Principles for climbing with dry adhesion - Stanford...

35
Stryker Interaction Design Workshop September 7-8, 2005 1 3/24/13 Principles for climbing with dry adhesion 2. Directional adhesives 1. Hierarchical compliance 3. Distributed force control

Transcript of Principles for climbing with dry adhesion - Stanford...

Stryker Interaction Design Workshop September 7-8, 2005

1 3/24/13

Principles for climbing with dry adhesion

2. Directional adhesives

1. Hierarchical compliance

3. Distributed force control

Stryker Interaction Design Workshop September 7-8, 2005

2 3/24/13

Spatular shaft

2!m

Spatula

200nm

Setal shaft

100!m

Lamella

Cushions 1cm

1mm

Conforming to surfaces: hierarchy of compliant structures in the gecko

Stryker Interaction Design Workshop September 7-8, 2005

3 3/24/13

Directional gecko adhesion

25 mN of Adhesion

Gecko setae dragging with curvature

-30

-20

-10

0

10

20

30

40

50

0 1 2 3 4

Time (s)

Forc

e (m

N)

Colored: Normal force Gray: Shear force

Dragging against curvature

No Adhesion

Time (s)

Forc

e (m

N)

-30

-20

-10

0

10

20

30

40

50

0 1 2 3 4

Stryker Interaction Design Workshop September 7-8, 2005

4 3/24/13

Gecko Force-Space Results

Load, then pull off at various angles, and measure force

-10 0 10 20

-10

0

10

20

Tangential Force (mN/stalk)

Normal Force (mN/stalk)

500µm

-10 0 10 20

-10

0

10

20

Tangential Force (mN/stalk)

Normal Force (mN/stalk)

500µm600µm

-10 0 10 20

-10

0

10

20

Tangential Force (mN/stalk)

Normal Force (mN/stalk)

500µm600µm700µm

loaded with stalk angle: adhesion ~ tangential stress

loaded against stalk angle: Coulomb friction

safe region

Autumn et al. JEB 2006

Fn

Ft

compression

adhesion

Stryker Interaction Design Workshop September 7-8, 2005

Directional adhesion: loading cycle determines adhesion

5 3/24/13

microscope video, side view with trajectory shown

normal and shear stress trajectory versus limit curve

Stryker Interaction Design Workshop September 7-8, 2005

Directional adhesion: loading cycle determines adhesion

6 3/24/13

microscope video, side view with trajectory shown

normal and shear stress trajectory versus limit curve

Stickybot foot adhesion limit surface

7 3/24/13 D. Santos, et al.Gecko-Inspired Climbing Behaviors on Vertical and Overhanging Surfaces, IEEE ICRA 2008.

Stryker Interaction Design Workshop September 7-8, 2005

Biomimetics Laboratory Stanford University

Daniel Santos

Adhesion limit surface implications

Johnson-Kendall-Roberts

FNormal

FTangential

Gecko “Frictional Adhesion”

FNormal

FTangential

Autumn, et al.; Journal of Experimental Biology; Volume 209, 2006

Stryker Interaction Design Workshop September 7-8, 2005

9 3/24/13

Force Control optimal strategy for inverted surface

Frictional Adhesion Johnson-Kendall-Roberts

Rear Foot Flipped

FN

FT

FN FN FN

FT FT FT

Generalization: Formulate as linear programming problem to control foot orientation & internal forces for arbitrary loading conditions [Santos, JAST09].

