Principles of photovoltaic energy conversion and pathways...

27
[email protected] Principles of photovoltaic energy conversion and pathways to high efficiency Louise C. Hirst NRC associate U.S. Naval Research Laboratory

Transcript of Principles of photovoltaic energy conversion and pathways...

  • [email protected]

    Principles of photovoltaic energy conversion and pathways to high efficiency

    Louise C. HirstNRC associate

    U.S. Naval Research Laboratory

  • [email protected]

    U.S. Naval Research Laboratory

    The Naval Research Laboratory provides:

    Primary in-house research for the physical, engineering, space, and environmental sciences

    Fundamentals Field demonstration

    Theorist Test engineerExperimentalist

    Founded by Thomas Edison in 1923

    Key achievements:

    First modern U.S. radar

    First operational U.S. sonar

    NAVSTAR GPS - based on the NRL TIMATIONprogram

    First US Earth orbiting spacecraft - Vanguard I

    Semi-Insulating Gallium Arsenide Crystals -Technique for growing high-purity single crystals

    New capabilities

    slide 1 of 26

  • [email protected]

    Opto-electronics and radiation effects

    5000 ft2 class 100 cleanroom

    Innovation for high specific power and power density for specialized applicationsOperation in extreme environments (e.g. space, underwater)Large scale power generation

    Design, build, operate, and post-flight analysis

    Satellite space experiments

    Photovoltaics

    Optical detectors for imager technologies

    III-V device design an fabrication

    Radiation effects

    Night vision, thermal imaging, missile detection

    Growth & characterization

    Simulation capabilities

    slide 2 of 26

  • [email protected]

    The Solar resource

    0

    100

    200

    300

    400

    500

    600

    700

    1 2 3 4

    Irra

    dia

    nce (

    Wm

    -2eV

    -1)

    E (eV)

    The Sun is a blackbody with temperature ~6000 K

    I(E) = 2Ac2h3

    E2

    exp(E/kT)-1

    dE

    1000 W.m-2 peak incident power

    Solar energy use is innate

    Directly as heat

    Chemical, mechanical & electrical conversion

    NASA 2009

    Indrect an inefficient processesPhotovoltaics provides direct conversion

    slide 3 of 26

  • [email protected]

    Incumbent PV technology

    Si-wafer PV - 90% of 2013 production

    Multi-crystalline Si - 55% of total production

    Record conversion efficiency for this technology is 20.4%

    Most installed system ~15%

    Extremely cheap - cells produced $0.2/W

    Achieving grid parity in many parts of the world

    Extremely fast growing industry - 38 GW capacity installed in 2013

    US residential installations outstripping non-residential

    1/3 coming online without state incentives

    1839 - Becquerel demonstration of photovoltaic effect

    1954 - Bell Labs first ``high-power" Si solar cell (6%)

    slide 4 of 26

  • [email protected]

    High efficiency PV

    Key issue with multi-crystalline Si:

    low power density (W/m2)

    low specific power (W/kg)

    Limited applications

    Domestic power generation, suburban or rural residential installation

    Portable

    Weight/area are significant

    Industrial architectures

    High power density requirements

    High efficiency PV provides solutions

    Why is the efficiency of incumbenttechnology is fundamentally limited?

    World record efficiency 44.7%

    Mechanisms for achieving high efficiency

    22% energy consumption - residential (2011)

    Industrial, commercial and transport

    slide 5 of 26

  • [email protected]

    Solar heat engine

    TA

    TA

    T0

    W

    Q1

    Q2

    TS

    QA QE

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 2000 4000 6000

    (%

    )

    TA (K)

    84.9% at TA = 2480 K

    = ( (1 - TA4TS4 1 -( (T0TA

    Heat engine - transfer energyhot source to cold sink

    S

    T

    A

    B

    D

    CP

    V

    AB

    DC

    A B C D

    isotherm

    adiabat

    TA T0 T0

    QA = ATS4 QE = ATA4Net energy flux Incident energy

    =QA - QE

    QA= 1 -

    TA4

    TS4

    2nd law : S0

    = 1 -T0TA

    S = - + Q1TA

    Q2T0

    = WQ1

    Q1 - Q2Q1

    = = 1 -Q2Q1

    Carnot engine is isoentropic

    Absorber

    slide 6 of 26

  • [email protected]

    Solar heat engine: invalid assumptions

    How do current PV technologies deviate from the ideal?

