Probing PDMS/Single layer Graphene interaction using...

1
Experimental - Sample preparation Probing PDMS/Single layer Graphene interaction using optical spectroscopy L. Seremetis 1 , J. Parthenios 1 , O. Frank 3 , G. Konstantinidis 2 , G. Deligeorgis 2 , K. Novoselov 5 and C. Galiotis 1,4 , K. Papagelis 1,4 1 Institute of Chemical Engineering Sciences - Foundation of Research and Technology Hellas, 26504 Patras, Greece 2 Institute of Electronic Structure and Laser - Foundation of Research and Technology Hellas, 71110 Heraklion, Greece 3 J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Prague, 8, 18223 Czech Republic 4 Materials Science Department, University of Patras, 26504, Greece 5 School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK Conclusions Ackowledgements: FORTH / ICE-HT acknowledges financial support from “Graphene Center Raman mapping of CVD grown graphene on PDMS Graphene on a 290nm Si/SiO2 substrate transferred from a SiO2/Si substrate to a second substrate (PMMA) Wet transfer on PDMS (1) 50x optical image of Graphene (2) 50x optical image of Graphene on PMMA (3) 100x optical image of Graphene on PDMS. [1] O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, Nat Commun 2, 255 (2011). [2] O. Frank, G. Tsoukleri, J. Parthenios, K. Papagelis, I. Riaz, R. Jalil, K. S. Novoselov, and C. Galiotis, ACS Nano 4, 3131 (2010). [3] O. Frank, M. Mohr, J. Maultzsch, C. Thomsen, I. Riaz, R. Jalil, K. S. Novoselov, G. Tsoukleri, J. Parthenios, K. Papagelis, L. Kavan, and C. Galiotis, ACS Nano 5, 2231 (2011) [4] O. Frank, M. Bouša, I. Riaz, R. Jalil, K. S. Novoselov, G. Tsoukleri, J. Parthenios, L. Kavan, K. Papagelis, and C. Galiotis, Nano Lett. (2011). References Raman mapping of exfoliated graphene on PDMS Mechanical Exfoliation of graphite A wet Transfer Process to PDMS Chemical Vapor Deposition on Cu substrate 1 2 3 1200 1400 1600 2600 2800 Raman Shift (cm -1 ) Raman Intensity (arb. units) =514.5 nm PDMS PDMS 2D G 2 1 3 25 μm Cu foil H 2 CH 4 A B CVD process and the recipe Transferring process on PDMS A B PDMS Patterned PDMS substrate Circular well Other wells graphene Suspended graphene 9 10 11 12 13 14 15 16 1581 1582 1583 1584 <FWHM(G)> = 12.7 cm -1 <Pos(G)> = 1582.6 cm -1 Pos(G) (cm -1 ) FWHM(G)(cm -1 ) 1581 1582 1583 1584 2681 2682 2683 2684 2685 Pos(2D)/Pos(G) =0.7 Pos(2D) (cm -1 ) Pos(G) (cm -1 ) <Pos(G)> = 1582.6 cm -1 <Pos(2D)> = 2683.2 cm -1 22 23 24 25 26 27 2681 2682 2683 2684 2685 Pos(2D) (cm -1 ) FWHM(2D)(cm -1 ) <FWHM(2D)> = 23.7 cm -1 <Pos(2D)> = 2683.2 cm -1 1581 1582 1583 1584 8 9 10 11 12 13 14 15 <I2D/IG> = 10.9 I(2D/G) Pos(G) (cm -1 ) 1576 1578 1580 1582 1584 1586 2682 2684 2686 2688 2690 2692 2694 2696 2698 2700 supported suspended Pos(2D)/Pos(G) =-4.8 cm -1 Pos2D (cm -1 ) Pos(G) cm -1 <Pos(G)> = 1583.0 cm -1 <Pos(2D)> = 2691.0 cm -1 12 16 20 24 1576 1578 1580 1582 1584 1586 supported suspended Pos(G) (cm -1 ) FWHM(G)(cm -1 ) <Pos(G)> = 1583.0 cm -1 <FWHM(G)> = 16.5 cm -1 20 30 40 50 60 2682 2684 2686 2688 2690 2692 2694 2696 2698 2700 Pos(2D) (cm -1 ) FWHM(2D) (cm -1 ) <Pos(2D)> = 2691.0 cm -1 <FWHM(2D)> = 35.4 cm -1 1576 1578 1580 1582 1584 1586 0 2 4 6 8 10 supported suspended I2D/IG Pos(G) (cm -1 ) <I2D/IG> = 5.4 cm -1 <Pos(G)> = 1583.5 cm -1 1200 1500 1800 2100 2400 2700 3000 Raman Shift (cm -1 ) Raman Intensity (arb. units) PDMS PDMS SS 1 2D G =514.5 nm SS 2 SP 1 SP 2 Suspended graphene (SS) Supported graphene (SP) The dispersion of Pos(G) values is ~4 cm -1 The dispersion of Pos(2D) values is ~2 cm -1 The mean Pos(G) denotes that the flake is under a weak compression field The absence of D line and the high I2D/IG ratio denote the high quality of the single graphene crystal The dispersion of Pos(G) values is ~2 cm -1 The dispersion of Pos(2D) values is ~10 cm -1 The slope ΔPos(2D)/ΔPos(G) is NEGATIVE(!!) – Indication of Doping The ratio I2D/IG shows a huge dipersion from almost zero up to 10. This is a strong indication of an inhomogeneous doping on the transferred graphene. Suspended graphene retains doping levels as shown by the low values of the ratio I2D/IG Suspended graphene is under tension but it is difficult to estimate the strain due to the doping interference <Pos(2D)> ~ 2685 cm-1 <Pos(G)> ~ 1587 cm-1 Raman mapping of graphene/Cu prior to the transferring process Graphene is slightly compressed The ratio I2D/IG varies from 8-10 There is a maximum doping of 4.5x10 12 cm -2 imposed by the substrate Graphene transferring process is crucial for the quality of the single graphene layer in terms of the doping and strain distributions In CVD grown graphene transferred to PDMS, the doping imposed by the Cu substrate and the etchant is retained either supported or suspended

