pressure room

15
Emerging Technologies in Room (Suite) Pressure Control, Performance Modeling and Design Practices Wei Sun, P.E. ASHRAE Principal, Director of Engineering Engsysco, Inc. Ann Arbor, Michigan, USA Emerging Technologies in Room (Suite) Pressure Control, Performance Modeling and Design Practices Engsysco Presented by Wei Sun, P.E.  ASHRAE “Clean Spaces”Technical Committee (TC9.11) Chairman “Healthc are Facilities” Technical Committee (TC9.6) Member “Labora tory Systems” Technical Committee (TC9.10) Member Principal, Director of Engineering Engsysco, Inc.  Ann Arbor, Michigan, USA www.engsysco.com   ___________________________ ________  ___________________________ ________  ___________________________ ________  ___________________________ ________  ___________________________ ________  ___________________________ ________  ___________________________ ________ Purposes Direct desired flow patterns Isolate airborne cross contamination Definition  A technique th at air pressure di fferences are crea ted mechanically between rooms to introduce intentional air movement paths through room leakage openings. These openings could be either designated, such as doorways, or undesignated, such as air gaps around doorframes or other duct/piping penetration cracks. How to achieve It can be achieved by arranging the controlled volumes of supply, return, and exhaust airstreams to each room within the space. Room Pressurization Technique Introduction   ___________________________ ________  ___________________________ ________  ___________________________ ________  ___________________________ ________  ___________________________ ________  ___________________________ ________  ___________________________ ________  Air connection bet ween two adjacent rooms is through connecting opening(s). If a door between two rooms is open, the doorway will be the main designated flow path. If the door is closed, then the leakage will be through undesignated paths, such as air gaps along doorframes, joints, pipe and duct penetrations and gaps around ceiling panels etc. Most of these controllable cracks (except for operable doors) in typical controlled spaces are required to be permanently sealed. LeakageFlows Door Closed Room1 Room2 P2 P1 SA1 RA1+ EA1 SA2 RA2+ EA2 P1 > P2 Introduction Basic Rules P1 > P2 LeakageFlows DoorOpened Room1 Room2 P2 P1 SA1 RA1+ EA1 SA2 RA2+ EA2   ___________________________ ________  ___________________________ ________  ___________________________ ________  ___________________________ ________  ___________________________ ________  ___________________________ ________  ___________________________ ________ 

Transcript of pressure room

Page 1: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 1/15

Emerging Technologies in Room (Suite) Pressure Control,Performance Modeling and Design Practices

Wei Sun, P.E.ASHRAE

Principal, Director of Engineering

Engsysco, Inc.Ann Arbor, Michigan, USA

Emerging Technologies in Room (Suite)

Pressure Control, Performance

Modeling and Design Practices

Engsysco

Presented by

Wei Sun, P.E. ASHRAE

“Clean Spaces”Technical Committee (TC9.11) Chairman

“Healthcare Facilities” Technical Committee (TC9.6) Member 

“Laboratory Systems” Technical Committee (TC9.10) Member 

Principal, Director of Engineering

Engsysco, Inc.

 Ann Arbor, Michigan, USAwww.engsysco.com

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

PurposesDirect desired flow patternsIsolate airborne cross contamination

Definition A technique that air pressure differences are createdmechanically between rooms to introduce intentional air movement paths through room leakage openings. Theseopenings could be either designated, such as doorways, or undesignated, such as air gaps around doorframes or other duct/piping penetration cracks.

How to achieve

It can be achieved by arranging the controlled volumes of supply, return, and exhaust airstreams to each room within thespace.

Room Pressurization Technique

Introduction

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 Air connection bet ween two adjacent

rooms is through connecting opening(s).

If a door between two rooms is open, the

doorway will be the main designated flow

path.

If the door is closed, then the leakage will

be through undesignated paths, such as

air gaps along doorframes, joints, pipe

and duct penetrations and gaps around

ceiling panels etc. Most of these

controllable cracks (except for operable

doors) in typical controlled spaces are

required to be permanently sealed.

LeakageFlows

Door Closed

Room 1 Room 2

P2P1SA1

RA1 + EA1

SA2

RA2 + EA2

P1 > P2

Introduction

Basic Rules

P1 > P2

LeakageFlows

DoorOpened

Room 1 Room 2

P2P1SA1

RA1 + EA1

SA2

RA2 + EA2

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 2: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 2/15

Introduction

Basic Rules

To Achieve P1 > P2 ,

SA1 > (RA1+EA1), andSA2 < (RA2+EA2)

SA1 = (RA1+EA1) + Q

SA2 + Q = (RA2+EA2)

Q is the leakage (transfer) air 

from Room 1 to Room 2, if 

both rooms are tightly sealed,

except for the opening

between rooms.

Leakage FlowQ

Leakage Opening

Room 1 Room 2

P2P1SA1

RA1 +EA 1

SA2

RA2 + EA2

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

The pressure drop (differential)

across an opening (either a crack

or a doorway) is strongly related

with the leakage opening size(effective leakage area) and

leakage flow through the opening.

To quantitatively achieve a

desired room pressure(or,

pressure differential between

rooms), leakage openings and

respective leakage airflows need

to be studied together.