    84.9% at TA = 2480 K

    = ( (1 - TA4TS4 1 -( (T0TS

    Mismatch between absorption and emission angles-the terrestrial absorber is not a perfect blackbody cavity

    Some energy transfers from TS to T0 without beingabsorbed

    Some heat dissipation - dewar flasks are not perfectthermal insulators

    Non-isoentropic

    S=0TA

    TA

    T0

    W

    Q1

    Q2

    TS

    QA QE

    S

    T

    A

    B

    D

    CP

    V

    AB

    DC

    A B C D

    isotherm

    adiabat

    TA T0 T0

    slide 7 of 26

  • [email protected]

    Semiconductors as absorbers

    Semiconductors have an bandgap

    TL

    CB

    VB

    ener

    gy

    absorption elasticscattering

    time

    thermalization radiativerec

    Teh=TL

    eh

    atomic radius

    Ener

    gy

    (eV

    )

    C: Eg = 5.5 eVSi: Eg = 1.1 eV

    Ge: Eg = 0.7 eV

    Sn: Eg = 0.1 eV

    Pb: Eg = --

    CB

    VB

    slide 8 of 26

  • [email protected]

    Detailed balance limiting efficiency

    Detailed balance approach:

    Generalized Planck equation

    = e

    2c2h3 exp(E-/kT) - 1

    .dEE2

    0

    (E).n(E, TS, = 0, S).dE

    0

    (E).n(E, TA, A = eV, emit).dE - e

    n(E, T, , ).dE =

    Boltzmann approximation: (E-)/kT >> 1

    Infinite carrier mobility

    Unity absorptivity above Eg and zero below

    All recombination radiative

    Particle number conserved

    Maximum power point opperation

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.5 1 1.5 2 2.5 3 3.5

    PowerFr

    acti

    on o

    f in

    ciden

    t so

    lar

    radia

    tion

    Eg (eV)

    Voltage

    32.5% for Eg = 1.35 (31% for 1.31 eV numerical)

    Curr

    ent

    den

    sity

    A.m

    -2

    1

    200

    400

    J = Jabs - Jemit

    slide 9 of 26

  • [email protected]

    Intrinsic losses

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.5 1 1.5 2 2.5 3 3.5

    Power

    Boltzmann

    Eg (eV)

    Mismatch between absorption and emissionangles:

    kTA. ln(emit/abs). Jopt

    Frac

    tion o

    f in

    ciden

    t so

    lar

    radia

    tion

    slide 10 of 26

  • [email protected]

    Intrinsic losses

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.5 1 1.5 2 2.5 3 3.5

    Power

    Boltzmann

    Eg (eV)

    below Eg

    Mismatch between absorption and emissionangles:

    kTA. ln(emit/abs). Jopt

    Frac

    tion o

    f in

    ciden

    t so

    lar

    radia

    tion

    Transmission of low energy photons

    0

    Eg

    E.n(E, Ts, =0, S).dE

    slide 11 of 26

  • [email protected]

    Intrinsic losses

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.5 1 1.5 2 2.5 3 3.5

    Power

    Boltzmann

    Eg (eV)

    below Eg

    Mismatch between absorption and emissionangles:

    kTA. ln(emit/abs). Jopt

    Frac

    tion o

    f in

    ciden

    t so

    lar

    radia

    tion

    Transmission of low energy photons

    0

    Eg

    E.n(E, Ts, =0, S).dE

    thermalizationThermalization of high energy photons

    Eg

    E.n(E, Ts, =0, S).dE - Eg. Jabs

    slide 12 of 26

  • [email protected]