Transcript of Probing PDMS/Single layer Graphene interaction using...

Page 1: Probing PDMS/Single layer Graphene interaction using ...ll1.workcast.net/10283/1686074537916730/documents/10283_hall_45.pdf · Experimental - Sample preparation Probing PDMS/Single

Experimental - Sample preparation

Probing PDMS/Single layer Graphene interaction using optical spectroscopy

L. Seremetis1, J. Parthenios1, O. Frank3, G. Konstantinidis2, G. Deligeorgis2, K. Novoselov5 and C. Galiotis1,4, K.

Papagelis1,4

1Institute of Chemical Engineering Sciences - Foundation of Research and Technology Hellas, 26504 Patras, Greece2Institute of Electronic Structure and Laser - Foundation of Research and Technology Hellas, 71110 Heraklion, Greece

3J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Prague, 8, 18223 Czech Republic4Materials Science Department, University of Patras, 26504, Greece

5School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

Conclusions

Ackowledgements: FORTH / ICE-HT acknowledges financial support from “Graphene Center

Raman mapping of CVD grown graphene on PDMS

Graphene on a 290nm Si/SiO2 substratetransferred from a SiO2/Si substrateto a second substrate (PMMA)Wet transfer on PDMS

(1) 50x optical image of Graphene(2) 50x optical image of Graphene on PMMA(3) 100x optical image of Graphene on PDMS.

[1] O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, Nat Commun 2, 255 (2011).[2] O. Frank, G. Tsoukleri, J. Parthenios, K. Papagelis, I. Riaz, R. Jalil, K. S. Novoselov, and C. Galiotis, ACS Nano 4, 3131 (2010).[3] O. Frank, M. Mohr, J. Maultzsch, C. Thomsen, I. Riaz, R. Jalil, K. S. Novoselov, G. Tsoukleri, J. Parthenios, K. Papagelis, L. Kavan, and C. Galiotis, ACS Nano 5, 2231 (2011)[4] O. Frank, M. Bouša, I. Riaz, R. Jalil, K. S. Novoselov, G. Tsoukleri, J. Parthenios, L. Kavan, K. Papagelis, and C. Galiotis, Nano Lett. (2011).

