Present Ac i on Cap i Tulo 2 Angeles

download Present Ac i on Cap i Tulo 2 Angeles

of 122

Transcript of Present Ac i on Cap i Tulo 2 Angeles

  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    1/122

    Fundamentals of Robotic MechanicalSystems

    Chapter 2: Mathematical Background

    Jorge Angeles

    Department of Mechanical Engineering &Centre for Intelligent Machines

    McGill University

    2009

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 1 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    2/122

    Outline

    1 Preambule

    2 Linear Transformations

    3 Rigid-Body RotationsThe Cross-Product Matrix

    The Rotation MatrixThe Linear Invariants of a 3 3 MatrixLinear Invariants of a RotationExamplesEuler-Rodrigues Parameters

    4 Composition of Reections and Rotations

    5 Coordinate Transformations and Homogeneous Coordinates

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 2 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    3/122

    Preamble

    Links are regarded as rigid bodies

    General motion : rotation and translation

    Invariant concepts : items that do not change upon a change of coordinate

    frameExamples : distances between points and angles between lines

    Vectors vs. components

    Tensors vs. matricesWe will use matrix whenever we mean tensor .

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 3 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    4/122

    Linear Transformations

    Vector space : Set of objects called vectorsthat follow certain algebraic rules

    The physical 3-dimensional space is a particular case of a vector space

    vectors : in boldface lower case

    tensors and matrices : in boldface upper case

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 4 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    5/122

    Algebraic Rules for Vectors

    Let v , v1, v2, v3 and w be elements of a vector space V over the real eldwhile and are real numbers :(i) v 1 + v 2 = v2 + v 1

    (ii ) v + 0 = v where 0 : the zero vector

    (iii ) v 1 + ( v 2 + v 3) = ( v 1 + v 2) + v 3(iv) v + w = 0 w = v(v) ( v ) = ( )v

    (vi) = 1 v = v(vii ) ( + )v = v + v

    (v 1 + v 2 ) = v 1 + v 2

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 5 / 122

    http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    6/122

    Linear Transformations (Contd)

    L : linear transformation operator over the real eld

    v = Lu

    Properties of linear transformations :(i) homogeneity : L(u ) = v

    (ii ) additivity : L(u 1 + u 2) = v1 + v 2

    Range of L : v = Lu for every u in U Kernel of L : u N of U mapped by L into 0 V Examples of transformations in 3-dimensional Euclidean space E 3 :projections, reections, rotations, afne transformations

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 6 / 122

    http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    7/122

    Linear Transformations (Contd)Orthogonal projection P of E 3 onto itself : linear transformation of E 3 onto aplane passing through the origin with unit normal n . Properties :

    P 2 = P : idempotent ; Pn = 0 : singular (2.1a)The projection p of p onto a plane of unit vector n :

    F IG .: Projection.

    p = p n (n T p ) = ( 1 nn T )p = Pp (2.1b)P = 1

    nn T (2.4)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 7 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    8/122

    Linear Transformations (Contd)

    Reection R of E 3 onto a plane passing through the origin with a unitnormal n :

    F IG .: reection.

    p = p

    2nn T p

    (1

    2nn T )p = Rp

    R = 1 2nn T (2.5)

    Properties of reections : R 2 = 1, R 1 = R

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 8 / 122

    http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    9/122

    Linear Transformations (Contd)

    Orthogonal decompositionv = v + v

    axial component (v-par) :v

    ee T v (2.6a)

    normal component (v-perp)v v v (1 ee T )v (2.6b)

    Vector space

    Basis of a vector space V : set of linearly independent vectors {v i }n1 where nis the dimension of V v = 1v 1 + 2v 2 + + n v n (2.7)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 9 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    10/122

    Linear Transformations (Contd)

    A linear transformation of U into V with bases BU = {u j }m1 and

    BV =

    {v i

    }n

    1 :

    Lu j = l1 j v 1 + l2 j v 2 + + lnj v n j = 1 , . . . , m

    [L ]BVBU

    l11 l12

    l1m

    l21 l22 l2m... ... . . . ...ln 1 ln 2 lnm

    (2.10)

    DenitionThe j th column of L with respect to BU and BV is composed of the n realcoefcients lij of the representation of the image of the j th vector of B U interms of BV .

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 10 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    11/122

    Linear Transformations (Contd)

    If Le = e ,

    then e : eigenvector of L ,

    : eigenvalue of L

    Characteristic polynomial of L :

    det( 1 L ) = 0 (2.11)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 11 / 122

    http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    12/122

    Example

    ExampleWhat is the representation of the reection R of E 3 into itself, with respect tothe x-y plane, in terms of unit vectors parallel to the X, Y, Z axes that formthe coordinate frame F ?

    Ri = i, Rj = j, Rk =

    k

    [Ri ]F =100

    , [Rj ]F =010

    , [Rk ]F =00

    1

    [R ]F =

    1 0 0

    0 1 00 0 1

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 12 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    13/122

    Rigid-Body Rotations

    Linear isomorphism : one-to-one linear transformation mapping space V ontoitself Isometry : distance between any two points is preserved :

    d

    (u

    v )T (u

    v ) (2.12)

    where u and v are position vectors of two points.

    Volume of tetrahedron formed by triad {u , v , w}:V 16 |u v w | = 16 det u v w (2.13)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 13 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    14/122

    Rigid-Body Rotations (Contd)

    Magnitudes of vectors {u , v , w}:u u T u , v v T v , w w T w (2.14)

    Under isotropy mapping {u , v , w}into {u , v , w }:u = u , v = v , w = w (2.15a)

    det[u v w ] = det[u v w ] (2.15b)If + , then rotation ; otherwise, reection

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 14 / 122

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    15/122

    Rigid-Body Rotations ( Contd )

    A position vector p of a point in E 3 undergoes a rotation Q :p = Qp , p T p = p T p

    Q T Q = 1 and Q is an orthogonal matrix .

