Probing the magnetic field of 3C 279

31
OBING THE MAGNETIC FIELD OF 3C 279 by Sebastian Kiehlmann on behalf of the Quasar Movie Project team Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, 53121 Bonn, Germany

description

Probing the magnetic field of 3C 279. by Sebastian Kiehlmann on behalf of the Quasar Movie Project team Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, 53121 Bonn, Germany. II. Polarization of 3C 279 . 2. Fig. 1a: Optical, linear polarization degree of 3C 279. - PowerPoint PPT Presentation

Transcript of Probing the magnetic field of 3C 279

Page 1: Probing the magnetic field of 3C 279

PROBING THE MAGNETIC FIELD OF 3C 279

by Sebastian Kiehlmannon behalf of the Quasar Movie Project team

Max Planck Institute for Radio Astronomy,Auf dem Hügel 69, 53121 Bonn, Germany

Page 2: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

II. Polarization of 3C 279

2

Fig. 1a: Optical, linear polarization degree of 3C 279

degree of linear polarization: • mean • variation

Page 3: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

II. Polarization of 3C 279

3

Fig. 1b: Optical, linear polarization degree and EVPA of 3C 279

Optical electric vector position angle (EVPA)

degree of linear polarization

Page 4: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

II. Polarization of 3C 279

3

Fig. 1b: Optical, linear polarization degree and EVPA of 3C 279

object EVPA rotation time interval

explanation reference

OJ 287 120 ° 7 d

Helical motion in a helical magnetic field

Kikuchi et al., 1988

BL Lac 240 ° 5 d Marscher et al., 2008

PKS 1510-089 720 ° 50 d Marscher et al., 2010

3C 279 300 ° 60 d Larionov et al., 2008

3C 279 208 ° 12 d Bent jet Abdo et al., 2010

γ- ray flaring

Page 5: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

• Assumption: smooth variation• Question:

– Valid assumption?– Reliability?

III. The 180° ambiguity

4

Fig. 2a: Sketched EVPA curveFig. 2b: Sketched modified EVPA curve

Page 6: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

Method 1:

III. The 180° ambiguityIII.a Smoothing methods

5

Method 2:

𝚾𝒎𝒐𝒅 ,𝒊=𝚾 𝒊±𝒏 ∙𝟏𝟖𝟎°

if

if

Page 7: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

III. The 180° ambiguityIII.c Test 2: assumption of smoothness

6

Fig. 4a: Sketched cells of the random walk process

Random walk model:

e.g. F. D‘Arcangelo et al., ApJ 2007

Total cells

Page 8: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

III. The 180° ambiguityIII.c Test 2: assumption of smoothness

7

Fig. 4b: Sketched cells of the random walk process

Random walk model:

e.g. F. D‘Arcangelo et al., ApJ 2007

Total cells Vary Cells Mean time step:

Page 9: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

III. The 180° ambiguityIII.c Test 2: assumption of smoothness

8

Fig. 5a: Random EVPA variation

Random walk model:

e.g. F. D‘Arcangelo et al., ApJ 2007

Total cells Vary Cells Mean time step:

Page 10: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

III. The 180° ambiguityIII.c Test 2: assumption of smoothness

9

Fig. 5b: Random EVPA variation, smoothed

𝑨𝜲

1,000,000 simulationsEVPA amplitude : Method 1: Method 2:

> 99.5 % > 98.5 %

43 % 43 %

Page 11: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

III. The 180° ambiguityIII.c Test 2: assumption of smoothness

10

Fig. 5b: Random EVPA variation, smoothed

1,000,000 simulationsEVPA amplitude : Method 1: Method 2:

> 99.5 % > 98.5 %

43 % 43 %

: 1 %

( Δ ΧΔ𝑡 )𝑖=Χ 𝑖− Χ 𝑖 −1

𝑡 𝑖− 𝑡𝑖− 1

Page 12: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

III. The 180° ambiguityIII.c Test 2: assumption of smoothness

11

Fig. 5c: Random EVPA variation, smoothed, p-t-p variation

1,000,000 simulationsEVPA amplitude : Method 1: Method 2:

> 99.5 % > 98.5 %

43 % 43 %

: 1 %

( Δ ΧΔ𝑡 )𝑖=Χ 𝑖− Χ 𝑖 −1

𝑡 𝑖− 𝑡𝑖− 1

Page 13: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

III. The 180° ambiguityIII.c Test 2: assumption of smoothness

12

Fig. 5c: Random EVPA variation, smoothed, p-t-p variation

1,000,000 simulationsEVPA amplitude : Method 1: Method 2:

> 99.5 % > 98.5 %

43 % 43 %

: 1 %

𝑠=⟨|( ΔΧΔ 𝑡 )𝑖−𝑚|⟩with𝑚=⟨( Δ ΧΔ𝑡 )

𝑖 ⟩

Page 14: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

EVPA amplitude : Method 1: Method 2:

