Printed Electronics Technologies

download Printed Electronics Technologies

of 73

Transcript of Printed Electronics Technologies

  • 8/12/2019 Printed Electronics Technologies

    1/73

    Printed Electronics:

    Technologies, Challenges and Applications

    Jurgen Daniel

    ([email protected])

    Palo A lto Research CenterPalo Alto, CA

    International Worksho p on Flexible and Prin ted Electronic s (IWFPE 10)

    Sept. 8-10, Muju Resort, Korea

  • 8/12/2019 Printed Electronics Technologies

    2/73

    Outline

    Motivations for Printed Electronics Printing Technologies

    Printing Materials

    Challenges Applications

    2

  • 8/12/2019 Printed Electronics Technologies

    3/73

    Motivation

    3

  • 8/12/2019 Printed Electronics Technologies

    4/73

    Printed Electronics

    First integrated circuit: KilbyFirst printed book: Gutenberg

    pr int electronics

    uniting two worlds

    4

  • 8/12/2019 Printed Electronics Technologies

    5/73

    The Vision of Flexible/Printed Electronics

    Nokia conceptsAntenna Design concept

    Electronic Patch Network (DK)

    Displays, sensors, RFID, batteries, solar cells, lighting,

    Freshness sensor

    (RF, H2S gas)

    ITRI/ UCSB

    Flexio : Yanko design

    e-Drum

    Solar-powered radio

    5

  • 8/12/2019 Printed Electronics Technologies

    6/73

    Printed Electronics Market

    The market for printed electronic devices, compon ents and systems, according to Hannah,(CEO of $300 billion worldwide within the next 20 years.(Printed Electronics Now, Dec 3, 09)

    There is a signi f icant market potent ia l for pr inted electronics

    but recent ly also:

    (~76% printed)

    IDTechEx

    6

  • 8/12/2019 Printed Electronics Technologies

    7/73

    Key Motivations for Printing Electronics

    Large area or Roll-to-Roll processing Other technologies would be difficult/slow (ex: printed connectors, keypads, PV, lighting,)

    Difficulty in processing materials otherwise Materials compatibility (ex: glucose sensor strips, OLEDs)

    Substrate topography/fragility (e.g. thin solar cells, MEMS)

    Thin product form factor Rollable, conformal

    Price: Ultra-low price (ex: battery tester, PV, OLEDs, RFID ?)

    ->market has to be very large to make money

    Print ing may be used only wh ere i t show s a dist inct advantage7

  • 8/12/2019 Printed Electronics Technologies

    8/73

    Printing = Additive Deposition

    1 step vs 6+ patterning stepsConvent ional pro cess Pr int ing pro cess

    For pr int ing disp lays: ~50% cost savings is predicted

    1..

    1..

    2..

    3..4..

    5..

    6..

    Source:Tech-On

    8

  • 8/12/2019 Printed Electronics Technologies

    9/73

    Printing Technologies

    9

  • 8/12/2019 Printed Electronics Technologies

    10/73

    Printing Technologies

    after Handbook of print media: technologies and production methods, Helmut Kipphan

    Conventional printing(with master)

    Non-Impact Printing(masterless)

    GravureScreenPrinting

    Inkjet

    Offset

    Letterpress/Flexography

    ContinuousDrop onDemand

    Thermography

    Transfer

    10

  • 8/12/2019 Printed Electronics Technologies

    11/73

    Printing for Electronics: Includes a Variety of Processes

    Inkjet, gravure, offset, flexo, (rotary) screen,

    Microcontact, (Nano)imprinting

    (Laser) transfer printing (of high performance circuits)

    Dip-pen nanolithography

    Dry printing (Organic vapor deposition)

    Hot embossing

    Laser processing (cutting sintering, patterning)

    Stamping/die cutting

    Slot-, dip-, spray-coating R2R etching, photolithography (!)