Introduction

Relationship between Leakage Flow, Leakage Area

and Pressure Dropacross Leakage Path

Leakage Flow

ΔP

QA

Leakage Area

Pressure Differential

Room 1 Room 2

P2P1SA1

RA1 +EA 1

SA2

RA2 +EA 2

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Power Equation: (Esq.. 1)

where

Q = volumetric flow rate CFM (L/s)

ΔP = pressure drop across opening in. of water (Pa)

C  = flow coefficient CFM/(in. of water  n) (L/s/Pan)

n = flow exponent dimensionless

nP C Q )(Δ⋅=

 Airflow through Leakage Opening

LeakageFlow

ΔP

QA

LeakageArea

Pressure Differential

Room 1 Room 2

P2P1 SA1

RA1 +EA 1

SA2

RA2 + EA2

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Orifice Equation: (Esq.. 2)

where

Q = volumetric flow rate CFM (L/s)

ΔP  = pressure drop across opening in. of water (Pa)

 A = large designated o pening area's) ft2 (m2)

26 10 = uni t c onv ersio n f ac to r dim ens ion le ss ( I- P unit )

84 0 = un it c onv ersi on f ac tor dim ens ion le ss (SI unit )

LeakageFlow

ΔP

Q

ALeakageArea

Pressure Differential

Room 1 Room 2

P2P1 SA1

RA1 +EA 1

SA2

RA2 + EA2

 Airflow through Large Designated Opening

P A2610Q Δ⋅⋅=

P A840Q Δ⋅⋅=

(I-P unit) 

(SI unit)

Orifice Equation is more popularly used in design community

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 3: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 3/15

 Air Leakage Rate vs. Pressure Difference for 

Various Leakage Areas (Based on Orifice Equation)

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

1,700

1,800

1,900

2,000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08

Pressure Differential Between Rooms (in.)

   L  e  a   k  a  g  e   F   l  o  w

  r  a   t  e   (  c   f  m   )

Leakage Area

(Sq. in.)

20

40

60

80

100

120

140

160

180

200220

240

260

280

300

320

340

360

380

400

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Large designated openings such as doorway can be easilymeasured. However irregular opening such as a crack can notbe measured physically, there is other means to estimate theequivalent size, or called “Effective Leakage Area” (ELA).

For Existing Rooms:

Field “Blower Door Test” (ASTM 1987, CGSB 1986) to obtainmore precious data.

For Future Rooms during design phase:

Use ASHRAE ELA tables for building components (doors,walls, joints, etc.) as estimated values.

Leakage Area Value Determination

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ASTM “Blower Door” Test,

- Traditional “Room Air-tightness Test”

Portable Pressurization Blower Test canproduce a set of data of Q - ∆P, and a“power equation”curve fit with calculatedconstants (C, n, ELA) that defines a room’sunique and dynamic leakage characteristic.

 Abnormal test ranges: ASTM (1987): 12.5 - 75 Pa

(0.05 - 0.30 in.)CGSB (1986): 5 - 50 Pa

(0.02 - 0.20 in.)

Labor intense, time consuming

Disruption to occupied spaces

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Power equation:

Once obtained Q - Δ

P data set, C and n can be calculated:

“Blower Door Test” - Multiple-Point TestData for Power Equation Curve Fitting

n )P ( C Q Δ⋅=

∑ ∑

∑∑ ∑

= =

== =

Δ⋅−Δ

Δ⋅⋅−Δ⋅

=m

1k 

m

1k 

2 k 

2 k 

m

1k 

k k 

m

1k 

m

1k 

k k 

 )P (lnm )P ln( 

 )P lnQ(lnm )P lnQln( 

n

⎟⎟⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜⎜⎜

⎝ 

⎛ Δ⋅−

=

∑∑==

m

P lnnQln

EXP C 

m

1k 

m

1k 

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 4: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 4/15

Opening Resistance Analysis

Q

Qi

P

P

P i

P

P i

Q

Leakage flow resistances connected in parallel and series

( )∑=

⎥⎦

⎤⎢⎣

⎡=

n

i i

 ELA

 ELA

12

1

1

∑=

=n

i

T i ELA ELA

1

 ELA R

1=

Define:Leakage Flow Resistance R

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Room Pressurization Scenarios and

Variable Relationship

Scennario 1: Room PrerssurizedSA - (EA+RA) =  ΔV = ΣQ > 0

Total Room

SupplyAirflow

(SA)

Total Room

Exhaustand/or 

ReturnAirflow

(EA+RA)

Room

Positively

Pressurized   +    T

  o   t  a   l   R  o  o  m

   S  u  p  p   l  y   A   i  r   f   l  o  w

    (   S   A   )

Offset

Flow

 ΔV

   T  o   t  a   l   R  o  o  m    E

  x   h  a  u  s   t

  a  n   d   /  o  r   R  e   t  u  r  n   A   i  r   f   l  o  w

   (   E   A   +   R   A   )

Total Leakage

Airflows

ΣQ

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Room Pressurization Scenarios and

Variable Relationship

Scennario 2: Room Non-PrerssurizedSA - (EA+RA) =  ΔV = ΣQ = 0

Total Room

SupplyAirflow

(SA)

Total Room

Exhaust and/or 

ReturnAirflow

(EA+RA)

Room

Non-Pressurized

   T  o   t  a   l   R  o  o  m    E

  x   h  a  u  s   t  a  n   d   /  o  r

   R  e   t  u  r  n   A   i  r   f   l  o  w

    (   E   A   +   R   A   )

