Previous lectures: Design Target - iea.lth.se · RM @ Ansys RMxprt • Aligned and unaligned flux...

11
Industrial Electrical Engineering and Automation Lund University, Sweden L7: Magnetic circuits Magnetic cores are used to conduct the magnetic flux and permanent magnets to produce flux eien20vt18 Industrial Electrical Engineering and Automation Avo R Design of Electrical Machines 2 Previous lectures: Design Target mech T el P T dt t i t u T P 0 1 • Energy conversion • Torque per rotor volume • Air-gap shear stress • Product of magnetic and electric loadings B l r w z K T F 2 2 2 gap RT A F l r Fr V T BK A BKwz A BIz A F gap gap gap η - efficiency σ=kBK Industrial Electrical Engineering and Automation Avo R Design of Electrical Machines 3 Industrial Electrical Engineering and Automation Avo R Design of Electrical Machines 4 Today’s goal • Scope on permanent magnet machines • Soft and hard magnetic materials • Main flux path in a magnetic circuit • Dimensioning the size of the magnetic circuit for PMSM

Transcript of Previous lectures: Design Target - iea.lth.se · RM @ Ansys RMxprt • Aligned and unaligned flux...

Industrial Electrical Engineering and AutomationLund University, Sweden

L7: Magnetic circuits

Magnetic cores are used to conduct the magnetic flux and permanent magnets to

produce flux

eien20vt18

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 2

Previous lectures: Design Target

mech

T

el PTdttituT

P 0

1• Energy conversion

• Torque per rotor volume

• Air-gap shear stress

• Product of magnetic and electric loadings

B

l

r

wz K

T

F

22

2 gapRT AF

lrFr

VT

BKA

BKwzABIz

AF

gapgapgap

η - efficiency

σ=kBK

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 3

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 4

Today’s goal

• Scope on permanent magnet machines• Soft and hard magnetic materials• Main flux path in a magnetic circuit• Dimensioning the size of the magnetic circuit for PMSM

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 5

Electric machine torque and components

• Coil or winding – to produce variablemagnetic flux

• Permanent magnet – to produce invariablemagnetic flux

• Soft magnetic core – to provide an easy path for the flux

• T=ψmisy+isxisy(Lx-Ly)

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 6

Electrical machine examples

• Electrical machines with stator magnetization

– Induction machine– Reluctance machine

• Presence of magnetic core and very small air-gap are essential

• Same size, voltage and power

– Ø155/94-H120 mm– 2.2kW, 400V, 50Hz

-B-B

-B+A

+A+A

-C-C-C+B+B+B-A

-A-A

+C+C+C-B-B

-B+A

+A+A

-C -C -C +B +B +B-A

-A-A

+C+C+C47.3 7715.0

+A

-C

+C-B

+B

-A

+A

-C

+C -B

+B

-A

47.3 7715.0

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 7

Induction machine

• Induction machine is an electrical transformer– the magnetizing circuit is seen from no load test (NLT)– leakage inductances are found from locked rotor test (LRT)

• Load resistance Rr’/s consists of equivalent electromechanical load resistance Rr’(1-s)/s and actual winding resistance Rr’

sRIsT rr

em

'2'3,

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 8© Avo R 8

Induction machine – 2SIE 100L4A

• FEMM quasi-static @ slip-frequency

• Ansys RMxprt – machine geometry library + ”non FE” models

Stator size Do/Di-H mm 155/95-100Power Pn, @50Hz W 2200Speed nn, @50Hz rpm 1440Current In, @400V A 4.5 (7 max)Efficiency η, % 84.7,85.5,84.6Power factor cosφ - 0.83Start current Ia/In - 7.3Start torque Ta/Tn - 2.4Knee torque Tkn/Tn - 2.8Inertia J kgm2 0.0070Weight w kg 25.5Cost* SEK 6840

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 9

Model specification

• Geometry– Rotor and stator– Do/Di-H

• Windings– #Slots, #Poles, #Phases

• Materials– BH-curve– Loss characterisation

• Operation point– Current distribution

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 10

Semi-closed slots

• Semi-closed slots are most common for Ems

• Slot geometry defined by– Bredth b– Height h

• Slot can slightly vary in respect to slot opening and slot bed

b2

b1

b0

h2

h1

h0

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 11

Series of quasi-static analyses

• Nominal current & slip frequency

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 12

FEMM Tω - characteristics

• Expected ~15Nm @ 1440 rpm• Unstable operation point under

“knee”

1410 1420 1430 1440 1450 1460 1470 1480 1490 1500-18

-16

-14

-12

-10

-8

-6

-4

-2

torq

ue, T

[Nm

]

1410 1420 1430 1440 1450 1460 1470 1480 1490 15000.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

indu

ctan

ce, L

[H]

speed, n [rpm]

Re(B)+Im(J) Im(B)+Re(J)