    Lamination,

    Consider: The consumer does not care if and how a product is printed11

  • 8/12/2019 Printed Electronics Technologies

    12/73

    Example R2R Printing Process

    http://www.thinfilm.se/about-us/manufacturing

    12

    Gravure, microgravure, rotary screen printing

    Ferroelectric polymer memory

    http://www.thinfilm.se/about-us/manufacturinghttp://www.thinfilm.se/about-us/manufacturinghttp://www.thinfilm.se/about-us/manufacturinghttp://www.thinfilm.se/about-us/manufacturinghttp://www.thinfilm.se/
  • 8/12/2019 Printed Electronics Technologies

    13/73

    Example of a R2R System with Stationary Step(Bosch Rexroth)

    could enable a roll-to-roll (R2R) photolithography step13

    ICFPE09

  • 8/12/2019 Printed Electronics Technologies

    14/73

    Screen Printing (I) Properties+ robust

    + simple

    (+) thick layers

    - large feature size

    (~100 m)

    - high ink viscosity

    (>10,000cP)

    - slower speed (5m/min)

    Conventional screen printing

    on clothing, packaging

    screen print ing factors:

    - screen parameters- snap-off distance- screen tension (N/cm)- print speed- squeegee pressure- squeegee durometer- angle of contact

    Murakami Screen

    Screen example:- Mesh count (per inch): 305- Thread dia(mu):34

    - Mesh opening (mu): 4714

    snap-off

  • 8/12/2019 Printed Electronics Technologies

    15/73

    Flat screen or rotary screen printing

    Screen Printing (II)

    Kammann - Flat Screen Head on web printing machine

    Mark AndyRotary Screen

    Speed : up to ~20 m/min (R2R)[up to ~100m/min (~450ft/min)]

    15

    image courtesy of Storck Screens

    kiss printing

    (zero off-contact)

  • 8/12/2019 Printed Electronics Technologies

    16/73

    Advanced Screen Printing: 30 m lines/spaces (10-20 m in development)

    Screen Printing (III)

    (http://www.dknresearch.com/)D. Numakura, DKN Research

    Five Star Technologies, ElectroSperseinks50 m lines16

    Screen-printed electroluminescent display

    130 m pitch

  • 8/12/2019 Printed Electronics Technologies

    17/73

    Gravure PrintingProperties

    + fast printing (50m/min)

    up to ~3000 ft/min

    + dot thickness variation

    +low dot gain

    + High resolution

    +use of organic solvents

    possible

    ~10-500cp ink viscosity

    - relatively high plate cost

    (metal cylinder)

    http://glossary.ippaper.com

    Gravure printing for high

    quality print e.g.

    National GeographicChrome plated cylinder

    Rotogravure

    source: VTT

    - also MicroGravure (Yasui Seki, Daetwyler R&D)

    Daetwyler:

    17

  • 8/12/2019 Printed Electronics Technologies

    18/73

    Gravure ExamplesMLCC(Multi-Layer Ceramic Capacitor)

    Screen Gravure

    Thinner layers (lower ink viscosity)Higher speed (50m/min vs 5m/min)

    Samsung (SEMCO)

    RFID tags

    18

  • 8/12/2019 Printed Electronics Technologies

    19/73

    Flexographic PrintingProperties

    + inexpensive plate

    pattern

    + high throughput

    + thin ink layers / low

    viscosity inks

    - plate degradation due to

    solvents

    MarkAndy LP3000: 230m/min

    19

    Flexo printing plate

    Source: wikipedia

    Printing on packages:

    Corrugated cardboard and foil

    Y. Dykes, MacDermid, Inc

    elastom eric plate m ater ia l

  • 8/12/2019 Printed Electronics Technologies

    20/73

    Inkjet Printing

    Piezo

    Thermal

    Electrostatic

    Acoustic

    Continuous

    Drop on demand

    Properties

    + non-contact

    + small ink quantitiesrequired

    + digital printing

    + low viscosity inks

    (polymer-free systems)

    ~5-50cp

    - nozzle reliability

    - speed

    SAMSUNG (SEMCO) Y.Yoo, ICFPE09

    20

    Piezo-inkjet

    H. Wijshoff, Oce Technologies

    10 s

    110 s

    20 s

  • 8/12/2019 Printed Electronics Technologies

    21/73

    Inkjet Printing Drop Formation

    y ~ s

    Feature size:

    depends on printed volume and dropinteraction with surface

    W. Wong, et al., in Flexible Electronics, W.

    Wong, A. Salleo, edt., Springer21

    PARC in kjet system

    Piezo-inkjet

    For high accuracy keep distance low !

  • 8/12/2019 Printed Electronics Technologies

    22/73

    Jet-printing - why ?