Offset

Flow

 ΔV = 0

   T  o   t  a   l   R  o  o  m

   S  u  p  p   l  y   A   i  r   f   l  o  w

    (   S   A   )

Total Leakage

Airflows

ΣQ= 0

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Room Pressurization Scenarios and

Variable Relationship

Scennario 3: Room De-prerssurizedSA - (EA+RA) =  ΔV = ΣQ < 0

TotalRoom

SupplyAirflow

(SA)

TotalRoom

Exhaustand/or 

ReturnAirflow

(EA+RA)

Room

Negatively

De-pressurized-

   T  o   t  a   l   R  o  o  m

   S  u  p  p   l  y   A   i  r   f   l  o  w

    (   S   A   )

   T  o   t  a   l   R  o  o  m    E

  x   h  a  u  s   t  a  n   d   /  o  r   R  e   t  u  r  n

   A   i  r   f   l  o  w

    (   E   A   +   R   A   )

Offset

Flow

 ΔV

TotalLeakage

Airflows

ΣQ

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 5: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 5/15

Central Air Handling System &

Room PressurizationSA = Volume of total

supply air entering

the space/zone

RA = Volume of total

return air leaving the

space/zone

EA = Volume of total

exhaust air leaving

the space/zoneOA = Volume of outside air 

drawn into the AHU

FA = Volume of relief air 

released from return

air 

RA-FA = Volume of 

recalculated air 

Q = Vol um e o f total

leakage air through

space shell/zone

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Central Air Handling Unit &

Room Pressurization

Two volumetricbalance equations(Mass balance equation under 

assumption of same air density)

SA = RA + EA + Q(Volume balance for a space)

SA = OA + (RA – FA)(Volume balance for a typical AHU)

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Space Pressurization Ratio (R)

Define as the Ratio between SA and (RA+EA), as anindicator of pressurization scale:

By specifying SA values, R will be a function of Q. R

Value Chart is convenient for design engineers to

determine SA and (RA+EA) ratio during air distributionarrangement.

• Chart

QSASA

EARASAR  −=+=

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Pressurization Ratio vs. Air Leakage Rate

for Various Supply Air Rates

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 6: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 6/15

Space versus Room Pressurization Ratios

The relationship between the space pressurization ratioand its individual room pressurization ratios:

The space pressurization ratio, an indicator of relativepressurization level, can be used to adjust air gains or 

losses among zones in order to arrange desired air flows within a building.

( )∑

=

= ⎥⎦

⎤⎢⎣

⎡n

1i  i 

SASA

1 R 

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 Adjacent Rooms under Various Pressures

If a room has several leakage openings with adjacentrooms, the room’s pressurization ratio is:

∑=

−= n

i R 

R R 

QSA

SAR 

1

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Pressure Differential and Crack Air Velocity

Criterion 1 (Pressure Differential ΔP)For single room:

 ΔP: 0.05 in. of water (12.5 Pa)

For multiple-room space with staged pressurizations:

 ΔP: 0.02 in. ~ 0.03 in. (5 Pa ~ 7.5 Pa) for each pressure step

Criterion 2 (Average Crack Velocity V)100 fpm (30 M/m)

PressurizationCriterion

Unit Pressurization Criterion Comparison Basis

Pressure

Differential ΔP  

In 0.0015 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10

Crack LeakageVelocity V  

fpm 109 374 587 764 920 1,064 1,198 1,444 1,670 Eq. (1),when n=0.65

Large OpeningVelocity V  

fpm 100 261 369 452 522 584 639 738 825 Eq. (2a)

From comparison below, the pressure criterion of  ΔP = 0.05 in. is much more

conservative than the velocity criterion of V = 100 fpm.

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Room Pressurization Variables and

Control Strategies

 Airflow differential between enteringairflow (supply airflow,

SA) and leaving airflow (exhaust and/or return airflows,

EA+RA), normally called “offset” value ( Δ

V), which equals thetotal leakage airflow (ΣQ) of the room.

To maintain a specific room pressure value, the room’s offset

airflow ( ΔV) must be controlled and maintained at theappropriate value.

Room’s offset airflow can be controlled directly or indirectly.The treatment of the room “offset” value defines a

pressurization control strategy. Typical pressurization controltechniques are: Direct Pressure-Differential Control ,

Differential Flow Tracking Control , Hybrid Control and

 Adaptive Control .

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 7: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 7/15

Direct Pressure-Differential Control (DP)Utilizes a pressure differential sensor to measure the pressure difference

between a controlled room and an adjacent space such as a corridor. It basically

ignores the specific offset value as required, instead, it directly controls the

airflow control devices to achieve the required pressure differential.

Suitable for a tightly constructed room with limited traffics.

Door switch is recommended to trigger a reduced pressure differential set-

point if the door opens.

Fume

Hood

Velocity

Sensor 

Sash

Sensor 

or 

Hood

Valve&

Controller 

CHEMICAL

LAB

CORRIDOR

ROOM

CONTROLLER

SUPPLY

AIR

Total Exhaust

AirfromRoomHood

Exhaust

Hood

Exhaust

Room

Exhaust

Valve

Room

Supply

Valve

DS

Door 

Switch

T

Leakage

Air 

Leakage

Air 

Total Supply

Airto Room

DPDP

Sensor 

Thermostat

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Differential Flow Tracking Control (DF)

Intuitively assumes an offset value which is used as a flow difference

between the entering and leaving airflows to control their respective

airflow devices. Maintain the same offset value throughout the operation

to keep pressurization constant, or maintain a constant percentage offset

value which creates a weaker pressurization at lower flow.

