithH2/O2.vii. Whenmeasurementisfinished,switchtoairandapply400mA/cm2whilewaiting

    viii. RuntheperformancetestwithH2/Air.D9.3 Stabili ty Test at 100/90/90 (H2/Air, 400 mA/cm

    2, 1.5 atm, Days 5, 6, and 7)

    UnderSetupexperimentsclickonNewbuttonontherightofthepanelandselectConstantcurrent

    Savethefileunderanappropriatenameandinputtesttime(~70h)andcurrent(400mA/cm

    2)

    Collectcondensatewaterfromanodeandcathodeexhausteachmorningandevening,inseparate,labeledvials(endupwith12vialstotal).Analyzecondensatewaterforfluoride

    ions

    according

    to

    Appendix

    E.

    D10Day8TestD10.1 Crossover and Cyclic Voltammetry Tests at 100/90/90Timerequiredforthisstep:~0.5hour

    i. Releasepressureoncelltoambientii. RepeatthecrossoverandcyclicvoltammetryprocedureofDay2

    D10.2 Performance Test at 100/90/90 (Air/O2Alternating, 1.5 atm)Timerequiredforthisstep:~6hours

    i. Pressurizecellto1.5atmii. RepeatPerformancemeasurementat100/90/90fromday5

    D10.3 Cool-downi. Setthecelltemperatureto80/60/60.

    Note1.Thecelltemperaturemustbeabout1020oCabovethesaturatortemperaturesduringcooldown.Note2.Watercanbeaddedtothesaturators,andinsulationcanberemovedfromthecelltopromotecooldown.

    ii. While waiting for temperatures to reach the first set points, disconnect thepositive loadcable,toprotectfromcurrentleak.

    iii.

    Setthe

    min

    flow

    rate

    on

    the

    anode

    (H2)

    and

    the

    cathode

    (air)

    at

    0.2

    L/min.

    iv. SwitchthecathodevalveinthefrontpanelofthestationtoN2 forpurgingthe

    cell.v. Waituntilthevoltagefallsto0.4volts,thenswitchtheanodevalvesinthefront

    panelofthestationtoN2forpurgingthecell.vi. Afterthetemperaturereaches80/60/60,setitto60/50/50,then50/40/40,then

    25/25/25.

    50

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    53/70

    vii. Waituntilthecelltemperature,thehumidifiertemperatures,thesaturatedgaswater,andthegaslinetemperaturesareallbelow50oC.

    D11Day9TestD11.1 Repeat the crossover and cyclic voltammetry procedure of Day 2 (at room

    temperature)

    D11.2 Leak test per Appendix C

    D11.3 Resistance Test per Section D5.1

    D11.4 Shut-down and Remove from the test standi. Turnoffthepowerofheaterforhumidifiers(ifapplicable).ii. Settheanodeandcathodeflowratebacktozero.iii. Click"Exit"toclosetheFuelCellsoftware.iv. TurnofftheFuelCellLoadUnitv. Shutdowncomputer.vi. Closeallvalvesofthegascylinders.vii. Closeanodeandcathodevalvesoftheteststation.viii. Disconnectgastubingandelectricallinefromthecellhardware.

    D11.5 Post-testi. Measureboltloadii. DisassembletheCelliii. ConductvisualInspectioniv. BagandSealComponentsWith10dropsofDIWaterineachBag

    D12Troubleshooting:HardwareproblemsINDICATION CAUSE CORRECTION

    yNopowerwhenunitisturnedONyACPowernotavailabletomodel890

    yFuseonrearpanelofthecontrolunitmaybeblown

    yReplacewith4A,slowblow3AGtypefuse

    yNoheaterpoweravailableforoneormoreofthetemperaturecontroller

    yCheckinternalfusesthatprotectthetempcontrolleroutput.

    51

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    54/70

    yAlarmswhenFUELON yFuelGasunitcables yCheckgaspressuresandlowbuttonispressedinsoftware notconnected

    yModel890FuelSystemInterfaceBoxnotproperlyconnected

    pressuresafetyswitchwiring.yLowgaspressurealarmswitchesmustbeclosedforalarmstobeoff.

    yNoloadcurrentwhenloadisturnedON yLoadcablesnotconnected

    ySenseleadsnotconnectedorreversedySenseleadprotectionfuse(internalfuse)blown

    yRemoveallpowertosystemanddisconnectanodecellleadandanodesenseleadfirstyResistanceshouldmeasurebetween10and15WyIfincorrect,removetheunitcoverandcheckthefusebyremovingitfromitssocket.

    yInadequatecoolingairflowcausingovertemperatureshutdown

    yCheckcooling restrictionsyProlongedovertemperatureoperationmaydamagetheloadelectronics.

    52

  • 8/14/2019 Procedures For Performing PEM Single Cell Testing

    55/70

    D13ChartSummarizingDay-to-DayActivitiesDay Time(h) Temp GasA GasC Action Notes1111

    0.53.5318h

    RT80/80/7380/80/73

    N/AH2H2H2

    N/AN2AirN2

    SetupHumidifyBreakinCooldown

    Includesleaktest,resistance,etc.At0.55V

    22222

    0.52.5220.57.5h

    25/25/2580/80/7380/80/7380/80/7380/80/73

    H2H2H2H2H2

    N2AirO2AirN2

    CO/CVIVIVIVCO/CV

    33333

    222129h

    80/80/7380/80/7380/80/