    Moreover, for T

    [u v w ] and T

    [u v w ],

    T = QT (2.20)

    det(T ) = det( T ) (2.21a)

    det( Q ) = +1 (2.21b)

    Q is a proper orthogonal matrix.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 15 / 122

    http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    16/122

    Rigid-Body Rotations ( Contd )

    TheoremThe eigenvalues of a proper orthogonal matrix Q lie on the unit circlecentered at the origin of the complex plane.

    Proof :Qe = e , eQ = e

    : eigenvalue of Q , e : eigenvector of Q : complex conjugate of , e : complex conjugate of e

    For real Q : Q = Q T , e = eT

    e T QQe = e T e eT Q T Qe = e T e (2.25)Q is orthogonal eT e = | |2 e T e | |2= 1 (2.27)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 16 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    17/122

    Rigid-Body Rotations ( Contd )

    Corollary

    A proper orthogonal 3 3 matrix has at least one eigenvalue that is +1 .

    Qe = e (2.28)

    Theorem(Euler, 1776)

    A rigid-body motion about a point O leaves xed a set of points lying on aline Lthat passes through O and is parallel to eigenvector e of Q associated with the eigenvalue +1 .

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 17 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    18/122

    Rigid-Body Rotations ( Contd )

    Theorem(Cayley-Hamilton) If P () is the characteristic polynomial of n n matrixA , i.e.,

    P () = det( 1 A )=

    n

    + an 1n

    1

    + + a1 + a0 (2.29)then,A n + an 1A

    n 1 + + a1A + a01 = O (2.30)O : n n zero matrixAny power p n of the n n matrix A can be expressed as linearcombination of the rst n powers of A :

    1 , A , , A n 1 where 1 = A 0

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 18 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    19/122

    The Cross-Product Matrix

    If u = u (t ) U and v = v (u (t )) V are m- and n-dimensional vectors,respectively, while t is a real variable, and f = f (u , v ) is a real-valuedfunction, then

    u (t) =

    u1(t)u2(t)

    ...um (t)

    , v (t) =

    v1(t)v2(t)

    ...vn (t)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 19 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    20/122

    Cross-Product Matrix ( Contd )

    f u

    f/u 1

    f/u 2...f/u m

    , f v

    f/v 1

    f/v 2...f/v n

    (2.31)

    v u

    v1 /u 1 v1 /u 2 v1 /u mv2 /u 1 v2 /u 2 v2 /u m... ... . . . ...vn /u 1 vn /u 2 vn /u m

    (2.32)

    df du

    = f u

    + v u

    T f v

    (2.33)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 20 / 122

    d ( )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    21/122

    Cross-Product Matrix ( Contd )

    If f = f (u , v , t ) and v = v (u , t ), then

    df dt

    = f

    t +

    f u

    T dudt

    +f v

    T vt

    + f v

    T v u

    dudt

    (2.34)

    and

    dvdt =

    vt +

    v u

    dudt (2.35)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 21 / 122

    E l

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    22/122

    Example

    Example

    Let the components of v and x in certain reference frame F be given as[v ]F =

    v1v2v3

    , [x ]F =x1x2x3

    (2.36a)

    what are the components of [v x ] and (v

    x

    ) x in the same frame F ?Solution :[v x ]F =

    v2x3 v3x2v3x1 v1x3v1x2

    v2x1 (2.36b)

    (v x )

    x F =

    0 v3 v2v3 0 v1v2 v1 0

    (2.36c)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 22 / 122

    C P d t M t i ( )

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    23/122

    Cross-Product Matrix ( Contd )

    v

    x = Vx (2.37)

    TheoremThe cross-product matrix A of any 3-dimensional vector a is skew-symmetric,i.e.,

    A T = A a (a b ) = A 2b (2.38)with

    A 2 = a 21 + aa T (2.39)

    and being the Euclidean norm of the vector.The cross-product matrix (CPM) A of any 3-dimensional vector a is uniquelydened.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 23 / 122

    Th R t ti M t i

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    24/122

    The Rotation Matrix

    F IG .: Rotation of a rigid body about a line.

    p = OQ + QP (2.40)OQ : the axial component of p along eQP : normal component of p with respect to e

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 24 / 122

    Rotation Matrix ( C d )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    25/122

    Rotation Matrix ( Contd )

    OQ = ee T p (2.41)QP = (cos ) QP +(sin ) QP (2.42)

    QP = ( 1 ee T )p ,QP = e p Ep

    QP = cos (1 ee T )p + sin Ep (2.45)

    p = [ee T + cos (1 ee T ) + sin E ]p (2.47)p is a linear transformation of p with a rotation matrix

    Q = ee T + cos (1 ee T ) + sin E (2.48)e , : The natural invariants of Q

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 25 / 122

    Rotation Matrix ( C td )

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    26/122

    Rotation Matrix ( Contd )

    Special cases :

    = Q = 1 + 2 ee T (2.49) = 0

    Q = 1

    leading to a symmetric Q .

    Under no circumstance does the rotation matrix become skew-symmetric, fora 3

    3 skew-symmetric matrix is by necessity singular.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 26 / 122

    Rotation Matrix ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    27/122

    Rotation Matrix ( Contd )

    The series expansion of Q for a xed value of e :

    Q () = Q (0) + Q (0) + 12!

    Q (0)2 + + 1k!Q(k ) (0)k +

    where (k) is the kth derivative of Q with respect to .