    Variable digital pattern

    On-the-fly error correction (e.g. on flexible substrates)

    Non-contact printing (substrates with topography, fragile substrates)

    Low operation cost (low ink consumption)

    Wide range of inks (hot-melt wax, solder, bio-materials, low-viscosity inks, )

    why potentially not ?

    limited resolution

    limited printing speedjetting reliability issues

    sensitivity to substrate variations

    Jet-pr int ing is excel lent for prototyp ing !

    Piezo-inkjet

    22

    (PARC)

  • 8/12/2019 Printed Electronics Technologies

    23/73

    Jet-printing for Electronics - components

    printheads systems inks

    Commercial Printing Components23

  • 8/12/2019 Printed Electronics Technologies

    24/73

    Color Filters LCD Spacers

    Polyimide alignment layer

    Scratch resistant layers

    Back light unit

    LCD materials

    OLED materials

    Electrophoretic media Electrowetting fluids

    Electronic circuits

    source: Samsung

    Applications of Jet-Printing (for electronics)

    Ch-LCD

    ITRI

    EWD

    ITRI

    Light guide (BLU)

    J.Y. Kim, et al, NIP25, 09

    (EPFL)

    Samsung

    Color f i l terLCD spacers

    LG Display

    Ink jet of fers m any opp ortuni t ies, but manufactur ing can be chal lenging24

  • 8/12/2019 Printed Electronics Technologies

    25/73

    Technology Comparison

    Source: H. Kopola, VTT

    25

  • 8/12/2019 Printed Electronics Technologies

    26/73

    Aerosol Jet(R) Printing

    M3D (Maskless Mesoscale Materials Deposition) http://www.optomec.com

    60m Ag lines written over a 500m trench.

    Conformal printing on 3D surfaces: 1-5 mm standoff Viscosity: 1-2500cP Feature size

  • 8/12/2019 Printed Electronics Technologies

    27/73

    Co-extrusion printing (developed at PARC)

    MDDW (Micro-Dispensing Deposition Write)

    Direct Deposition

    Direct-write Extrusion

    Bok Yeop Ahn , et a., Advanced Materials

    Volume 22, Issue 20,pages 22512254, May 25, 2010

    3D substrates Viscosities up to 1mio cP ~50-100 mu lines Up to 200mm/sec

    N.S. Kim, K.N. Hahn, ICFPE 20093D antenna printed on helmet:

    PARC

    Silver ink

    Sacrificialmaterial

    27

    (http://www.nscryptinc.com/)

    J. Lewis group, U. Illinois, Urbana-Champaign

    (http://www.parc.com/)

    http://onlinelibrary.wiley.com/doi/10.1002/adma.v22:20/issuetochttp://onlinelibrary.wiley.com/doi/10.1002/adma.v22:20/issuetoc
  • 8/12/2019 Printed Electronics Technologies

    28/73

    Transfer Printing (I)

    Chip Micro-transfer Printing

    Laser Transfer

    BASF / Schmid Group

    Fine line (< 100 mu) High aspect ratio(>0.3) Non-contact

    credit: John Rogers, U. Illinois, Urbana

    credit: Semprius, Inc.

    stamp

    source target substrate

    Neural sensorarray

    Flexible PV

    example: solar cell gridlines

    28

  • 8/12/2019 Printed Electronics Technologies

    29/73

    Transfer of nanowires (Javey et al., UC Berkeley)

    Thermal transfer of conductive materials

    Transfer Printing (II)

    29

    Iimak thermal transfer ribbon:

    http://www.iimak.com/

  • 8/12/2019 Printed Electronics Technologies

    30/73

    Printing MaterialsSource: DuPont

    30

    graphic inkselectronic ink s

    (PARC)

  • 8/12/2019 Printed Electronics Technologies

    31/73

    The TFT as the Basic Circuit Element

    s,d,g contacts+ interconnects:

    Thin Fi lm Transisto r

    (TFT)

    (bottom-gate)

    semiconductor:substrate:

    g

    ds

    inter-layer dielectrics:(gate dielectric, top dielectric)

    encapsulation

    InverterCMOS

    InverterPixel

    gate linedata line

    Cs

    The transistor performance d etermin es the extent o f appl icat ions31

  • 8/12/2019 Printed Electronics Technologies

    32/73

    Materials compatible with solution processing

    The Printed TFT

    s,d,g - contacts:

    Thin Fi lm Transisto r

    (TFT)

    (bottom-gate)

    Substrate:polyesterpolyimidePEN (polyethylene naphthalate)...

    g

    ds

    inter-layer dielectrics:(gate dielectric, top dielectric)

    -> perform ance of the mater ials has to be opt imized and proc ess

    compat ib i l ity ensured

    (nanoparticles, polymers,)

    PVPPVP, SU-8,

    Many new mater ia ls are introduced in to the proc ess

    semiconductor:(polymers, oligomers,precursors, nanoparticles)

    PQT-12,

    (similar materials sets apply for OPV, OLED, )

    32

    J. Daniel, et al., Mater. Res. Soc. Symp. Proc. Vol. 1114, Fall 2009, 1114-G13-03

  • 8/12/2019 Printed Electronics Technologies

    33/73

    Conductors Carbon, silver, aluminum flakes

    Polypyrrole, polyacetylene, thiophenes (PEDOT:PSS) Metal nanoparticles (Ag, Au, Cu, Ni - annealing or photonic curing)

    Catalyst printing + plating

    Reduced printed metal salts, metal precursors

    Carbon nanotubes, metal nanowires Graphene inks

    Solder

    Elastic Conductors

    Photonic cured Cu (~10x bulk)

    Cu

    Ag nanoparticles

    metallic nanowires

    Cambrios

    Melting point depression in nanoparticles

    High condu ct iv i ty , low ro ughness, low proc ess temp erature and w ork func t ion !

    surface functional izat ionmay be required for TFT s/d electrodes

    Elastic conductor(T. Sekitani, T. Someya, Univ. of Tokyo)

    33

    (PARC)

  • 8/12/2019 Printed Electronics Technologies

    34/73

    Conductors selected new developments

    Mechanical sintering (AIST, T. Kamata, Digital Fabrication 09)

    - Alloy sintering -> control of work function- Printed oxide semiconductors (NiO, SnO2, In2O3)

    Copper deposition

    34

    - in reducing environment (CO, H2, hydrazine)- photonic/laser curing

  • 8/12/2019 Printed Electronics Technologies

    35/73

    Insulators

    Oxides, nitrides Al2O3, HfO2 (anodization, atomic layer deposition)

    Polymer dielectrics (PVP, PMMA, )

    Spin-on-Glass Parylene (evaporated)

    Solid electrolytes

    Ion gels .

    Semico ndu ctor / insulator in ter face is cru cia l for TFTs

    surface funct ional izat ion may be required; high-k dielectrics perform poorly with OSCs

    - pinhole-free layer- high k or low k- smooth surface- transparent

    - barrier property-

    potential desirable properties

    35

  • 8/12/2019 Printed Electronics Technologies

    36/73

    Semiconductors

    Organic semiconductors (small molecule, polymer)

    Oxide Semiconductors (ZnO, InGaZnO)

    CNT

    Nanowires, nanoribbons (Si, GaAs)

    Nanoparticles (Si, CdSe, ZnSe)

    high mobility required for current driven displays

    (OLED, electrochromic), driver circuit integration

    and other circuit applications

    mobil iti es of organic SC

    pri nted Si

    some processes require annealing steps

    (e.g. laser or RTP)

    CNT

    OSCZnOETRI

    Organic and inorg anic semicond uctors are pr intable

    TIPS-PEN

    36

  • 8/12/2019 Printed Electronics Technologies

    37/73

    Recent developments of printable OSC

    Semiconductors organic examples

    Works with high-k dielectics (alkylchains keep distance from polar interface)

    ActivInkTM N1500 (Small-Molecule)

    P-type

    N-type

    Mobility up to ~4cm2/Vs

    - also new amorphous polymer withmobility ~0.5cm2/Vs that is easy toprocess

    challenge:

    -High mobility and uniformity--> trend towards small molecule precursor/ amorphous polymer blend

    37

    mu lt i -component OS ink

    G. Lloyd, OSC09

    B. Florez, OSC09

  • 8/12/2019 Printed Electronics Technologies

    38/73

    Recent development

    Semiconductors inorganic example

    Mobilities up to 5 cm2/Vs(350degC)

    - Solution processed (jet-printed) inorganics- Targeting 150degC process temperatures

    (H. Thiem, OSC09)

    38

    ZnO

  • 8/12/2019 Printed Electronics Technologies

    39/73

    Challenges in PrintedElectronics (with focus on inkjet)

    39

  • 8/12/2019 Printed Electronics Technologies

    40/73

    Printing process challenges

    Registration Chemical compatibility of materials (orthogonal

    solvents)

    Physical compatibility (step coverage, work function, etc.)