> 99.5 % > 98.5 %

43 % 43 %

Variation estimator :

: 0 % 0 %

: 0.1 % 0.3 %

: 76 % 98 %

18 °/d 15 °/d

: 1 %

III. The 180° ambiguityIII.c Test 2: assumption of smoothness

13

Fig. 5c: Random EVPA variation, smoothed, p-t-p variation

1,000,000 simulations

Page 15: Probing the magnetic field of 3C 279

↓ R

ando

m w

alk

sim

ulati

on ↓

3C

279

obse

rvati

on (o

ptica

l)

Page 16: Probing the magnetic field of 3C 279

↓ R

ando

m w

alk

sim

ulati

on ↓

3C

279

obse

rvati

on (o

ptica

l)

Page 17: Probing the magnetic field of 3C 279

↓ R

ando

m w

alk

sim

ulati

on ↓

3C

279

obse

rvati

on (o

ptica

l)

Page 18: Probing the magnetic field of 3C 279

↓ R

ando

m w

alk

sim

ulati

on ↓

3C

279

obse

rvati

on (o

ptica

l)

Page 19: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

IV. Polarization of 3C 279IV.a EVPA smoothness

15

Fig. 6a: 3C 279 optical polarization

Epoch EVPA [°/d]

I ↓ 32(5) no

Page 20: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN 15

Fig. 6b: 3C 279 optical polarization

Epoch EVPA [°/d]

I ↓ 32(5) no

II ↑

IV. Polarization of 3C 279IV.a EVPA smoothness

Page 21: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN 15

Fig. 6c: 3C 279 optical polarization

Epoch EVPA [°/d]

I ↓ 32(5) no

II ↑

III ↓

IV. Polarization of 3C 279IV.a EVPA smoothness

Page 22: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN 15

Fig. 6d: 3C 279 optical polarization

Epoch EVPA [°/d]

I ↓ 32(5) no

II ↑

III ↓

IV ↑

IV. Polarization of 3C 279IV.a EVPA smoothness

Page 23: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN 15

Fig. 6e: 3C 279 optical polarization

Epoch EVPA [°/d]

I ↓ 32(5) no

II ↑

III ↓

IV ↑

V ↑

IV. Polarization of 3C 279IV.a EVPA smoothness

Page 24: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN 15

Fig. 6f: 3C 279 optical polarization

Epoch EVPA [°/d]

I ↓ 32(5) no

II ↑

2-6 yes

III ↓

IV ↑

V ↑

VI ↑

IV. Polarization of 3C 279IV.a EVPA smoothness

Page 25: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN 15

Fig. 6g: 3C 279 optical polarization

Epoch EVPA [°/d]

I ↓ 32(5) no

II ↑

2-6 yes

III ↓

IV ↑

V ↑

VI ↑

VII ↓ 10.5(8) yes

IV. Polarization of 3C 279IV.a EVPA smoothness

Page 26: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN 16

Fig. 7a: Sketched jet modelFig. 8: 3C 279 LCs (V+R) and opt. pol.

IV. Polarization of 3C 279IV.b Interpretation

Page 27: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN 17

IV. Polarization of 3C 279IV.b Interpretation

Fig. 7b: Sketched jet modelFig. 8: 3C 279 LCs (V+R) and opt. pol.

Page 28: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN 18

IV. Polarization of 3C 279IV.c Gamma-ray-flaring

Fig. 9: 3C 279 γ-ray light curve, optical light curves and polarization

Event time:

Assuming Lorentz factor:

Traveling distance:

Page 29: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN 19

Fig. 10: 3C 279 mm and optical EVPA

IV. Polarization of 3C 279IV.d mm polarization

Page 30: Probing the magnetic field of 3C 279

SEBASTIAN KIEHLMANN, DIPL.-PHYS.MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

Method:• Distinguish stochastic from deterministic EVPA variation.

3C 279 :• Possibly stochastic EVPA variation during low-state• Deterministic EVPA variation during flaring state

– EVPA rotation

– Two-directional

V. Conclusions

20

→ no globally bending jet→ helical motion in a

helical magnetic field

Page 31: Probing the magnetic field of 3C 279

Special thanks to the QMP collaborators:T. Savolainen (PI), S.G. Jorstad, F. Schinzel, K.V. Sokolovsky, I. Agudo, M. Aller, L. Berdnikov, V. Chavushyan, L. Fuhrmann, M. Gurwell, R. Itoh, J. Heidt, Y.Y. Kovalev, T. Krajci, O. Kurtanidze, A. Lähteenmäki, V.M. Larionov , J. León-Tavares, A.P. Marscher, K. Nilson, the AAVSO, the Yale SMARTS project and all the observers.

Acknowledgements:SK was supported for this research through a stipend from the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Max Planck Institute for Radio Astronomy in cooperation with the Universities of Bonn and Cologne.Data from the Steward Observatory spectropolarimetric monitoring project were used. This program is supported by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, and NNX12AO93G.We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research.