References

Raman mapping of exfoliated graphene on PDMS

Mechanical Exfoliation of graphiteA wet Transfer Process to PDMS

Chemical Vapor Deposition on Cu substrate

1 2 3

1200 1400 1600 2600 2800

Raman Shift (cm-1)

Ram

an I

nte

nsi

ty (

arb

. un

its)

=514.5 nm

PDMS PDMS

2D G

2

1

3

25 µm Cu foil

H2

CH4A

B

CVD process and the recipe Transferring process on PDMS

A B

PDMS

Patterned PDMS substrate

Circular well Other wellsgraphene Suspended

graphene

9 10 11 12 13 14 15 161581

1582

1583

1584

<FWHM(G)> = 12.7 cm-1

<Pos(G)> = 1582.6 cm-1

Po

s(G

) (c

m-1)

FWHM(G)(cm-1)

1581 1582 1583 15842681

2682

2683

2684

2685

Pos(2D)/Pos(G) =0.7

,

Po

s(2

D)

(cm

-1)

Pos(G) (cm-1)

<Pos(G)> = 1582.6 cm-1

<Pos(2D)> = 2683.2 cm-1

22 23 24 25 26 272681

2682

2683

2684

2685

Po

s(2

D)

(cm

-1)

FWHM(2D)(cm-1)

<FWHM(2D)> = 23.7 cm-1<Pos(2D)> = 2683.2 cm-1

1581 1582 1583 1584

8

9

10

11

12

13

14

15

<I2D/IG> = 10.9

I(2D

/G)

Pos(G) (cm-1)

1576 1578 1580 1582 1584 15862682

2684

2686

2688

2690

2692

2694

2696

2698

2700

supported suspended

Pos(2D)/Pos(G) =-4.8 cm-1

Po

s2D

(cm

-1)

Pos(G) cm-1

<Pos(G)> = 1583.0 cm-1

<Pos(2D)> = 2691.0 cm-1

12 16 20 241576

1578

1580

1582

1584

1586

supported suspended

Pos

(G)

(cm

-1)

FWHM(G)(cm-1)

<Pos(G)> = 1583.0 cm-1

<FWHM(G)> = 16.5 cm-1

20 30 40 50 602682

2684

2686

2688

2690

2692

2694

2696

2698

2700

Po

s(2

D)

(cm

-1)

FWHM(2D) (cm-1)

<Pos(2D)> = 2691.0 cm-1

<FWHM(2D)> = 35.4 cm-1

1576 1578 1580 1582 1584 15860

2

4

6

8

10

supported suspended

I2D

/IG

Pos(G) (cm-1)

<I2D/IG> = 5.4 cm-1

<Pos(G)> = 1583.5 cm-1

1200 1500 1800 2100 2400 2700 3000

Raman Shift (cm-1)

Ram

an I

nten

sity

(ar

b. u

nits

)

PDMS

PDMS

SS 1

2D G

=514.5 nm

SS 2

SP 1

SP 2

Suspended graphene (SS)

Supported graphene (SP)

The dispersion of Pos(G) values is ~4 cm-1

The dispersion of Pos(2D) values is ~2 cm-1

The mean Pos(G) denotes that the flake is under a weak compression fieldThe absence of D line and the high I2D/IG ratio denote the high quality of the single graphene crystal

The dispersion of Pos(G) values is ~2 cm-1

The dispersion of Pos(2D) values is ~10 cm-1

The slope ΔPos(2D)/ΔPos(G) is NEGATIVE(!!) – Indication of Doping The ratio I2D/IG shows a huge dipersion from almost zero up to 10. This is a strong indication of an inhomogeneous doping on the transferred graphene. Suspended graphene retains doping levels as shown by the low values of the ratio I2D/IGSuspended graphene is under tension but it is difficult to estimate the strain due to the doping interference

<Pos(2D)> ~ 2685 cm-1

<Pos(G)> ~ 1587 cm-1

Raman mapping of graphene/Cu prior to the transferring process

Graphene is slightly compressed

The ratio I2D/IG varies from 8-10

There is a maximum doping of 4.5x1012 cm-2 imposed by the substrate

Graphene transferring process is crucial for the quality of the single graphene layer in terms of the

doping and strain distributions

In CVD grown graphene transferred to PDMS, the doping imposed by the Cu substrate and the etchant

is retained either supported or suspended