    Intrinsic losses

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.5 1 1.5 2 2.5 3 3.5

    Power

    Boltzmann

    Eg (eV)

    below Eg

    Mismatch between absorption and emissionangles:

    kTA. ln(emit/abs). Jopt

    Frac

    tion o

    f in

    ciden

    t so

    lar

    radia

    tion

    Transmission of low energy photons

    0

    Eg

    E.n(E, Ts, =0, S).dE

    thermalizationThermalization of high energy photons

    Eg

    E.n(E, Ts, =0, S).dE - Eg. Jabs

    Carnot Emission

    Eg(TA/TS). Jopt Eg. JemitCarnot emission

    TA

    T0

    W

    Q1

    Q2

    TS

    QA QE

    slide 13 of 26

  • [email protected]

    Pathways to high efficiency

    Hot carriers

    Target dominant intrsinsic loss mechanisms:

    Solar concentration

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.5 1 1.5 2 2.5 3 3.5

    Power

    Boltzmann

    Eg (eV)

    below Eg

    Frac

    tion o

    f in

    ciden

    t so

    lar

    radia

    tion

    thermalization

    Carnot emission

    Cirac et al., Science 337, 1072 (2012)

    Furman et al., 35th IEEE PVSC, 475 (2010)

    ~100 nmField localization

    10

    100

    1000|E|2

    Focusing module

    Boltzmann loss

    Multiple absorbers

    Thermalization & below Eg

    Hot-carrier solar cells

    Sequential absorption and MEG

    Directional emission

    Adams et al., 35th IEEE PVSC, 1 (2010)

    slide 14 of 26

  • [email protected]

    Multi-junction solar cells

    Optimal Eg and separately contacted junctions assumed

    number of junctions

    frac

    tion o

    f in

    ciden

    t so

    lar

    radia

    tion

    1 2 3 4 5 60.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Power

    below Eg

    thermalization

    Boltzmann

    emissionCarnot Increasing junction number increases efficiency through

    a reduction in thermalization and below Eg losses

    Bandgap optimization is a materials engineering challenge

    Spectral conditions: terrestrial/spaceconcentrator/flat plate?

    Stacked cell or monolithic growth?

    Conditions:

    Separately contacted or current matched?

    BAlGaIn

    NPAsSb

    SiGe

    III VSolutions: III-V alloys

    slide 15 of 26

  • [email protected]

    Multi-junction solar cells

    InSb

    AlSb

    InAs

    GaSb

    InPGaAs

    AlAs

    AlP

    GaP

    2.5

    2.0

    1.5

    1.0

    0.5

    0.05.4 5.6 5.8 6.0 6.2 6.4

    lattice constant ()

    Eg (

    eV

    )

    Ge

    Si

    Industry work horse, space applications:

    Current matching

    Eg optimization

    InGaP/GaAs/Ge

    EMCORE ZTJ - 29.5 %

    Emerging technologies for high efficiency:

    slide 16 of 26

  • [email protected]

    Multi-junction solar cells

    InSb

    AlSb

    InAs

    GaSb

    InPGaAs

    AlAs

    AlP

    GaP

    2.5

    2.0

    1.5

    1.0

    0.5

    0.05.4 5.6 5.8 6.0 6.2 6.4

    lattice constant ()

    Eg (

    eV

    )

    Ge

    Si

    InGaAs GaAsP GaAs

    Industry work horse, space applications:

    Quantum wells

    Current matching

    Eg optimization

    InGaP/GaAs/Ge

    EMCORE ZTJ - 29.5 %

    Reduce middle cellEg for current matching

    Felixble system for Egoptimization

    Emerging technologies for high efficiency:

    Ekins-Daukes et al., Appl. Phys. Lett., 75, p. 4195 (1999)

    slide 17 of 26

  • [email protected]