Stryker Interaction Design Workshop September 7-8, 2005

Biomimetics Laboratory Stanford University

Daniel Santos

Force Control: vertical surfaces consequences of adhesion model

Frictional Adhesion

FNormal

FTangential

3/24/13 11

-0.01 0

0.01

0.02

0.03

Gecko wall reaction forces F

orce

(N)

Left Fore

Right Fore

Right Hind

Left Hind

Lateral -0.04

-0.02

0

0.02

0.04

N=7 N=6

N=5 N=8

Normal -0.01

-0.005

0 0.005 0.01

N=7 N=6 N=5 N=8

Fore-aft N=7 N=6 N=5 N=8

K. Autumn R.J. Full

Stryker Interaction Design Workshop September 7-8, 2005

12 3/24/13

Control foot orientation + internal forces

Stryker Interaction Design Workshop September 7-8, 2005

13 3/24/13

Directional adhesion facilitates control of forces for smooth, efficient locomotion

Tangential force

Nor

mal

For

ce

Contact force limits

Safe force region

Desired loaded state

Desired attach/detach state

Stryker Interaction Design Workshop September 7-8, 2005

14 3/24/13

Directional

Directional vs. non-directional One front leg cycled with three feet attached (tripedal crawl). 3 successive steps shown

Preload Adhesion Detach

Non- directional

Stryker Interaction Design Workshop September 7-8, 2005

15 3/24/13

Dynamic Directional Adhesion

Hypothesis: directional adhesion ! gentle loading + lift-off ! long life

! Directional behavior similar to gecko and larger Stickybot stalks

! Adhesion maintained, while sliding.

! Provides non-catastrophic failure mechanism.

Stryker Interaction Design Workshop September 7-8, 2005

16 3/24/13

Adhesive structure analysis for optimization of performance

•  Behavior occurs at multiple scales – Suspension scale (mm)

•  Commercial software is viable –  Preload path only

– Terminal features scale (µm) •  Custom FE code •  Semi-analytic models

!"##$

!%&'#$

Machining Process Overview Control blade trajectory to get desired shape and dense packing of features

MOLD

!"#$%

E. Eason et al., "Micro-Wedge Machining for the Manufacture of Directional Dry Adhesives," ASME Journal of Micro and Nano-Manufacturing, 2013 (in press)

Stryker Interaction Design Workshop September 7-8, 2005

Angle control: micromachining process

Key Design Parameters •  ()$*+,-.$/0$12.3$•  4)$5+6.35/3$12.3$*+,-.$•  7)$12.3$7.5,76$•  8)$12.3$89*:5+,$•  ;)$#*6.35*-$</=+,>8$?/@=-=8

18

! "

h

E. Eason

Stryker Interaction Design Workshop September 7-8, 2005

Machined vs lithographic microwedge performance

19

Increased adhesion

Better low-shear

performance

Stryker Interaction Design Workshop September 7-8, 2005

Test results with unfilled PDMS

20 psi

previous results (40kPa normal)

10 psi

Large scale results: 17 psi in pure shear over 1x1 in

Stryker Interaction Design Workshop September 7-8, 2005

Loading on the wall is different from benchtop tests; geometry affects limit surface

Different pull locations (structure is rigid between

pull location and contact points)

FT FN

h

h

r = 0 r = 0.1h r = 0.5h r = h r = 2h

r

! =10°

Maximum |F| at the structure geometry

angle

Red r=0 lines match the original contact limit

surfaces

20° = contact limit surface angle

Alan Asbeck

unless one can pull from the red dot

location, any deviation from ideal angle produces

a moment and uneven pressure

Stryker Interaction Design Workshop September 7-8, 2005

How to get nearly uniform loading over the entire toe, with tolerance to a range of loading angles?

Lamella

Bio-Inspiration

Phalanges

Lamellae

Fluid-filled sac

Lateral digital tendon

Lateral digital tendon

(Russell J. Morphology 1982)