Suitable for open-style rooms or rooms with frequent traffics

Fume

Hood

Velocity

Sensor 

Sash

Sensor 

or 

Hood

Valve &

Controller 

CHEMICAL

LAB

CORRIDOR

ROOM

CONTROLLER

SUPPLY

AIR

Total Exhaust

AirfromRoomHood

Exhaust

Hood

Exhaust

RoomExhaust

Valve

Room

Supply

Valve

DS

Door 

Switch

T

Leakage

Air 

Leakage

Air 

Flow

Sensor Flow

Sensor 

Total Supply

Airto RoomDPDP

Monitor 

Thermostat

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Hybrid Control (DP+DF)

Combines the pressure accuracy of the direct pressure differential control

and the stability of the flow tracking control. The offset value is reset-able

based on pressure differential reading. The offset value reset schedule is

pre-determined and controller’s parameters are fixed manually in field.

This method is also called “cascaded”control.

Suitable for open-style rooms or rooms with frequent traffics

Fume

Hood

Velocity

Sensor 

Sash

Sensor 

or 

Hood

Valve &

Controller 

CHEMICAL

LAB

CORRIDOR

ROOM

CONTROLLER

SUPPLYAIR

Total ExhaustAirfromRoomHood

Exhaust

Hood

Exhaust

Room

Exhaust

Valve

RoomSupply

Valve

DS

Door 

Switch

T

Leakage

Air 

Flow

Sensor Flow

Sensor 

Total Supply

Airto Room

DPDP

Sensor 

Leakage

Air 

Thermostat

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Multiple-Room (Suite)

Pressure Control Strategies

Single room control technologiesoften cause problems in Suite

Pressure Control during air balancing, since the followingphenomena are often ignored:

 Adjusting one room’s offsetvalue will impact adjacentrooms’ air pressures if theywere just balanced earlier.

Example -Pharmaceutical Aseptic Suite

One room’s air gain could beanother room’s air lossthrough leakages.

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 8: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 8/15

 Adaptive Control (DP+DF+AD)

The three traditional methods (DP, DF and DP+DF) areeither to “ignore”, “assume” or “manually fix in field” the

offset value respectively.

The adaptive (DP+DF+AD) approach directly accounts for leakage flows between the rooms in a suite. It controls allrooms’ pressures all together as an optimized system,

instead of controlling each room pressure independently. Itactively adjusts the flow offset of each room according to an

on-line pressurization model. The model uses flow and

pressure differential measurements to estimate the leakagevalues between the rooms and adjust flow offset of eachroom automatically.

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 Automated Room Air-tightness Test –

Pre-condition for Truly Adaptive Control

Similarly as “Blower Door Test”, but fully automated.

 A room’s unique d ynamicleakage characterization canalso be automatically achievedby digital controller, precision

pressure differential sensor (±0.001 in./0.25 Pa) andairflow control devices (±5%).

These devices are oftenpermanently installed in laband clean room environments.

This automated pressurizationtest (Q-∆P data set)is faster and cheaper, and can behandled remotely.

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 Adaptive Control (Example: Control of Multiple Rooms)

CLEANESTROOM

0.08In.

CLEANER

ROOM

0.06 In.

AIRLOCK

0.03In.GENERAL

CHEMICAL LAB

-0.02 In.

CONTAINMENT

LAB

- 0.06In.

Designated

LeakageFlow

Supply

Air Valve

Exhaust

Air Valve

Return

Air Valve

MinorLeaks

Thru. Cracks

CORRIDOR

0.00In.

DP

DPDPDP

DPDP

Pressure

Differential

Sensor 

Manifolded or 

OpentoCorridor 

DS

DSDS

DS

DS

DS

Legend

SUITE

CONTROLLER

DoorSwitch

SUITE

CONTROLLER

ValvePosition

Outputs

Door 

Switch

Inputs

Valve

Flowrate

Inputs

Room Pressure

Inputs

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 Air Flows between Rooms

Airflow Between Rooms

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 9: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 9/15

Personnel Flows between Rooms

Personnel Flow Between Rooms

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

More Considerations

Correction Factors

(Refer to ASHRAE Handbooks 1999 &

2001, detailed procedures will be included in

the next phase of the study)

Stack effect

Wind effect

Interior zones with hightemperature or humiditydifferences

Safety Factors

(Detailed procedures will be included in thenext phase of the study)

Room background leaks

Duct leaks

 AHU unit leak

Correction and Safety Factors – Add as required

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Samples of Pressurization Control Devices

Flow Control & Measure Pressure Measure

Static Pressure

Measuring Probes

Static Pressure

Measuring Probes

Pressure

Transmitter 

PressureTransmitter 

Pressure

Transmitter 

and Monitor 

Pressure

Transmitter 

and Monitor 

Control

Damper 

Control

Damper Air Valve –Type 1

Air Valve –Type 1

Air Valve –

Type 2

Air Valve –Type 2

Air Valve -

Type 3

Air Valve -

Type 3

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Case Study - Airflow Resistance and

Leakage Flow Simulation

- Room Numbe - Wall - Flow Direction - Induced Flow (by Pressurization)

- N o de ( R oo m) - F low R es ist a nc e @ Majo r Op en ing - F lo w R e sist a nc e @ Mino r Op en in g - F or c ed Flow ( by F an )