    Multi-junction solar cells

    InSb

    AlSb

    InAs

    GaSb

    InPGaAs

    AlAs

    AlP

    GaP

    2.5

    2.0

    1.5

    1.0

    0.5

    0.05.4 5.6 5.8 6.0 6.2 6.4

    lattice constant ()

    Eg (

    eV

    )

    Ge

    Si

    Industry work horse, space applications:

    Quantum wells

    Current matching

    Eg optimization

    InGaP/GaAs/Ge

    EMCORE ZTJ - 29.5 %

    Reduce middle cellEg for current matching

    Felixble system for Egoptimization

    Emerging technologies for high efficiency

    Metamorphic growth

    Confine defects to a buffer layer tomove lattice constant

    Ge

    buffer

    InGaAs

    InGaP

    MM cell

    slide 18 of 26

  • [email protected]

    Multi-junction solar cells

    InSb

    AlSb

    InAs

    GaSb

    InPGaAs

    AlAs

    AlP

    GaP

    2.5

    2.0

    1.5

    1.0

    0.5

    0.05.4 5.6 5.8 6.0 6.2 6.4

    lattice constant ()

    Eg (

    eV

    )

    Ge

    Si

    Industry work horse, space applications:

    Quantum wells

    Current matching

    Eg optimization

    InGaP/GaAs/Ge

    EMCORE ZTJ - 29.5 %

    Reduce middle cellEg for current matching

    Felixble system for Egoptimization

    Emerging technologies for high efficiency:

    Metamorphic growth

    Confine defects to a buffer layer tomove lattice constant

    buffer

    GaAs

    InGaP

    Ge

    Ge

    buffer

    InGaAs

    InGaP

    InGaAs

    MM cell

    IMM cell

    Geisz, et al., Appl. Phys. Lett, 93, p. 123505 (2008)

    slide 19 of 26

  • [email protected]

    Multi-junction solar cells

    InSb

    AlSb

    InAs

    GaSb

    InPGaAs

    AlAs

    AlP

    GaP

    2.5

    2.0

    1.5

    1.0

    0.5

    0.05.4 5.6 5.8 6.0 6.2 6.4

    lattice constant ()

    Eg (

    eV

    )

    Ge

    Si

    Industry work horse, space applications:

    Quantum wells

    Current matching

    Eg optimization

    InGaP/GaAs/Ge

    EMCORE ZTJ - 29.5 %

    Reduce middle cellEg for current matching

    Felixble system for Egoptimization

    Emerging technologies for high efficiency:

    Metamorphic growth

    Confine defects to a buffer layer tomove lattice constant

    Bonded 4J Soitec - World record (44.7%, 297X)

    Epitaxial lift-off & mechanical stacking

    GaAs

    InGaP

    Ge

    InP

    InGaAs

    InGaAsP

    Dimmroth, et al. Prog. Photovolt., 22, p. 277 (2014)

    slide 20 of 26

  • [email protected]

    NRL pathway to 50%

    InSb

    AlSb

    InAs

    GaSb

    InPGaAs

    AlAs

    AlP

    GaP

    2.5

    2.0

    1.5

    1.0

    0.5

    0.05.4 5.6 5.8 6.0 6.2 6.4

    lattice constant ()

    Eg (

    eV

    )

    Ge

    Si

    3J on InP (1.74, 1.17, 0.7 eV)

    InGaAs/InGaAs strain compensated QW

    InAlAsSb quaternary - new material

    InGaAsP

    InAlAsSb

    InP

    InGaAs/InGaAs QW

    AM1.5D, low AOD, 500X

    -0.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    0 5 10 15 20 25Distance (nm)

    Ener

    gy

    (eV

    )

    In0.6

    6G

    aAs

    In0.3

    9G

    aAs

    Eg

    Simulate material properties:

    Ternary end point lattice constants and bandalignements from experimentEstimate bowing parameter to interpolate

    MBE growth for development:Immiscibility - kinetics and thermodynamicsTemperature - Growth and anneal