    Since Q(k )

    (0) = Ek

    , E(2k+1)

    = ( 1)k

    E ,E 2k = ( 1)k (1 ee T ),

    Q () = 1 + E + 1

    2!E 22 +

    +

    1

    k!E k k +

    Q () = eE (2.53)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 27 / 122

    Rotation Matrix ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    28/122

    Rotation Matrix ( Cont d )

    Q () = 1+[

    12!

    2 + 14!

    4 + 1(2k)!

    (1)k 2k +

    cos 1

    ](1 ee T )

    +[ 13!3 + + 1(2k + 1)! (1)k 2k+1 + sin

    ]E

    Q = 1 + sin E + (1 cos )E2

    (2.54)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 28 / 122

    Rotation Matrix ( Contd )

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    29/122

    Rotation Matrix ( Cont d )Canonical Forms of the Rotation Matrix

    If X axis is parallel to the axis of rotation, i.e., to [e ]

    X = 1 0 0 T , then

    [E ]X =0 0 00 0 10 1 0

    , [E 2]X =0 0 00 1 00 0 1

    [Q ]X =1 0 00 cos sin 0 sin cos

    (2.55a)

    [Q

    ]Y =

    cos 0 sin 0 1 0

    sin 0 cos (2.55b)

    [Q ]Z =cos sin 0sin cos 0

    0 0 1 (2.55c)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 29 / 122

    The Linear Invariants of a 3 3 Matrix

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    30/122

    The Linear Invariants of a 3 3 MatrixFor any 3 3 matrix A :

    Cartesian decomposition

    A S 12

    (A + A T ), A SS 12

    (A A T ) (2.56)A S : symmetric part, A SS : skew-symmetric part.

    The axial vector is a vector a with the property

    a v A SS v (2.57)for any vector v .

    The trace of A is the sum of the eigenvalues of A S .

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 30 / 122

    Linear Invariants of a 3 3 Matrix ( Contd )

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    31/122

    Linear Invariants of a Matrix ( Cont d )

    Let entries of matrix A be aij , for i, j = 1 , 2, 3. Then,

    vect( A )

    a

    1

    2

    a32 a23a13

    a31a21 a12

    tr( A )

    a11 + a22 + a33 (2.58)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 31 / 122

    Linear Invariants of a 3 3 Matrix ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    32/122

    Linear Invariants of a Matrix ( Cont d )

    TheoremThe vector of a 3 3 matrix vanishes if and only if it is symmetric, whereasthe trace of an n n matrix vanishes if the matrix is skew symmetric.For 3-dimensional vectors a and b :

    vect( ab T ) = 12

    a b (2.59)

    tr( abT

    ) = aT

    b (2.60)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 32 / 122

    Linear Invariants of a 3 3 Matrix ( Contd )

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    33/122

    Linear Invariants of a Matrix ( Cont d )

    Proof of relation ( 2.59 ) :Let w denote vect (ab T )

    w v = Wv (2.61)

    W : skew-symmetric component of ab T

    W 12

    (ab T ba T ) (2.62)

    Wv = w

    v =

    1

    2[(b T v )a

    (a T v )b ] (2.63)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 33 / 122

    Linear Invariants of a 3 3 Matrix ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    34/122

    ( )

    Compare relation ( 2.63 ) with the double-cross product :

    (b a ) v = ( b T v )a (a T v )b (2.64)

    w =

    12b a (2.65)

    The trace of an n n matrix can vanish without the matrix necessarilybeing skew-symmetric, while the trace of a skew-symmetric matrix

    necessarily vanishes.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 34 / 122

    Linear Invariants of a Rotation

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    35/122

    Matrices 1, ee T and cos (1 ee T ) are symmetric ;matrix sin E is skew-symmetric . Hence,

    vect( Q ) = vect(sin E ) = sin e (2.66)

    tr( Q ) = tr[ ee T + cos (1 ee T )] eT e + cos (3 e T e )= 1 + 2 cos (2.67)

    cos = tr( Q ) 12 (2.68)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 35 / 122

    Linear Invariants of a Rotation (Contd)

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    36/122

    ( )

    vect (Q ) q =q 1q 2q 3

    in a given frame.

    Introducing q 0 cos as a linear invariant of the rotation matrix , the rotationmatrix can be fully dened by four scalar parameters : [q 1, q 2, q 3, q 0]T (2.69)

    These components of are not independent since

    q 2 + q 20 sin2 + cos 2 = 1 (2.70)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 36 / 122

    Linear Invariants of a Rotation (Contd)

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    37/122

    2 q 21 + q 22 + q 23 + q 20 = 1 (2.71)

    sin = q , e = q / sin (2.73)

    Q = qq T

    q 2 + q 0 1 qq T

    q 2 + Q (2.74a)

    Q (q x )

    x

    Q = q 01 + Q + qq T

    1 + q 0 (2.74b)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 37 / 122

    Linear Invariants of a Rotation

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    38/122

    Linear invariants are not suitable to represent a rotation when is either or close to it.

    Changing the sign of e does not change the rotation matrix, provided that the

    sign of is also changed.Choose 0

    sin =

    q , e =

    q

    q

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 38 / 122

    Examples

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    39/122

    ExampleIf [e ]F = [ 3/ 3, 3/ 3, 3/ 3 ]T in a given coordinate frame F and = 120, what is Q in F ?Solution : From the data,

    cos = 12

    , sin = 32

    [eeT

    ]F =

    1

    3

    1

    11 1 1 1 = 1

    3

    1 1 11 1 11 1 1

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 39 / 122

    Examples ( Contd )

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    40/122

    [1 ee T ]F = 13

    2 1 11 2 11 1 2

    , [E ]F 33

    0 1 11 0 11 1 0

    [Q ]F = 13

    1

    1 1

    1 1 11 1 1 16

    2 1

    1

    1 2 11 1 2

    + 36

    0

    1

    1

    1 0 11 1 0

    [Q ]F =0 1 00 0 11 0 0

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 40 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    41/122

    ExampleIs the linear transformation below a rotation ?