Stryker Interaction Design Workshop September 7-8, 2005 23

Loading angles: alignment compensation

4 leg version of RiSE platform

4 kg gross loads

Stryker Interaction Design Workshop September 7-8, 2005

Scaling to larger areas and loads: tiled arrays

adhesive

rigid tile

pressurized

sac

pressure

plate

main tendontile tendon

compliant

supportstructure

pulley

40 kg

Approx. 80cm2

Stryker Interaction Design Workshop September 7-8, 2005 25

Scaling to larger areas and loads: results

?*+=0*:6=35+,[email protected]$

!"#$%&')$C*D$#/-@$58$+/6$@=3*2-.$E/$8=30*:.$63.*6#.+6)$3.=8.$FG"$H#.8$I.9.-$J5-*+.$63.*6#.+6)$3.=8.$KGL$H#.8$MN3*9.3O$$

P758$58$*+$&()&*+,-&$93/2-.#$I.9-*:5+,$#/-@$6*Q.8$%$73$M./001*6$RSKT73O$

U.$C*+6$6/$3.=8.$#/-@8$VF&&$H#.8$?/-@$:/86$9.3$=8.)$"W%$#5+$M./O$

AX.#968$*6$#/3.$@=3*2-.$#/-@8$

FW$Y8.$7*[email protected]$#*6.35*-$5+$#5:3/#*:75+5+,$AX.#96.@$2Z$J6*+0/3@$M[2GJ+O$*+@$N3*9.3$\/3:.8$*3.$6//$75,7)$5+@.+H+,$6//-$@.].:68$*+@$@=--8$

"W$^/86GC*D$:*8H+,$6/$3.9-5:*6.$#/-@$5+$#.6*-$_/+:.3+8$*2/=6$8=30*:.$1+587$`$,3*5+$85a.$

bW$E5:Q.-$#.6*--5a*H/+$/+$C*D$#/-@$MN3*9.3O$[//3$8=30*:.$1+587$*+@[email protected]$8/$0*3$

%W$N*=,76.3$#/-@8$#*@.$03/#$*@7.85B.8$!"#',+,*21

N*=,76.3$#/-@8$c$

d$

e$

[N?J$)34&"*103/#$C*D$#/-@$

f*3@$9/-Z#.3$536278&"$'#%51

E.C$[N?J$*@7.85B.$

?*6.35*-8$:/#9*H25-56Z$3.g=53.#.+68$

N*=,76.3$#/-@$#*6.35*-$_=3.8$/+$[N?J$9#1$#*516/$[N?J$E/$@586/3H/+$@=35+,$:=3.$

$J6.9$"$58$93/2-.#*H:$

[N?J$9*X.3+$,.68$6/3+$-.*B5+,[email protected]$5+$#/-@$_*++/6$2.$"&'#-&51:&+8"#;+10.*6=3.$H98$

c$

d$

N*=,76.3$?/-@$:/#9*H25-56Z$635*-8$P.86.@$S$.9/D5.8h$b$=3.67*+.8h$"$#/-@$3.-.*8.8$

;9/D5.8$2/+@.@$863/+,-Z$6/$9*X.3+h$:*=85+,$8&3",*21

?/-@$3.-.*8.8$:*=8.@$-/88$/[email protected]$*+@$#5885+,$0.*6=3.8$

i.86$3.8=-68$C567$6"&873*&+$*+@$*#1'#%51"&%&3+&W$

!"#$"%&#'(%()*( +(,(%#-.%)/(

0)*(#+(%()*(#122

0,"345)*6#782!"##$%"&'()*($+,-.

!"##$%"&'+,-.

!"##$%"&'/)#.$+,-.

0,"345)*6#792#:;!"##$%"&'()*($+,-.

01&2)1#$%"&'-,$+,-.

01&2)1#$%"&'-,$+,-.

0<=#>)$#72/"#5?'(/"#@"/&

/"#5?'(/"#@"/&

/"#5?'($.%&#@"/&

A(B5"/#1#;"/!"##$%"&'/)#.$+,-.

!"##$%"&'+,-.

!"##$%"&'-,$+,-.

=<C"3D#E2!"##$%"&'/)#.$+,-.

!"##$%"&'/)#.$+,-.

!"##$%"&'-,$+,-.

F'()6#C%)/(*#GH!"##$%"&'()*($+,-.

!"##$%"&'+,-.