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 13

IM @ Ansys RMxprt

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 14

Winding LayoutIn

dust

rial E

lect

rical

Eng

inee

ring

and

Aut

omat

ion

Avo R Design of Electrical Machines 15

• Torque, current and efficiency @ 400V from 50 to 100Hz

Characteristics

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 16

Reluctance machine

0 20 40 60 80 100 120 140 160 180-25

-20

-15

-10

-5

0

5

10

15

20

25

torq

ue, T

[Nm

]

0 20 40 60 80 100 120 140 160 1800.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

indu

ctan

ce, L

[H]

position, e [deg]

Torque and flux linkage at nominal current 6.5Apk and at the doubled current level

0 20 40 60 80 100 120 140 160 180-40

-30

-20

-10

0

10

20

30

40

torq

ue, T

[Nm

]

0 20 40 60 80 100 120 140 160 1800

0.05

0.1

0.15

0.2

0.25

indu

ctan

ce, L

[H]

position, e [deg]

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 17

RM @ Ansys RMxprt

• Aligned and unaligned flux linkage

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 18

RM Tω - characteristics

IT

P

η

Industrial Electrical Engineering and AutomationLund University, Sweden

Home assignment A3

Performance estimation for a three-phase PM synchronous machine

B

Hc

Do

B A

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 20

Magnetisation

• % magnetic dimensioning• mu0 = 4*pi*1e-7; % magnetic permeability in vacuum• K_C = 1.2; % Carter's coefficient• Bgm = 0.8; % maximum flux density in the air-gap• mu_pm = 1.219; % permeability of permanent magnet• Br = 1.1; % remanence flux ensity of permanent magnet• K_m=2/3; % relative width of magnet• % fundamental space component of gap magnet flux density• Bgm1=4/pi*Bgm*sin(K_m*pi/2);

000

C

gpm

pm

rpm kgB

hBB

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 21

Multi-phase winding distribution

• Multi-phase constant balanced instantaneous power• A sinusoidal generated voltage is desirable • A sinusoidal variation of flux density round the rotor• Magnetic cores, distributed and concentrated windings In

dust

rial E

lect

rical

Eng

inee

ring

and

Aut

omat

ion

Avo R Design of Electrical Machines 22

Magnetic coupling

E=ΨmωΨmI=T

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 23

Main flux path

• A linear characteristicscan be assumed in materials

• μpm=1, μfe=∞,• The hysteresis and eddy

currents are neglected, if the study does not require them explicitly.

• The geometry is simplified by excluding small radii, holes etc

Φ ½Φ

½Φ

½Φ ½Φ

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 24

Sinusoidally-fed PM motor

• N-phase system: Nph=3• P-pole excitation: Np=2 (4,6..)• S-slot stator: Ns={3,6,9,12, …}• Sinusoidal distribution

tPiDNk

tPrPK

dd

rKdrK

iPNktP

eis

s

espis

s

sp

ississsp

sspespsp

2cosˆ6

2cos

2)(

)(1)()()(

ˆ423

2sin)(

1

1

2

0

111

s

s

F

FF

FFF

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 25

Magnetic shear stress

• The force on a current carrying conductor in the presence of a magnetic field

σshear

B

I

ssgmesgmeis

eisesegm

eissgm

iNkBlKBlD

dlrtPKtPB

dlrKBF

ˆ32

2cos

2cos

)()(

1111

2

011

2

0

eisssgm

sgmeissgm

eisis

sgm

eis

sgmeis

avg

lDiNkB

KBlDKB

lDrT

mNmNKB

lD

KBlD

AF

ˆ23

42

/70000/2

2

11

11211

221111

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 26

Choice of magnetic materials

• Hard magnetic material– Remanence flux density

Br– Stability: temperature

dependence & risk of demagnetization

• Soft magnetic material– Relative permeability μr

– Specfic core loss pc

ΦR=BRApm

FCJ=HCJlpm F

permanent magnet

iron core air-gap 2 air-gap 1

load 2 load 1

P2

P1

Φ

Φ

F

Φpm

Ffe Fpm Fg

Φd

FCB

air-gap 2 iron core

common 2

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 27

Permanent magnet excitation I

• Surface mounted magnets (Lx≥Ly), inset magnets (Lx<Ly) or interior (buried) magnets (Lx<Ly)

• Rotor design: Mechanic strength, magnetic protection smaller mechanical air-gap In

dust

rial E

lect

rical

Eng

inee

ring

and

Aut

omat

ion

Avo R Design of Electrical Machines 28

Permanent magnet excitation II

• Single-piece magnet & multi-pole magnetisation

• Self-shielding, some cases the back core is not needed

• Anisotropic magnet is magnetised during Injection moulding

• Isotropic magnet can be magnetised after compression moulding

M1() M2() M3() M4()

21 pN

p

p NN

sin62

1

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 29

Hard magnetic materials

• Typical materials: Ferrite, Alnico, SmCo, NdFeB• Techniques: Sintered, compression or injection molded