    Curing/drying of inks within thermaltolerances/time

    Online quality control to optimize process yield

    Controlled atmosphere for sensitive materials

    40

  • 8/12/2019 Printed Electronics Technologies

    41/73

    Materials challenges

    Ink viscosity Printability

    Ink stability (e.g. particle agglomeration, settling,)

    Material lifetime(moisture, oxygen, ozone, etc.)

    Cost (e.g. Au, Ag vs Cu)

    Uniformity (e.g. OSC, nanowires, thickness)

    Performance (e.g. OSC mobility)

    Process/solvent compatibility

    Wetting properties (surface tension, surface energy)

    41

  • 8/12/2019 Printed Electronics Technologies

    42/73

    Challenges from the lab to the fab

    Manufacturing challenges: Environmental impact / disposability

    e.g. are nanoparticles safe ?, disposable batteries ?

    Health & safety

    benign solvents

    Process time/ TACT time/ print speed

    Curing -> UV (photonic curing , laser sintering ?)

    Temperature Budget

    Low-T curing or photonic curing ?

    Process parameters: substrate tension, layer thickness Yield/ uniformity/process monitoring

    Packaging

    operation in air, elevated temperatures (e.g. in car in summer ?)

    42

  • 8/12/2019 Printed Electronics Technologies

    43/73

    Device challenges

    Parasitic capacitance (affecting device speed)

    Feature size (affecting device area)

    Uniformity (device to device)

    Reliability (pinholes, roughness)

    Yield

    Encapsulation (for longer lifetime)

    Process compatibility of device layers Performance tradeoffs (top gate vs bottom gate)

    43

  • 8/12/2019 Printed Electronics Technologies

    44/73

    Challenges from the lab to the fab

    K.H. Shin, Konkuk Univ., Seoul, Korea

    44

  • 8/12/2019 Printed Electronics Technologies

    45/73

    Challenges in (Jet)-Printing Circuits Ink formulation (-> adjusted viscosity, surface tension, evaporation rate)

    Substrate quality (-> surface energy, roughness control)

    Layer to layer registration (-> self-alignment)

    Jetting-reliability (-> monitoring, redundancy)

    Ejector-to-ejector variations (->monitoring, redundancy)

    Print resolution (-> surface energy adjustment or patterning, laser assist, novel print-heads)

    Print ing chal lenges of fer opportun i ty for R&D

    70 m

    10 m

    45 m

    increasingly hydrophi li c sur face

    Inf luence of Subs trate sur face Examples of p rinted si lver l ines

    45

    A.C. Arias, et al., J. of the SID, 15/7 (2007) 485

    J. Daniel, et al., NIP25/ Dig. Fab. 2009, 599-602

    (PARC)

    Jet printing challenges nanosilver

  • 8/12/2019 Printed Electronics Technologies

    46/73

    Jet-printing challenges - nanosilver

    ~140 micro n l ines

    ~65 mic ron l ineson poly imide

    (smaller drop size)

    100 200 300

    0

    1000

    2000

    3000

    4000

    5000

    Height()

    Scan distance ( m)

    95 m

    hydrophobic

    hydrophi l ic

    ink -surface in terac t ion coffee-r ing effects

    optimized process

    46

    A.C. Arias, et al., J. of the SID, 15/7 (2007) 485

    J. Daniel, et al., Jpn. J. Appl. Phys., Vol 46, No 3B

    (2007) 1363-1369(PARC)

  • 8/12/2019 Printed Electronics Technologies

    47/73

    Typical for inkjet printing: result of the uneven evaporation of a liquidover a droplets liquid-air interface

    Coffee Stain Effect

    Deegan, R.D., et al, Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops , Nature 389, 1997

    Dynamics of the coffee stain effect:

    The evaporation rate J is larger at the edge of a droplet due to thecurvature of the droplet leading to a flow of fluid and nanoparticleswith a velocity v.