    [Q ]F =0 1 00 0 11 0 0

    If so, nd its natural invariants.

    Solution : Test for orthogonality :

    [Q ]F [QT

    ]F =0 1 0

    0 0 11 0 0

    0 0 1

    1 0 00 1 0

    =

    1 0 0

    0 1 00 0 1

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 41 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    42/122

    det( Q ) = +1 a rotationFind e and : vect( Q ) = (sin )e

    [q ]F sin [e ]F = 12

    1 1 1 T

    sin q = 32 = 60 or 120

    [e ]F = [q ]F

    q =

    33

    1 1 1 T

    1 + 2 cos tr( Q ) = 0 , cos = 12 = 120

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 42 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    43/122

    Example

    A coordinate frame X 1, Y 1, Z 1 is rotated into a conguration X 2, Y 2, Z 2 insuch a way that

    X 2 = Y 1, Y 2 = Z 1, Z 2 = X 1Find the matrix representation of the rotation in X 1, Y 1, Z 1 coordinates.Compute the direction of the axis and the angle of rotation.

    Solution : Let i1, j1, k 1 be unit vectors parallel to X 1, Y 1, Z 1, respectively,i2, j2, k2 being dened correspondingly.

    i2 = j1, j2 = k1, k2 = i1

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 43 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    44/122

    [Q ]1 =

    0 0 11 0 00 1 0

    [q ]1 [ vect(Q ) ]1 = sin [e ]1 = 121

    1

    1

    cos = 12 [tr( Q ) 1 ] = 12Assume sin 0 sin = q =

    32

    [e ]1 = [q ]1sin = 331

    11 = 120

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 44 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    45/122

    Example

    Show that the matrix P in eq. ( 2.4) satises ( 2.1a ).

    Solution : Is P idempotent ?

    P 2 = ( 1

    nn T )(1

    nn T )

    = 1 2nn T + nn T nn T = 1 nn T = PMoreover,

    Pn = ( 1

    nn T )n = n

    nn T n = n

    n = 0

    n is eigenvector of P with eigenvalue 0 and, hence, spans the nullspaceof P

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 45 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    46/122

    ExampleThe representations of three linear transformations in a given coordinateframe F :

    [A ]F = 1

    3

    2 1 2

    2 2 1

    1 2 2, [B ]F =

    1

    3

    2 1 11 2

    1

    1 1 2,

    [C ]F = 13

    1 2 22 1 22 2 1

    Identify the orthogonal projection, the reection and the rotation and nd itsinvariants.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 46 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    47/122

    Solution : B and C are symmetric. Rotation matrix is symmetric if and only if sin = 0 i.e., = 0 or , with trace 3 or 1. But

    tr( B ) = 2 , tr( C ) = 1

    B and C are not rotations

    [AA T ]F = 19

    9 0 00 9 00 0 9

    , det( A ) = +1

    A is a rotation

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 47 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    48/122

    Natural invariants of A :

    sin [e ]F = [vect( A )]F = 12

    111

    cos = 12

    [tr( A )

    1] = 1

    2(2

    1) = 1

    2

    For sin 0 sin = vect( A ) = 32 = 60

    [e ]F

    = [vect(A )]F

    vect( A ) =

    33

    111

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 48 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    49/122

    Test B and C for orthogonality :

    [BB T ]F = 13

    2 1 11 2 11 1 2

    = [ B 2 ]F = [ B ]F

    B is not orthogonal but idempotent

    [CC T ]F = 19

    9 0 00 9 00 0 9

    C is orthogonal

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 49 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    50/122

    det (C ) = 1 C is a reectiondet (B ) = 0 B is singular : a projection

    The unit vector [n ]F = [ n1, n2, n3 ]T

    spanning the nullspace of B can bedetermined from :Bn = 0 nn T = 1 B

    Produces two solutions, one the negative of the other.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 50 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    51/122

    nn T =n21 n1n2 n1n3

    n1n2 n22 n2n3n1n3 n2n3 n23

    = 13

    1 1 11 1 11 1 1

    n =

    33

    1

    11

    From C = 1

    2nn T follows the same solution for n

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 51 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    52/122

    ExampleThe vector and the trace of a rotation matrix Q in a reference frame F are

    [vect( Q )]F = 12

    111

    , tr( Q ) = 2

    Find the matrix representation of Q in the given coordinate frame and in aframe with its Z -axis parallel to vect( Q ).

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 52 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    53/122

    Solution :

    Use eq.( 2.74a) to determine rotation matrix Q

    [qqT

    ]F = 14

    1 1 11 1 11 1 1

    , q2

    = 34

    [Q ]F = 12

    0 1 1

    1 0 11 1 0

    [Q ]F = 13

    2 1 2

    2 2 11 2 2

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 53 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    54/122

    Denote by Z a coordinate frame with Z axis parallel to q

    [q ]Z = 32

    001

    , [qq T ]Z = 34

    0 0 00 0 00 0 1

    [Q ]Z = 32

    0 1 01 0 00 0 0

    [Q ]Z =1/ 2 3/ 2 0 3/ 2 1/ 2 00 0 1

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 54 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    55/122

    ExampleA procedure for trajectory planning produced a matrix

    [Q ] =0.433 0.500 zx 0.866

    0.433

    0.866 y 0.500

    representing a rotation for a certain pick-and-place operation where x, y, andz are entries that are unrecognizable due to failures in the printing hardware.Find the missing entries.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 55 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    56/122