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 30

Hard magnetic materials

Ferrite sint/mold

SmCo sint/mold

NdFeB sint/mold

RemanenceBr T 0.4/0.2 1.1/0.6 1.3/0.7

Temp dep KTB Br%/K -0.2 -0.03 -0.1/-0.1

Op temp max

0C /150 250/110 <180/110

Price Low High Moderate

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 31

PM loading

• Magnetic loading, demagnetisation• Temperature dependence

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 32

Soft magnetic core

• Magnetic core facilitate magnetic coupling and manufacturing of the machine

• Core (rot+sta) manufacturing: stamping + stacking• Insertion of electric insulation system: slot liner• Winding assembling: premade coils dragged into the stator slots • PM assembling: mounted or inserted on/into the rotor slots

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 33

Soft magnetic materials

• Magnetic materials– Bulky magnetic material,– Laminated electromagnetic

steel, – compressed molded

powder core – injection molded powder

core• Different material types

have their advantageous features at– Higher operational

frequency– Higher magnetic loading In

dust

rial E

lect

rical

Eng

inee

ring

and

Aut

omat

ion

Avo R Design of Electrical Machines 34

Soft magnetic materials

laminated steel3% Si

Compressed iron powder

Injection moulded iron powder

Permeability μr.max

9250 200-700 10-20

Coercivity HC A/m 35 400 100-400

Thermal con λ W/mK 28 / 0.71 17 1-3

Specific loss pfe W/kg 1T 0.92 7 -

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 35

Soft magnetic materials development

• Material engineering = production engineering

• Saving energy vs reducing size

• Bs decreases / increases with decreasing / increasing core loss

A.Inoue 1997

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 36

Material suitability for different applications

• Magnetic EC based study– PMSM vs IM– Laminated core vs Powder core

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 37

PM machine with laminated core

• 1-pole magnetic circuit using laminated core(μ=2000)

• Surface mounted PMSM

Fpm=2240.9 A

fpm=605.2 A

Rpm

=366190 1/H

Fg=474.4 A

Rg=106204 1/H

Fst=10.0 A

Rst

=2230 1/H

Fwin=0.0 A

Fsy=51.9 A

Rsy

=11608 1/H

Fry=17.1 A

Rry

=3837 1/H

Bpm

=0.80 T

Bg=0.75 T

Bst

=1.75 T

Bsy

=1.71 T

Bry

=1.63 T Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 38

PM machine with powder core

• 1-pole magnetic circuit using powder core(μ=200)

• Powder core allows new design and production freedoms –advantageous if design is right

• Copper savings but slightly more iron

Fpm=2240.9 A

fpm=1168.6 A

Rpm

=366190 1/H

Fg=311.0 A

Rg=106204 1/H

Fst=65.3 A

Rst

=22304 1/H

Fwin=0.0 A

Fsy=339.9 A

Rsy

=116080 1/H

Fry=112.4 A

Rry

=38374 1/H

Bpm

=0.53 T

Bg=0.49 T

Bst

=1.15 T

Bsy

=1.12 T

Bry

=1.07 T

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 39

Induction machine with laminated core

• 1-pole magnetic circuit using laminated core(μ=2000)

• PM machine is usually smaller but more expensive than induction machine for the same performanceFpm=0.0 A

fpm=0.0 A

Rpm

=0 1/H

Fg=470.3 A

Rg=106204 1/H

Fst=9.9 A

Rst

=2230 1/H

Fwin=600.0 A

Fsy=51.4 A

Rsy

=11608 1/H

Fry=17.0 A

Rry

=3837 1/H

Bpm

=0.80 T

Bg=0.74 T

Bst

=1.74 T

Bsy

=1.70 T

Bry

=1.61 T Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 40

Induction machine with powder core

• 1-pole magnetic circuit using powder core(μ=200)

• Low permeability gives a high magnetising current

• Simply replacing a lamination stack is bound to be worse in performance and cost

Fpm=0.0 A

fpm=0.0 A

Rpm

=0 1/H

Fg=159.7 A

Rg=106204 1/H

Fst=33.5 A

Rst

=22304 1/H

Fwin=600.0 A

Fsy=174.5 A

Rsy

=116080 1/H

Fry=57.7 A

Rry

=38374 1/H

Bpm

=0.27 T

Bg=0.25 T

Bst

=0.59 T

Bsy

=0.58 T

Bry

=0.55 T

Indu

stria

l Ele

ctric

al E

ngin

eerin

g an

d A

utom

atio

n

Avo R Design of Electrical Machines 41

Assignment A4

• Electromagnetic FE analysis of 3φ PMSM

0 20 40 60 80 100 120 140 160 180-1.5

-1

-0.5

0

0.5

1

1.5

Mag

netic

flux

den

sity

inth

e ai

rgap

Bg, [

T]

BgnL(), [T]BgtL(), [T]Bgn0(), [T]Bgt0(), [T]

0 2 4 6 8 10 12 140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

harmonic order, [-]

Mag

netic

flux

den

sity

in th

e ai

rgap

Bg, [

T]

BgnL(), [T]BgtL(), [T]Bgn0(), [T]Bgt0(), [T]