    Source: U Illinois

    Pinned contact line

    the free surface, constrained by a pinned contact line,squeezes the fluid outwards to compensate for evaporativelosses.

    Circulating flows driven by surface-tension gradients (Marangoniflows) can counteract coffee stain: Marangoni flow can beinduced by mixing two solvents with different boiling point anddifferent surface tension.

    47

  • 8/12/2019 Printed Electronics Technologies

    48/73

    Jet-Printed Active-Matrix Backplanes

    680 m (37ppi)

    48

    192 m

    Pixel pad

    Gate layer

    Data layer

    Pixel design

    Printed pixels (PQT TFT)

    PQT-12 jet-pri nted OSC

    Jet-pr inted nano-si lver

    photol i thography

    Commercial backplane(smallest features ~5 m )

    pr inted

    A.C. Arias, et al., J. of the SID, 15/7 (2007) 485J. Daniel, et al., SID 07 Digest, P-21, 249-251

    (PARC)

  • 8/12/2019 Printed Electronics Technologies

    49/73

    Challenge: Higher Resolution

    decreasing f i l l factor

    improve printing process (line width / spaces)multi-layer pixel design

    Higher display resolut ion requires smal ler pixels

    increasing pixel count

    solut ions

    680 m 340 m 170 m

    Fill factor: ~72% ~58% ~32%

    49 J. Daniel, et al., Proc. NIP25 and Digital Fabrication 2009, 599

    (PARC)

  • 8/12/2019 Printed Electronics Technologies

    50/73

    Higher Resolution

    T. Tano, Ricoh Co., NIP25, 09

    Surface energy patterningof substrate

    Sirr ing haus , et al., Scien ce, 290 (2000), 2123

    (Fujifilm Dimatix)

    Printheads with 1pl drops for

    ~20 micron features

    Sekitani, Proc. Nat. Acad. Sci. 105 4976 (2008)

    Superfine inkjet printing

    Brow nian mot ion and electrostat ics are crucia l at smal l drop sizes

    Droplets smaller than nozzle size possible

    Electrohydrodynamic printing

    Laser assisted printing

    Conductive Inkjet Technology (CIJ)

    50

    Brownian motion, electrostatics !

  • 8/12/2019 Printed Electronics Technologies

    51/73

    Pixel Fill-Factor

    Multi -layer pixel

    (MLP)

    51

    J. Daniel, et al., SID 09 Digest, 44.3, p660-663

    (PARC)

    Requires via

    format ion

  • 8/12/2019 Printed Electronics Technologies

    52/73

    Via Formation in Printed Electronics

    Gelinck, et al., SID 05 Digest, 3.1

    (Polymer Vision / Philips)

    Laser ablationPhotol i thography

    Solvent Print ing

    Kawase, Sirringhaus, et al.,

    Adv. Mater. 2001, 13, 1601

    (Seiko-Epson/ Univ. Cambr.)

    Hole Punch ing

    Drury, et al., Appl. Phys. Lett., 73, 1998, 108

    (PhilipsRes. Lab)

    Vias in dielectrics are essential for multi-layer pixels and for most otherelectronic circuits

    Via form at ion proc ess is st i l l chal lenging

    Molding process

    J. Daniel, et al., SID 09 Digest, 44.3, p660-663

    52

    (PARC)

  • 8/12/2019 Printed Electronics Technologies

    53/73

    Overlap capacitance in Printed TFTs Larger print tolerances cause greater overlap capacitance

    typical bottom-gate TFT

    (schematic)

    G

    S D

    ( top view)

    (cross-sect ion)

    e.g. a-Si, organic

    (can negatively affectappearance of a display)

    Vpixel = Vgate Cp/(Cp+Cst)

    Reduce overlap capacitanc e, e.g. with self-al ignm ent techn iqu es

    High overlap capacitance -> low sw i tch ing f requency

    f = (VgsVt) / 2 L(L+2Loverlap)

    High overlap capacitance -> h igh feed th rough vo l tages(unless compensated by large storage capacitor)

    Feedth rough vo l tage

    Loverlap

    Loverlap

    53

    (PARC)

    S d f Di l id t ?

  • 8/12/2019 Printed Electronics Technologies

    54/73

    Speed of Display video rate ?