    Solution : Product Q T Q must be 1 :

    Q T Q =0.437 + z2 0.433(x z 1) 0.5(y + z) + 0 .375 0.937 + x

    2 0.866(x + y) 0.216 1 + y2

    Upon equating the diagonal elements to unity :

    x = 0.250, y = 0 , z = 0.750while the vanishing of the off-diagonal entries leads to :

    x = 0 .250, y = 0 , z =

    0.750

    det( Q ) = +1

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 56 / 122

    Euler-Rodrigues Parameters

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    57/122

    r sin2

    e, r0 = cos2

    (2.75)

    Q = ( r 02 r r )1 + 2 rr T + 2 r 0R (2.76)where, for arbitrary x,

    R (r x )

    x

    = : r0 = 1 + q 02 , r = q2r 0 (2.77) = : r0 = 0 , r = e (2.78)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 57 / 122

    The Matrix Square Root

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    58/122

    The square root for a 3 3 matrix is a linear combination of 1 (the identitymatrix), the matrix itself and its square, the coefcients being found using theeigenvalues of the matrix (from Cayley-Hamil- tons Theorem).

    Square root of a rotation matrix : a rotation through angle / 2 about axisparallel to e.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 58 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    59/122

    The Matrix Square Root ( Contd )

  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    60/122

    Not all 23 = 8 square roots of a 3 3 proper orthogonal matrix are properorthogonal but there is one and only one that represents a rotation of / 2denoted Q :

    r = vect( Q ), r0 = tr( Q ) 12 (2.79)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 60 / 122

    Euler-Rodrigues Parameters ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    61/122

    Linear invariants can be derived from the rotation matrix by simple additions

    and subtractions, but fail to produce information on the axis of rotation when = .

    Euler-Rodrigues parameters require square roots and entail sign ambiguities,but produce information on the axis of rotation for any value of the rotationangle .

    Note : Not to be confused with Euler angles , which are not invariant andadmit multiple denitions.

    No single set of Euler angles exists for a given rotation ; set depends on howthe rotation is decomposed into three simpler rotations.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 61 / 122

    Example

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    62/122

    Example

    Find the Euler-Rodrigues parameters of the proper orthogonal matrix

    Q = 13

    1 2 22 1 22 2 1

    Solution :Q is symmetric = . Impossible to determine the direction of theaxis of rotation from the linear invariants. However, note that

    ee T = 12

    (1 + Q )

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 62 / 122

    Example ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    63/122

    e21 e1e2 e1e3e1e2 e22 e2e3e1e3 e2e3 e23

    = 13

    1 1 11 1 11 1 1

    e =

    33 1 1 1

    T

    r = e sin2

    = 33

    111

    , r0 = cos2

    = 0

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 63 / 122

    Composition of Reections and Rotations

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    64/122

    Let R be a pure reection & Q a rotation

    T = QR and T = RQ

    are neither symmetric nor self-inverse, yet both are reections !

    An improper orthogonal transformation (not symmetric) can always be

    decomposed into the product of a rotation and a pure reection . Thisdecomposition is not unique.

    For arbitrary n : R 1 2nn T

    Q = TR 1

    TR = T

    2(Tn )n T

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 64 / 122

    Example

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    65/122

    ExamplePlace both palms in the diving position. Hold a sheet of paper between them. Thesheet denes a hand plane in each hand , its unit normal, hand normal , pointingoutside of the hand, n R and n L for the right and left hand, respectively.o R and o L : unit vectors pointing in the direction of the nger axes of each of thehands

    n L = n R , o L = oR

    Now, without moving your right hand, let the left hand attain a position whereby theleft-hand normal lies at right angles with the right-hand normal, the palm pointingdownwards and the nger axes of the two hands remaining parallel.Find the representation of the transformation carrying the right hand to the nalconguration of the left hand, in terms of the unit vectors n R and o R .

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 65 / 122

    Example ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    66/122

    Solution : Desired transformation :

    T = QR

    Reection mapping the right hand into the left hand :

    R = 1 2n R n T RLeft hand rotates from diver position about an axis ||o R through an angle of 90 cw. From eq.( 2.48 ) and above information,

    Q = oR o T R + O R

    where O R is the cross-product matrix of o R

    T = oR o T R + 2O R 2(o R n R )n T R

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 66 / 122

    Coordinate Transformations andHomogeneous Coordinates

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    67/122

    Coordinate Transformations Between Frameswith a Common Origin

    A =

    {X, Y, Z

    } ,

    B =

    {X ,

    Y ,

    Z},

    Q : A B (2.80)[p ]A = x y z

    T(2.81)

    Find [p ]B in terms of [p ]A and Q

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 67 / 122

    Coordinate Transformations BetweenFrames with a Common Origin

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    68/122

    F IG .: Coordinate transformation : (a) coordinates of point P in the A-frame ; and (b)relative orientation of frame B with respect to A.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 68 / 122

    Coordinate Transformations BetweenFrames with a Common Origin ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    69/122

    Point P is attached to frame A, while frame Aundergoes a rotation Q aboutits origin and is carried to frame B :

    = Qp (2.82)

    where is the position vector of point : rotated position of P

    [ ]B = x y zT

    (2.83)

    [ ]A = T (2.84)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 69 / 122

    Coordinate Transformations BetweenFrames with a Common Origin ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    70/122

    TheoremThe representations of the position vector of any point in two frames Aand B , denoted by [ ]A and [ ]B respectively, are related by

    [ ]A

    = [ Q ]A

    [ ]B

    (2.85)

    Proof :[ ]A = [ Q ]A[p ]A (2.86)