N et wo rk Fl o w w it h M aj or Op en in gs O nl y N et wo rk Fl ow wi th Ma jo r a nd M i no r O pe ni ng s

RMX

RM1RM2

RM3

RM4 RM5

RM6

RM1RM2

RM3

RM4 RM5

RM6

Major and minor leakage openings, connection in paralleland series

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 10: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 10/15

Modeling of Transient Pressurization

L

W

Room 1

Room 2

P1

P2

Wall

SwingDoor 

P

Transient Flow ThroughSwingDoor 

P1 > P2

1. Pressurization Loss Characteristic During a SwingDoor Opening or Closing

⎟ ⎠

 ⎞⎜⎝ 

⎛  ⋅⋅⋅⋅=⋅=

2sin2

)()(

t W  H  L H  A

t t 

ω 

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ ⋅⋅=

2sin2

)(

)(

t W  L

θ 

)600( o≤≤ θ 

W  H  At 

⋅=)(

)9060( o≤< θ 

where,

L=width (gap) of door openingin. (cm)

W=width of door in. (cm)

θ =angle of door opening degree

ω =speed of door turning degree/sec.t=time sec.

H=door height in. (cm)

 A=effective door opening width (gap) in2 (cm2  )

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Modeling of Transient Pressurization

Transient Pressure DifferentialAcros s When ASwing Door Opens

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3

Time of Door Opening(Second)

   P  r  e  s  s  u  r  e   D   i   f   f  e  r  e  n   t   i  a   l   A  c  r  o  s  s   D  o  o  r   (   P  a   )

10 

20 

30 

40 

50 

60 

0 1 0 20 30 40 50 60 70 80 9 0  

 Angle of S wing Door Opening (D egree)

   W   i   d   t   h   (   G  a  p   )  o   f   D  o  o  r   O  p  e  n   i  n  g   (   i  n .   )

PressureDropAcross Door 

Widthof Door Opening Automatic SwingDoor Opens to 90o in 3Seconds;Door Size4 ft. (W) x7ft.(H).

Rooms Across The Door/WallAreMaintained withConstantSupplyandReturn Flows.InitialPressureDifferentialAcross Door is 68.9Pa,it drops to1 Pa less than 2seconds.

1. Pressurization Loss Characteristic During a SwingDoor Opening or Closing

Airlock Room Pressure Profile

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

Airlock Sliding Door Operation Cycle

   R  o  o  m   S   t  a   t   i  c   P  r  e  s  s  u  r  e   (   i  n .   W   C   )

Firs t DoorOpening First DoorClos ing Bot h Doors Clos ed S e condDoor Ope ning S e c ond Door Clos ing

Cleanroom

Airlock

Corridor 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Modeling of Transient Pressurization

L

W

P

Transient Flow Through SlidingDoor 

P1 > P2

Wall

Room 1P1

Sliding Door 

Room 2P2

2. Pressurization Loss Characteristic During a SlidingDoor Opening or Closing

where,

L=width (gap) of door openingin. (cm)

W=width of door in. (cm)

t=time sec.

s=speed of door opening in./sec. (cm/sec.)

H=door height in. (cm)

 A=effective door opening width (gap) in2(cm2)

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Modeling of Transient Pressurization

Transient Pressure Differential Across WhenA SlidingDoor Opens

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3

Timeof DoorOpening (Second)

   P  r  e  s  s  u  r  e   D   i   f   f  e  r  e  n   t   i  a   l   A  c  r  o  s  s   D  o  o  r   (   P  a   )

10 

20 

30 

40 

50 

60 

   W   i   d   t   h   (   G  a  p   )  o   f   D  o  o  r   O  p  e  n   i  n  g   (   i  n .   )

Pressure Drop Across Door 

Width of Door Opening

 Automatic SlidingDoor Opens atSpeedof 16in./sec.; Door Size4 ft.(W) x 7 ft. (H);

Rooms AcrossThe Door/WallAreMaintainedwithConstantSupply and ReturnFlows,

InitialPressure DifferentialAcross Door is68.9Pa, itdrops to1Paaround2 seconds.

2. Pressurization Loss Characteristic During a SlidingDoor Opening or Closing

PressureDifferentialsBetweenRooms

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

AirlockSliding DoorOperationCycle

   P  r  e  s  s  u  r  e   D   i   f   f  e  r  e  n   t   i  a   l   b  e   t  w  e  e  n   R  o  o  m  s   (   i  n .   W   C   )

Firs t DoorOpe ning Firs t DoorClos ing Bot hDoors Clos ed S e c ondDoorOpe ning S e c ondDoorClosing

DP

(Cleanroom andCorridor)

DP (Door1) DP (Door2)

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 11: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 11/15

Door Opening Transient Impact onPressurization Control

 Any passive motor-driven or actuator-driven HVAC

system (such VAV box or valve) will not have enoughtime to react effectively to prevent possible cross

contamination.

 A single barrier door could cause a short duration of backflow contamination until the motor or actuator 

completes the modulation cycle of re-balancing,additional means to prevent possible backflow

contamination, such as double-door airlock is necessary.