    190x64 m,Cst ~0.2pF,Cp ~0.03pF

    680x680 m,

    Cst ~pF,Cp ~pF Cst

    CpCd

    Vft= VsCp

    Cst+Cp

    high mobility semiconductor is desirable (+ high W/L)

    good control over printing process to reduce parasitics

    ~ 30 fps may be sufficient for many applications

    for e-paper, faster display media is under development (E-ink, SID'05)

    Conventional LCD display pixels:

    Printed pixels:

    Fast pixel response requirescareful balancing of feedthrough voltage and pixel capacitances

    Pixel capacitances and

    feedthroug h vol tage

    Pixel capacitance (Cp+Cst)

    P

    ixelRCtime

  • 8/12/2019 Printed Electronics Technologies

    55/73

    Applications

    55

  • 8/12/2019 Printed Electronics Technologies

    56/73

    Printed Battery Energy Strip

    Printed

    - conduct or

    - i nsu lato r

    - th ermoch rom ic d ye

    Nice to have, but co nsum er probably wo uld n ot want to pay extra for i t56

  • 8/12/2019 Printed Electronics Technologies

    57/73

    Printed Battery

    1.5V/cell carbon-zinc MnO2 chemistry

    R2R process

    Print ing enables bat tery integrat ion w ith oth er devices on one sub strate

    Battery-assisted RFID RF-enabled sensor systems and data loggers RFID smart cards and ID badges Medical care devices Cosmetic patches Interactive consumer goods packaging

    potential applications:

    printed Li polymer battery

    printed Zn/MnO2 ZnCl2 electrolyte

    57

  • 8/12/2019 Printed Electronics Technologies

    58/73

    Printed RFID tags Organic semiconductor on plastic foil

    Web speed: ~30m/min

    13.56 MHz voltage rectifier ~100Hz ring oscillator, 4 bit Manchester chip (64-bit tags in lab)Antenna is not printed re-writable memory (for toys/games):

    PolyIC and Thin Film Electronics ASA

    Item-Level TrackingSmart Packaging for Healthcare ApplicationsBrand ProtectionInventory and TrackingTransit Cards and Smart Cards

    For ultra-cheap RFID tag applicat io ns

    TFT mobilitiies

  • 8/12/2019 Printed Electronics Technologies

    59/73

    Silicon ink semiconductor on metal substrate

    Printed RFID tags

    Kovios RFID chips are printed on a 16 x 16 in. sheet of metal.

    nFET thin-film transistors (TFT) with electronmobilities of 80 cm2/Vs.

    (source: Semiconductor International)

    IDTechEx: market size for item-level RFID tags by 2015 will growto 163 billion units, valued at $5.3B. By then, the average salesprice will be cents per tag.

    For ultra-cheap RFID tag applicat ion s59

    P i t d O i PV

  • 8/12/2019 Printed Electronics Technologies

    60/73

    Printed Organic PV

    100feet/min; 250-1500mm width 6.39% efficiency (0.8cm2) T80 lifetime ~8000h (>3yrs)

    Promising for ul t ra-low cos t , part ial t ransparency and high f lex ib i l ity

    (capacity)

    8.13% record efficiency (size ?)

    J. Hauch, OSC09

    Bulk Heterojunction Polymer / Fullerene

    Konarka/Lundberg Design

    - commercial OPV modules: ~3-5%

    60

  • 8/12/2019 Printed Electronics Technologies

    61/73

    Printed CIGS solar cell

    Printed Inorganic PV

    CIGS (copper-indium-gallium selenide)

    R2R (non-vacuum ) process enables low c ost61

    Printed Selective Emitter Process

  • 8/12/2019 Printed Electronics Technologies

    62/73

    Printed Selective Emitter Process

    Innovalight

    Printed n-type Silicon ink (screen or inkjet)One step added to a conventional cell line (retrofitable)

    Efficiency improvement

    Si -nanoparticle ink

    H. Antoniadis:62

    OLED Displays / Li hti

  • 8/12/2019 Printed Electronics Technologies

    63/73

    63

    OLED Displays / Lighting Fully printed OLED

    screen printed air-stable printed cathode material

    Conventional polymer organic LED (P-OLED)

    Add-Vision PrintedP-OLED

    evaporated cathode material !