    [ ]B = [ p ]A (2.87)

    [ ]A = [ Q ]A[ ]B (2.88)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 70 / 122

    Coordinate Transformations BetweenFrames with a Common Origin ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    71/122

    TheoremThe representations of Q carrying Ainto B in these two frames are identical,i.e.,

    [Q ]A = [ Q ]B (2.89)

    Proof :

    [Qp ]A = [ Q ]A[Qp ]B, [Q ]A[p ]A = [ Q ]A[Qp ]B

    [p ]A

    = [ Q ]B

    [p ]B

    (2.90)

    [p ]A = [ Q ]A[p ]B (2.91)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 71 / 122

    Coordinate Transformations BetweenFrames with a Common Origin ( Contd )

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    72/122

    Theorem

    The inverse relation of Theorem 1 is given by

    [ ]B = [ QT ]B[ ]A (2.92)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 72 / 122

    Example

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    73/122

    Example

    F IG .: Coordinate frames Aand B with a common origin.

    Find the representations of Q rotating Ainto B in these two frames and showthat they are identical. Moreover, if [p ]A = [ 1, 1, 1 ]T , nd [p ]B.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 73 / 122

    Example ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    74/122

    Solution : Let i, j , and k be unit vectors in the directions of the X -, Y -, andZ -axes, respectively,

    unit vectors , , and being dened likewise, as parallel to the X -, Y -, andZ -axes of Fig. 2.2

    Q i = k , Q j = i, Q k = j

    [Q ]A =0 1 00 0 1

    1 0 0

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 74 / 122

    Example ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    75/122

    Q = 0 1 00 0 11 0 0

    00

    1 = 010

    = j =

    Likewise,Q =

    , Q =

    From Denition 1

    [Q ]B =0 1 00 0 11 0 0

    = [ Q ]A

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 75 / 122

    Example ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    76/122

    If we represent this matrix in a frame whose X -axis is directed along the axisof rotation of Q ,

    [Q ]X =1 0 00 cos sin 0 sin cos

    with = 120

    [Q ]X =1 0 00 1/ 2 3/ 20 3/ 2 1/ 2

    [p ]B

    =0 0 1

    1 0 0

    0 1 0

    111

    =1

    1

    1

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 76 / 122

    Coordinate Transformation with Origin Shift

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    77/122

    TheoremThe representations of the position vector p of a point P of the Euclidean3-dimensional space in two frames Aand B are related by

    [p ]A = [ b ]A + [ Q ]A[ ]B (2.93a)

    [ ]B = [ QT ]B([b ]A + [ p ]A) (2.93b)

    with b dened as the vector directed from the origin of

    Ato that of

    B , and

    the vector directed from the origin of B to P , as depicted in Fig. 2.3.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 77 / 122

    Coordinate Transformation with Origin Shift ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    78/122

    F IG .: Coordinate frames with different origins.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 78 / 122

    Coordinate Transformation with Origin Shift ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    79/122

    Proof :p = b + (2.94)

    [p ]A = [ b ]A + [ ]A is assumed to be readily available in B

    [p ]A = [ b ]A + [ Q ]A[ ]BTo prove eq.( 2.93b ), we simply solve eq.( 2.94 ) for and apply eq.( 2.92) to

    the equation thus resulting.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 79 / 122

    Example

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    80/122

    Example

    If [b ]A = [ 1, 1, 1 ]T and A& B have the relative orientations as inExample 4, nd the position vector, in B, of a point P of position vector [p ]Agiven as in the same example.

    Solution : Find [ ]B : [b ]A + [ p ]A = 2 2 2T

    By virtue of Theorem 2, Q ]B = [ QT ]A :

    [Q ]

    B =

    0 0 1

    1 0 0

    0 1 0 [ ]

    B =

    0 0 1

    1 0 0

    0 1 0

    222

    = 2

    2

    2

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 80 / 122

    Homogeneous Coordinates

    G l di t t f ti i l i hift f th i i i t li

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    81/122

    General coordinate transformation involving a shift of the origin is not linear,e.g., the rst terms of the RHS of eq.( 2.93a ) is nonhomogeneous . It can berepresented in homogeneous form by introducing homogeneous coordinates :

    {p }M [p ]T M 1T

    (2.95)

    Then, the afne transformation of eq.(2.93a) becomes

    {p

    }A =

    {T

    }A{

    }Bwith :

    {T }A [Q ]A [b ]A

    0 T 1 , (2.97)

    {T 1

    }B =[Q T ]

    B [

    b ]

    B0 T 1 (2.98)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 81 / 122

    Homogeneous Coordinates ( Contd )

    Fk for k = i 1 i i + 1 : coordinate frames with origins at Ok

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    82/122

    F k , for k = i 1, i, i + 1 : coordinate frames with origins at OkQ i1 : the rotation of F i1 into F iQ i : the rotation of F i into F i+1If three origins coincide :

    [p ]i = [ QT i1 ]i1[p ]i1[p ]i+1 = [ Q T i ]i [p ]i = [ Q T i ]i [Q T i1 ]i1[p ]i1

    with inverse relation

    [p ]i1 = [ Q i1 ]i1[Q i ]i [p ]i+1

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 82 / 122

    Homogeneous Coordinates ( Contd )

    If origins do not coincide a i 1 = Oi 1Oi a i = Oi Oi +1

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    83/122

    If origins do not coincide, a i1 Oi1Oi , a i Oi Oi +1

    {T i1}i1 = [Q i1 ]i1 [a i1 ]i10 T 1 ,

    {T i}i =[Q i ]i [a i ]i

    0 T 1

    Inverse transformation :