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Dynamic Pressurization Control Strategies

- Airlock

CLEANROOM

AIRLOCK

+CORRIDOR

++

+++

AIRFLOW

CASCADING AIRLOCK

AIRFLOW CLEANROOM

AIRLOCK

+CORRIDOR

++

-

AIRFLOW

BUBBLEAIRLOCK

AIRFLOW

CLEANROOM

AIRLOCK

+CORRIDOR

- -

-

AIRFLOW

SINK AIRLOCK

AIRFLOWCLEANROOM

AIRLOCK

-CORRIDOR

++

-

AIRFLOW

AIRFLOW

- -AIRLOCK

DUAL COMPARTMENT AIRLOCK

 Air Lock Type

Cascading

Bubble

SinkDual-

Compartment

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Dynamic Pressurization Control Strategies- Airlock

Wait!Wait!

Corridor 

Cleanroom

Airlock (Cascading)

ΔPDo o r1

ΔPDoor 2

ΔPRooms

0.06 in.

0.03 in.

0.00 in.

-6 -3 0 3 6

-6 -3 0 3 6

-6

-3036

Airlock Physical Model Network Flow Simulation

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Result of Network Flow Simulation

Wait!

Corridor 

Clean room

Airlock (Cascading)

ΔPDoor1

ΔPDoor2

ΔPRooms

0.06 in.

0.03 in.

0.00 in.

-6-3 0 3 6

- 6 - 3 0 3 6

-6-3

0

3

6

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 12: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 12/15

CFD Model to Study Airlock Transient

Performance - Physical Conditions

(12000 CFM, 75 ACH)

(2100 CFM, 75 ACH)

(560 CFM, 10ACH)

11948 CFM

2078 CFM

Leakage 52 CFM

Leakage 73CFM

Clean Room: 10000

Airlock:10,000

Corridor: 100000

(12000 CFM, 75 ACH)

(2100 CFM, 75 ACH)

(560 CFM, 10ACH)

Leakage 52 CFM

Leakage 73CFM11948 CFM

2078 CFM

Clean Room: 10000

Airlock:10,000

Corridor: 100000

Case 1 –Class 10,000 Case 2 –Class 100

(48000CFM,300ACH)8400 CFM, 300ACH)

560(CFM,10ACH)

Leakage 52CFM

Leakage 73CFM

47948CFM8378CFM

CleanRoom:100Airlock:100

Corridor:100000

(48000CFM,300ACH)8400 CFM, 300ACH)

560(CFM,10ACH)

Leakage 52CFM

Leakage 73CFM

47948CFM8378CFM

CleanRoom:100Airlock:100

Corridor:100000

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Steady State Airflow Distribution

Case 1 –Class 10,000 Case 2 –Class 100

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Steady State Cleanroom Particle

Concentration

Case 1 –Class 10,000 Case 2 –Class 100

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Corridor Particles Enter Airlock Room

Case 1 –Class 10,000 Case 2 –Class 100

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 13: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 13/15

 Airlock Particles Enter Clean Room and

Corridor 

Case 1 –Class 10,000 Case 2 –Class 100

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 Airlock Particles Enter Clean Room and

Corridor 

Case 1 –Class 10,000 Case 2 –Class 100

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Variation of Corridor Particle Concentration

Case 1 –Class 10,000 Case 2 –Class 100

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 Airlock Door Transient Performance

Profileof PressureDifferentialAcrossDoor 

When Door IsOpening & Closing(Initial Condition:-15 Pa= -0.06In.)

-20

-15

-10

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 1 0 11 1 2 13 1 4 15 1 6

Time (Sec.)

     P  r  e  s  s  u  r  e   D   i     f     f   e  r  e  n   t      i   a    l     A  c  r  o  s  s   D  o  o  r   (   P  a   )

Test 1

Test 2

Test 3

 Average

D o o r O p e n in g D o o r C l o s in g

 

Profileof Pressure DifferentialAcrossDoor 

WhenDoorIsOpening& Closing(Initial Condition: 5Pa= 0.02 In.)

-20

-15

-10

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 1 0 11 1 2 13 1 4 15 1 6

Time (Sec.)

     P  r  e  s  s  u  r  e   D   i     f     f   e  r  e  n   t      i   a    l     A  c  r  o  s  s   D  o  o  r    (     P  a   )

Test 1

Test 2

Test 3

 Average

Door Openin g D o or C l os i ng

 Profileof PressureDifferentialAcrossDoor 

WhenDoor IsOpening& Closing(Initial Condition:-10 Pa= -0.04In.)

-20

-15

-10

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 1 0 11 1 2 13 1 4 15 1 6

Time (Sec.)

     P  r  e  s  s  u  r  e   D   i     f     f   e  r  e  n   t      i   a    l     A  c  r  o  s  s   D  o  o  r    (     P  a   )

Test 1

Test 2

Test 3

 Average

D o o r O p e n in g D o o r C l o s in g

 

Profileof PressureDifferentialAcross Door 

When DoorIs Opening & Closing(Initial Condition: 10Pa= 0.04 In.)

-20

-15

-10

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 1 0 11 1 2 13 1 4 15 1 6

Time (Sec.)

     P  r  e  s  s  u  r  e   D   i     f     f   e  r  e  n   t      i   a    l     A  c  r  o  s  s   D  o  o  r    (     P  a   )

T e s t 1

T e s t 2

T e s t 3

 AverageD o o r O pe n i n g D o o r Cl o s i ng

 ProfileofPressureDifferentialAcrossDoor 

When Door IsOpening & Closing(Initial Condition:-5 Pa= -0.02 In.)