    Characterization:Emission : PL Device: QE and DLTSAbsorption: PLE and transmission

    slide 21 of 26

  • [email protected]

    Broader perspective

    Cost - extremely expensive materials and fabrication methods

    Still significant issues with MJ devices other than laboratory efficiency:

    $/W values - difficult to compete with flate plate Si

    Implement in highly focusing solar concentrator systems

    Improved efficiency through Boltzmann loss reductionSeverly limits applications options - only suitable for desert power stations

    Spectral sensivity - limits annual energy yieldsMaterials abundance

    Substrate removal and reuse

    Recycling

    Ultimately limited by junction number - complexity is not free and only offers incrementalimprovement in efficiency

    low power density (W/m2)

    low specific power (W/kg)

    Industrial, commercial, transport & portable applications

    slide 22 of 26

  • [email protected]

    The hot-carrier solar cell

    Fundamentally different heat engine

    Steady-state hot-carrier population

    Teh>TL

    CB

    VB

    ener

    gy

    absorption elasticscattering

    time

    thermalization radiativerec

    Teh=TL

    eh

    hot-carrierSJMJ

    Change the rate balance betweenabsorption and thermalization

    Carriers do not fully thermalization

    Contact to the hot-carrier populationvia an energy selective contact

    metal metalESC ESCabsorber

    Eg

    e

    h

    eh

    TL TS > Teh> TL

    eh

    Cooling confined within an narrowenergy range is isoentropic

    Carrier population thermally equilibrateswithout dissipating excess heat energy

    Most like the Carnot engine

    slide 23 of 26

  • [email protected]

    Making an HCSC

    Hot-carrier absorber Energy selective extraction

    Broadband absorberRestricted carrier-phonon interaction

    Steady-state non-equilbrium hot carrier population

    Achievable levels of solar illumination

    Energy selective contact

    High current, concentrator devices

    Reduced range of energy states relative to absorber

    Carrier transmission

    Req

    uir

    emen

    tsD

    evic

    e so

    luti

    on

    s

    Slow carrier cooling in QWsRecord low thermalization coefficient in InAlAs/InGaAs wells

    in press IEEE J. Photovolt., 2014

    E-field enhancement nanostructuresAbsorption in ultra-thin device

    High carrier density -> hotter carriers

    Recent progressResonant tunneling Dimmock et al., Prog. Photovolt, 22, p. 151, 2014

    Semi-selective energy barrierHirst et al., Appl. Phys. Lett., 2014

    Quaternary superlattice structureson InP for miniband formation

    Pabs (W.cm-2)

    Teh

    (K)

    300

    320

    340

    360

    20 40 60 80 100 120

    InAlA

    s

    InGaAs

    15 nm

    InAlA

    s

    InP

    slide 24 of 26

  • [email protected]

    NRL hot-carrier solar cell design

    0

    -100 0 100

    0

    200 nm

    field enhancement in ultra-thin InGaAsquantum engineered PV converter

    nanostructure

  • [email protected]

    The finish line

    Pathways to high efficiency

    Multi-crystalline Si - 55% of total production

    Extremely cheap - cells produced $0.2/W

    Key issue with multi-crystalline Si:

    low power density (W/m2)

    low specific power (W/kg)

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.5 1 1.5 2 2.5 3 3.5

    Power

    Boltzmann

    Eg (eV)

    below Eg

    Frac

    tion o

    f in

    ciden

    t so

    lar

    radia

    tion

    thermalization

    Carnot emission

    MJ - Leading high efficiency PV technology

    InGaAsP

    InAlAsSb

    InP

    InGaAs/InGaAs QW

    Race to 50%

    Metamorphic buffers

    Quantum wells

    ELO and bonding

    What's there at the finish line?

    Teh>TL

    CB

    VB

    ener

    gy

    absorption elasticscattering

    time

    thermalization radiativerec

    Teh=TL

    eh

    hot-carrierSJMJ

    Ultimately limited by junction number

    slide 26 of 26