!"##$%"&'-,$+,-.

I4-#-%"JK>"J#L.*5!"##$%"&'()*($+,-.

!"##$%"&'()*($+,-.

!"##$%"&'-,$+,-.

M//"6N)/(#M0<124:!"##$%"&'-,$+,-.

!"##$%"&'-,$+,-.

!"##$%"&'-,$+,-.

M//"6N)/(#M0<924!"##$%"&'-,$+,-.

!"##$%"&'-,$+,-.

01&2)1#$%"&'-,$+,-.

M//"6N)/(#M0<824!"##$%"&'-,$+,-.

!"##$%"&'-,$+,-.

!"##$%"&'-,$+,-.

^//Q5+,$*7.*@$

32

Role Team Members Section

PI Aaron Parness 347

Co-I Mark Cutkosky Stanford

Co-I George Studor JSC

Co-I Victor White 389

Co-I Carl Seubert 344

Task Objectives: 1. Develop full capture head using

current gecko adhesive and leveraging small-scale two pad gripper prototypes

2. Mock up compliant robotic arm and integrate with capture head for floating object capture demonstration on RoboDome testbed

Infusion Path: option A: Small Sat Demo (partner with

Qinetiq and Aerospace Corp) option B: ISS experiment or inspection

(partner with JSC)

Critical Milestones Date

Demo of capture head on stiff mount Apr 2013

Completion of mock-up compliant arm Jun 2013

Demo of floating object capture Sep 2013

Gecko-Inspired ON-OFF Adhesives For Orbital Debris Mitigation

Primary Technical Hurdles: •  Scaling 2-pad prototypes to full capture head

•  Correctly sizing compliance in robotic arm •  Integrating elements for demo

Technical Approach / Expected Accomplishment: Develop Robotic Capture Head Mock up compliant robotic arm

Demo floating object capture

!"#$%&'($)**+%,-'./&0"1'

2'!34'56#678'9$1'

:53;9<;'='.8),,%,-''>%?)$'

Debris

Gecko Grapple System Small Sat

Inspired partly by new Zman spin-off:

/67.3$,3/=98>$*@7.85B.8$7X9)TT3/2/H:8W..:8W2.3Q.-.ZW.@=T!3/+0Tj.:Q/T,.:Q/G252-5/W76#-$

•  _?Y$MJ5kO$•  Y_$i.3Q.-.Z$M\.*35+,O$$•  ?*D$[-*+:Q$l+86W$MA3a6O$•  Y_Ji$MP=3+.3O$•  _*8.$U.86.3+$MN*5O$•  J./=-$MJ=7O$•  W$W$W$!"#$%"&%$'(#(%)(*+,)(%-")(%.")-/0%&")1(%$"%#2134%5+$%/0#"%6)"7,8(%-")(%/8'(#,".%".1(%/9/1'(8:%;'(<%/)(%0(##%"62-,=(8%&")%10,-5,.>%/.8%7()<%0"?%(.()><%/9/1'-(.$@8($/1'-(.$:%A2004%$'(<%/)(%*+,$(%,.$()(#2.>%$""B%

</=3$,3/=9>8$6*8Q)$

•  \5+@$*$3.*8/+*2-.$m=8*,.$:*8.n$o$*88=#.$6.:7+/-/,Z$C5--$:/+H+=.$6/$5#93/B.h$:/86$C5--$:/#.$@/C+W$

•  \5+@$*$<+&"$*+@$675+Q$*2/=6$C7*6$87.$/3$7.$+..@8$

•  [3.8.+6$Z/=3$5@.*$/+$P7=38@*Z$MFG"[email protected]$

Stryker Interaction Design Workshop September 7-8, 2005

This work has been supported by the RiSE program (DARPA BioDynotics N66001-03-C-8045) with additional support from NSF NIRT (ID 0708367) and COINS (UCB)

Robots in Scansorial Environments (RiSE)

Acknowledgements