-20

-15

-10

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 1 1 12 1 3 14 1 5 16

Time (Sec.)

     P  r  e  s  s  u  r  e   D   i     f     f   e  r  e  n   t      i   a    l     A  c  r  o  s  s   D  o  o  r   (   P  a   )

T e s t 1

T e s t 2

T e s t 3

 Average

Door O p e n i ng D o o r C lo s i n g

 

Profileof Pressure DifferentialAcrossDoor 

When DoorIsOpening & Closing(Initial Condition:15 Pa =0.06In.)

-20

-15

-10

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 1 0 11 1 2 13 1 4 15 1 6

Time(Sec.)

     P  r  e  s  s  u  r  e   D   i     f     f   e  r  e  n   t      i   a    l     A  c  r  o  s  s   D  o  o  r   (   P  a   )

Test 1

Test 2

Test 3

verage

D o o r O p e n i n g D o o r C lo s i n g

 ProfileofPressureDifferentialAcrossDoor 

When Door IsOpening & Closing(Initial Condition:0Pa=0 In.)

-20

-15

-10

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 1 1 12 1 3 14 1 5 16

Time(Sec.)

     P  r  e  s  s  u  r  e   D   i     f     f   e  r  e  n   t      i   a    l     A  c  r  o  s  s   D  o  o  r   (   P  a   )

T e s t 1

T e s t 2

T e s t 3

 Average

Door O p e n i ng D o o r C lo s i n g

 

Profile of PressureDifferentialAcross Door 

WhenDoorIsOpening& Closing(Initial Condition:20 Pa =0.08In.)

-20

-15

-10

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 1 1 12 1 3 14 1 5 16

Time (Sec.)

     P  r  e  s  s  u  r  e   D   i     f     f   e  r  e  n   t      i   a    l     A  c  r  o  s  s   D  o  o  r    (     P  a   )

Test 1

Test 2

Test 3

 Average

D o o r O p e ni n g D o o r C l o s in g

 

Pressure Differential Across Cleanroom Door During Walk-Through

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 14: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 14/15

Contamination Risk Factor (CRF)

CRF is a criterion which is to quantity the effectiveness of cleanroom particle

containment in preventing the airborne particles migration into cleanroom.

CRF = PC / PO

CRF = Contamination Risk Factor 

PC = Number of Particles inside Protected Cleanroom Near Door 

PO = Number of Particles at Corridor Entrance Near Door 

This criterion is applied for a “Barrier Device” which is to minimize particle

migration. This barrier could be single door, an airlock (two doors in series),

mini environment, or glove box.

The lower of the CRF level, the better barrier’s performance, or the better de-

contamination effectiveness. This expression can not only apply for airborne

particle, but also for airborne microorganism egress, in which the particle

counts will be replaced with Colony Forming Unit (CFU).

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Particle Concentrations & CRF Across Cleanroom

Door Under Various Pressure DifferentialsAirborne Particle ContaminationRisk Factor (CRF)

Under VariousPressure DifferentialsAcross Cleanroom Door (Note: 5 Pa=0.02In.,Particle Measured @ 0.5µm)

0%

5%

10%

15%

20%

25%

-15 -10 -5 0 5 10 15 20

Initial PressureDifferentialAcrossDoor(Pa)

   C  o  n   t  a  m

   i  n  a   t   i  o  n   R   i  s   k   F  a  c   t  o  r   (   C   R   F ,

   %   )

Door Opening& ClosingW/O People Traffic

APersonWalks Through Door 

ParticleConcentrationsAcrossCleanroom Door When DoorisOpening &Closing

(Initial Condition:Depressurization @ -15 Pa= -0.06In.)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 14 1 5 1 6 17 1 8 1 9 20 2 1 2 2

Time (Sec.)

   P  a  r   t   i  c   l  e   C  o  n  c  e  n   t  r  a   t   i  o  n  s   A  c  r  o  s  s   D  o  o  r

   (   C  o  u  n   t  s   /   F   T

   3   )

Ins ideCleanroom DoorAverage Outs ide CleanroomDoorAverage

Door Opening

Door Closing

CRF= 18.9%

 

Particle Concentrations Across CleanroomDoor WhenDoor is Opening & Closing

(Initial Condition:Pressurization @ 5 Pa=0.02 In.)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

0 1 2 3 4 5 6 7 8 9 1 0 11 1 2 1 3 14 1 5 1 6 17 1 8 1 9 20 2 1 2 2

Time (Sec.)

   P  a  r   t   i  c   l  e   C  o  n  c  e  n   t  r  a   t   i  o  n  s   A  c  r  o  s  s   D  o  o  r

   (   C  o  u  n   t  s   /   F   T   3   )

InsideCleanroomDoorAverage Outside Cleanroom Door  Average

Door Opening

Door Closing

CRF

= 2.2%

ParticleConcentrationsAcrossCleanroomDoor When Door isOpening & Closing

(Initial Condition: Depressurization @ -10 Pa = -0.04In. )

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 14 1 5 1 6 17 1 8 1 9 20 2 1 2 2

Time (Sec.)