    {T i1}1i =[Q T i1 ]i [Q

    T i1 ]i [a i1 ]i10 T 1

    {T i}1

    i+1 =[Q T i ]i+1 [Q T i ]i+1 [

    a i ]i

    0 T 1

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 83 / 122

    Homogeneous Coordinates ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    84/122

    Therefore, the coordinate transformations are

    {p i1}i1 = {T i1}i1{p i}i (2.105){p i1}i1 = {T i1}i1{T i}i{p i+1 }i+1 (2.106)

    with the corresponding inverse transformations

    {p i }i = {T i1}1i1{p i1 }i1 (2.107){p i +1 }i +1 = {T i }1i {p i }i = {T i }1i {T i1}1i1{p i1 }i1 (2.108)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 84 / 122

    Homogeneous Coordinates ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    85/122

    If P lies at innity :

    {p }M p [e ]M1/ p

    limp {

    p

    }M = lim

    p p lim

    p

    [e ]M1/ p

    = limp

    p [e ]M0

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 85 / 122

    Homogeneous Coordinates ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    86/122

    We dene the homogeneous coordinates of a point P lying at innity as

    {p }M [e ]M

    0 (2.109)

    Let Q = e 1 e2 e3 and triad

    {e k

    }31 be orthonormal

    {T }A of eq.( 2.97 ) becomes

    {T }A =e 1 e2 e3 b0 0 0 1 (2.110)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 86 / 122

    Example

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    87/122

    ExampleFind the equation of an ellipsoid in Awith semiaxes of a = 1 , b = 2 , c = 3and with its centre OB of position [b ]A = [ 1, 2, 3 ]

    T , its axes X , Y , Z dening a coordinate frame B. The direction cosines of X are(0.933, 0.067, 0.354), whereas Y b and Y u while u ||X -axis.u , v , w are unit vectors parallel to the X -, Y -, and Z -axes, respectively :

    [u ]A =0.9330.067

    0.354

    , v = u b

    u

    b

    , w = u v

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 87 / 122

    Example ( Contd )

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    88/122

    [v ]A =0.243

    0.8430.481, [w ]A =

    0.2660.5350.803

    [Q ]A = [ u , v , w ]A =0.933 0.243 0.2660.067 0.843 0.5350.354 0.481 0.803

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 88 / 122

    Example ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    89/122

    If [p ]

    A = [ p1, p2, p3 ]T and [ ]

    B = [ 1, 2, 3 ]T ,

    B: 21

    12 +

    2222

    + 2332

    = 1

    [QT

    ]B = [ QT

    ]A =0.933 0.067 0.3540.243 0.843 0.4810.266 0.535 0.803

    [ ]B =0.933 0.067 0.3540.243 0.843 0.4810.266 0.535 0.803

    123

    + p1 p2

    p3

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 89 / 122

    Example ( Contd )

    Therefore

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    90/122

    Therefore,

    1 = 0 .933 p1 + 0 .067 p2 0.354 p3 0.0052 = 0 .243 p1 0.843 p2 + 0 .481 p33 = 0.266 p1 0.535 p2 0.803 p3 + 3 .745

    Upon substitution of the foregoing relations into the ellipsoid equation in B,A: 32.1521 p1 2 + 7 .70235 p22 + 9 .17286 p3 2 8.30524 p1

    16.0527 p2 23.9304 p3 + 9 .32655 p1 p2 + 9 .02784 p2 p319.9676 p1 p3 + 20 .101 = 0

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 90 / 122

    Similarity Transformations

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    91/122

    v = 1a 1 + 2a 2 + + n a nv = 1b 1 + 2b 2 + + n b n

    [v ]A =

    12...

    n

    , [v ]B =

    1 2...

    n

    (2.113)

    b j

    = a1 j

    a1 + a

    2 ja

    2 +

    + a

    nja

    n, j = 1 , . . . , n

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 91 / 122

    Similarity Transformations ( Contd )

    ( )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    92/122

    v = 1(a11 a 1 + a21a 2 + + an 1a n )+ 2(a12a 1 + a22a 2 + + an 2a n )...+ n (a1n a 1 + a2n a 2 + + ann a n )

    v = ( a11 1 + a12 2 + + a1n n )a 1+ ( a21 1 + a22 2 + + a2n n )a 2

    ...

    + ( an 1 1 + an 2 2 + + ann n )a n

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 92 / 122

    Similarity Transformations ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    93/122

    [v ]A = [ A ]A[v ]B (2.117)where

    [A ]A

    a11 a12 a1na21 a22 a2n...

    .

    .. .

    . . .

    ..an 1 an 2 ann

    (2.118)

    Inverse relationship :[v ]B = [ A

    1 ]A[v ]A (2.119)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 93 / 122

    Similarity Transformations ( Contd )

    l11 l12 l1n

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    94/122

    [L ]A =

    l11 l12 l1nl21 l22 l2n... ... . . . ...ln 1 ln 2 lnn

    (2.120)

    We want to nd relation between [L ]

    A and [L ]

    B. To this end, let

    Lv = w (2.121)

    whose representations in Aand B are

    [L ]A[v ]A = [ w ]A (2.122)[L ]B[v ]B = [ w ]B (2.123)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 94 / 122

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    95/122

    Similarity Transformations ( Contd )

    Theorem

  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    96/122

    Theorem

    The characteristic polynomial of a given n n matrix remains unchanged under a similarity transformation. Moreover, the eigenvalues of two matrixrepresentations of the same n n linear transformation are identical, and if [e ]B is an eigenvector of [L ]B , then under the similarity transformation(2.128) , the corresponding eigenvector of [L ]

    A is [e ]

    A = [ A ]

    A[e ]

    B.