    (Superior power efficiency brightness and lifetime)

    63

    http://www.add-vision.com/

    panel wi th ink volume correction

    S.Skai, et al., NIP 25, 2009 (Seiko Epson)

    inkjet printed displays volume averaging required

    for uniformity (Mura reduction)

    Seiko Epson, CDT,

    Fl ibl Di l i h P i d B k l

  • 8/12/2019 Printed Electronics Technologies

    64/73

    Flexible Displays with Printed Backplane

    50x50 pixels(~2 inch diag.)

    37ppi

    PEN substrate

    PVP gate dielectr ic

    Pr inted Ag

    PQT semico nduc tor

    680 m pixels; PQT-12 jet-printedSemiconductor

    Display medium: E-inkelectrophoretic imaging film

    active-Matr ix pixel circu i ts for electroph oret icmedia (PARC)

    Al l -addi t ive solut ion p rocess64

    A.C. Arias, et al., J. of the SID, 15/7 (2007) 485

    J. Daniel, et al., SID 09, 44.3, 660

    Printed Displays further examples

  • 8/12/2019 Printed Electronics Technologies

    65/73

    65

    80dpi

    50dpi

    Dai Nippon Print ing

    screen printing+ solution processing

    pentacene OSC

    QR-power display

    roll printed resist for all layers

    15 inch display

    Printed Displays - further examplesLG

    Samsung

    Printed Electronics Circuits

  • 8/12/2019 Printed Electronics Technologies

    66/73

    Printed Electronics Circuits

    (Chemnitz Univ./Johns Hopkins Univ)K. Reuter, et al., Organic Electronics 11(2010) 95-99

    Gravure/Flexo printed inverter

    Contact charging of Cytop dielectricfor depletion/accumulation TFTs

    (Sunchon National Univ.)M. Jung, G. Cho, et al. ICFPE09

    66

    Gravure printed 4-bit logic

    Jet printed inverter

    (PARC)

    T. Ng, et al., Appl. Phys. Lett., 94, 233307 (2009)Y. Xia, D.Frisbie, U. Minnesota

    Printed D-Flipflop (printed ion gel gated circuit)

    O

  • 8/12/2019 Printed Electronics Technologies

    67/73

    Other Printed Electronic Devices

    Oncoprobe, Ltd

    Biosensors

    Printed sensors for glucose meters:~2.2 billion sold each year

    Relat ively sim ple prin ted devices are already on th e market

    Source: Dupont

    Electro lum inescent Lamp s

    E lec trochromic D isp lays

    GSI technologies GSI technologies + NTera

    Source: Dupont

    Antennas

    67

    Examples of Printed Sensors

  • 8/12/2019 Printed Electronics Technologies

    68/73

    Examples of Printed Sensors

    ITRI/ UCSB ITRI/ UCSB

    L. Tymecki, et al, Sensors 2006, 6, 390-396

    Screen printed Ion-selective sensor electrodes

    VTT

    3PLAST project

    68

    screen printed piezo/pyro sensors screen printed piezoresistive pressuresensor (e-Drum)

    detection of H2S gas

    Demonstrators

  • 8/12/2019 Printed Electronics Technologies

    69/73

    Demonstrators

    Interactive cards (gaming cards)batteries, conductors, push buttons

    Interactive package:Conductors, dielectrics, thermochromic ink

    69

    Printed Electronics demonstrators

  • 8/12/2019 Printed Electronics Technologies

    70/73

    Demonstrator kits by OE-A

    Printed Electronics - demonstrators

    Game board

    Demons trators m ay enable designers to have new appl icat ion ideas70

    Alt ti t P i t d Ci it

  • 8/12/2019 Printed Electronics Technologies

    71/73

    Alternatives to Printed Circuits

    SAIL (HP)

    Lift-off processes (PVI)

    Hetero-integration pick and place (Muehlbauer)

    Fluidic self-assembly (Alien Technology)

    R2R vacuum deposition and patterning Lithography + OSC (Holst Centre, ITRI, )

    71

    Acknowledgment

  • 8/12/2019 Printed Electronics Technologies

    72/73

    Acknowledgment

    For work performed at PARC:

    A.C. Arias, T. Ng, S.E Ready, R.A. Street, B.Krusor, B. Russo

    Xerox Research Center of Canada

    DuPont Teijin NIST

    DARPA (contr. # W81XWH-08-C-0065)

    72

  • 8/12/2019 Printed Electronics Technologies

    73/73

    Thank you !