   P  a  r   t   i  c   l  e   C  o  n  c  e  n   t  r  a   t   i  o  n

  s   A  c  r  o  s  s   D  o  o  r

   (   C  o  u  n   t  s   /   F

   T   3   )

Ins id e C l e an r o o m e r a g eD o or A v O u ts i de C leanroom DoorAverage

Door 

Opening

Door 

Closing

CRF

= 8.5%

 

ParticleConcentrationsAcrossCleanroom Door When Door isOpening & Closing

(Initial Condition:Pressurization @ 10Pa= 0.04In. )

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 14 1 5 1 6 17 1 8 1 9 20 2 1 2 2

Time (Sec.)

   P  a  r   t   i  c   l  e   C  o  n  c  e  n   t  r  a   t   i  o  n

  s   A  c  r  o  s  s   D  o  o  r

   (   C  o  u  n   t  s   /   F

   T   3   )

InsideCle an r ag er o om D o or A v e O u tside Cleanroom DoorAver age

Door Opening

Door Closing

CRF

= 0.7%

 ParticleConcentrationsAcrossCleanroom Door 

When Door isOpening & Closing(Initial Condition:Depressurization @ -5Pa =-0.02In. )

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 14 1 5 1 6 17 1 8 1 9 20 2 1 2 2

Time (Sec.)

   P  a  r   t   i  c   l  e   C  o  n  c  e  n   t  r  a   t   i  o  n  s   A  c  r  o  s  s   D  o  o  r

   (   C  o  u  n   t  s   /   F   T

   3   )

Ins ide CleanroomDoorAverage Outs ide Cleanroom DoorAverage

Door 

Opening

Door 

Closing

CRF

=6.9%

ParticleConcentrationsAcrossCleanroom Door When DoorisOpening &Closing

(Initial Condition: Pressurization@ 15Pa = 0.06 In. )

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 14 1 5 1 6 17 1 8 1 9 20 2 1 2 2

Time (Sec.)

   P  a  r   t   i  c   l  e   C  o  n  c  e  n   t  r  a   t   i  o  n  s   A  c  r  o  s  s   D  o  o  r

   (   C  o  u  n   t  s   /   F   T

   3   )

Ins ide CleanroomD o o r A ve r a g e O u ts ide CleanroomDoorAverage

Door Opening

Door Closing

CRF

= 0.8%

 

AirborneParticle Contamination RiskFactor(CRF)

UnderVarious PressureDifferentials Across CleanroomDoor (Note: 5 Pa= 0.02In.,[email protected]µm)

Particle Concentrations Across Cleanroom Door 

When DoorisOpening &Closing(Initial Condition: Neutral @ 0Pa=0In. )

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

0 1 2 3 4 5 6 7 8 9 1 0 1 1 12 1 3 1 4 15 1 6 1 7 18 1 9 2 0 21 2 2

Time (Sec.)

   P  a  r   t   i  c   l  e   C  o  n  c  e  n   t  r  a   t   i  o  n  s   A  c  r  o  s  s   D  o  o  r

   (   C  o  u  n   t  s   /   F   T

   3   )

Ins ideCleanroomDoorAverage Outs ide Cleanroom Door Average

Door 

Opening

Door 

Closing

CRF=4.2%

 

ParticleConcentrationsAcrossCleanroom Door When Door isOpening &Closing

(Initial Condition:Pressurization@ 20 Pa= 0.08In.)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

0 1 2 3 4 5 6 7 8 9 1 0 1 3 1 4 15 1 6 1 7 18 1 9 2 0 21 2 2

Time (Sec.)

   P  a  r   t   i  c   l  e   C  o  n  c  e  n   t  r  a   t   i  o  n  s   A  c  r  o  s  s   D  o  o  r

   (   C  o  u  n   t  s   /   F   T

   3   )

1112

Ins ideCleanroom Door  Average Outs ideCleanroom DoorAverage

Door 

Opening

Door 

Closing

CRF

= 0.3%

 

RegressionCurve:

CRF= 0.0332e-0.1181*PD

R2

= 0.9656

(No PeopleTraffic)

RegressionCurve:

CRF= 0.0418e-0.0703*PD

R2

= 0.9129

(With PeopleTraffic)

0%

5%

10%

15%

20%

25%

-15 -10 -5 0 5 10 15 20

Initial PressureDifferential AcrossDoor(Pa)

   C  o  n   t  a  m   i  n  a   t   i  o  n   R   i  s   k   F  a  c   t  o  r   (   C   R   F ,

   %   )

DoorOpening&ClosingW/OPeopleTraffic

 APerson Walks ThroughDoor 

Regression(DoorOpening&Closing W/O PeopleTraffic)

Regression(APersonWalksThrough Door)

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Dynamic Pressurization Control Strategies

 – Adjustable Pressure Stabilizer 

 A leakage regulato r,controllable pressure relief damper across a wall tomaintain a minimumrequired pressurization.

When a door is normallyclosed, this damper shouldstay open and maintainnormal pressure differential;when the door opens, thedamper shall beautomatically closed either by spring-loaded or counter-weight gravity damper, andmaintain a lower whileacceptable pressuredifferential.

Pressure

Stabilizer 

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Importance

 Air-handling unit control

Lab HVAC control

Prefabricated clean room

Precision environmental test chamber 

Smoke management control

 Air distribution system

In addition to design engineers and researchscientists, the information presented may alsobenefit manufacturers in the fields of:

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Page 15: pressure room

7/30/2019 pressure room

http://slidepdf.com/reader/full/pressure-room 15/15

Pressurization Study

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________  ___________________________________ 

 ___________________________________ 

 ___________________________________ 

Q & A

 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________ 

 ___________________________________