    Proof : The characteristic polynomial of [L ]B is

    P () = det( [1 ]B [L ]B) (2.129)

    J g A g l (M Gill U i it ) Ch t 2 M th ti l B kg d 2009 96 / 122

    Similarity Transformations ( Contd )

    P () det( [A 1 ]A[1 ]A[A ]A[A 1 ]A[L ]A[A ]A)

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    97/122

    A A A A A A= det([ A 1 ]

    A([1 ]

    A[L ]

    A)[ A ]

    A)

    = det([ A 1 ]A)det( [1 ]A[L ]A)det([ A ]A)

    det([ A 1 ]A)det([ A ]A) = 1The characteristic polynomials of [L ]

    A and [L ]

    B are identical

    [L ]

    A& [L ]B have same eigenvalues.Let [L ]B[e ]B = [e ]B :

    [A 1 ]A[L ]A[A ]A[e ]B = [e ]B[L ]A[A ]A[e ]B = [A ]A[e ]B (2.130)

    J A l (M Gill U i it ) Ch t 2 M th ti l B kg d 2009 97 / 122

    Similarity Transformations ( Contd )Theorem If [L ]A and [L ]B are related by the similarity transformation (2.127 ) , then

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    98/122

    A B[L k ]B = [ A 1 ]A[L k ]A[A ]A (2.131)

    for any integer k.

    Proof : For k = 2

    [L 2 ]B [A 1 ]A[L ]A[A ]A[A

    1 ]A[L ]A[A ]A= [ A 1 ]A[L

    2 ]A[A ]AFor k = n

    [L n +1 ]B [A 1 ]A[L n ]A[A ]A[A 1 ]A[L ]A[A ]A= [ A 1 ]A[L

    n +1 ]A[A ]A

    J A l (M Gill U i it ) Ch t 2 M th ti l B k d 2009 98 / 122

    Similarity Transformations ( Contd )

    TheoremThe trace of an n n matrix does not change under a similarity

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    99/122

    The trace of an n n matrix does not change under a similaritytransformation.

    Proof : Let [A ], [B ] and [C ] be three different n n matrix arrays, in agiven reference frameLet aij , bij , and cij be the components of the said arrays, with indices rangingfrom 1 to n

    tr([ A ] [B ] [C ]) aij bjk cki = bjk cki a ij tr([ B ] [C ] [A ])

    tr([ L ]B

    ) = tr([ A 1 ]A

    [L ]A

    [A ]A

    )= tr([ A ]A[A

    1 ]A[L ]A) = tr([ L ]A)

    J A l (M Gill U i i ) Ch 2 M h i l B k d 2009 99 / 122

    Example

    Example

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    100/122

    ExampleWe consider the equilateral triangle Fig. 2.4 of side 2, with verticesP 1, P 2, P 3, and coordinate frames A(X , Y ) and B(X , Y ), both with originat the centroid of the triangle. Let P be a 2 2 matrix :

    P = p1

    p2

    with p i being the position vector of P i in a given coordinate frame. Show thatmatrix P does not obey a similarity transformation upon a change of frame,and compute its trace in frames Aand B to make it apparent that this matrixdoes not comply with the conditions of Theorem 3.

    J A l (M Gill U i i ) Chapter 2: Mathematical Background

    2009 100 / 122

    Example ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    101/122

    F IG .: Two coordinate frames used to represent the position vectors of the corners of an equilateral triangle.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 101 / 122

    Example ( Contd )

    [P ]A = 1 0

    3/ 3 2 3/ 3, [P ]B =

    0 1

    2 3/ 3 3/ 3

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    102/122

    tr([ P ]A) = 1 + 2 3

    3 = tr([ P ]B) = 33

    [p i ]A = [ Q ]A[p i ]B [P ]A = [ Q ]A[P ]BLet R PP T then

    [R ]A = 1

    3/ 3

    3/ 3 5/ 3 , [R ]B = 1 3/ 3 3/ 3 5/ 3

    tr([ R ]B) = 83

    [R ]A = [ PP T ]A = [ Q ]A[P ]B([ Q ]A[P ]B)T = [ Q ]A[PP ]T B[Q T ]A

    which is a similarity transformation

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 102 / 122

    Invariance Concepts

    Th l f i f ( ) f h i i i

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    103/122

    The scalar function f (

    ) of the position vector p is

    invariant if : f ([p ]B) = f ([p ]A)vector f is invariant if : [f ]A = [Q ]A[f ]Bmatrix F is invariant if : [F ]

    A = [Q ]

    A[F ]

    B[Q T ]

    AMoreover,

    [a ]T A[b ]A = [ a ]T

    B [b ]B[a

    b ]

    A = [ Q ]

    A[a

    b ]

    B

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 103 / 122

    Invariance Concepts ( Contd )

    The kth moment of an n n matrix T :k tr( T k ) k = 0 1

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    104/122

    I k

    tr( T ), k 0 , 1, . . .

    with I 0 = tr( 1 ) = n.TheoremThe moments of a n n matrix are invariant under a similaritytransformation.Proof :

    [T k ]B = [ A 1 ]A[T

    k ]A[A ]A (2.140)[

    I k ]

    B = tr( A 1

    AT k

    A[A ]

    A)

    tr([ A ]

    AA 1

    AT k

    A)

    = tr( T kA

    ) [ I k ]A

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 104 / 122

    Invariance Concepts ( Contd )

    Theorem

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    105/122

    An n n matrix has only n linearly independent moments.Proof : Let the characteristic polynomial of T be

    P () = a0 + a1 + + an 1 n 1 + n = 0Applying the Cayley-Hamilton Theorem :

    a01 + a1T + + an 1T n 1 + T n = 0Take the trace of both sides of the above equation :

    a0 I 0 + a1 I 1 + + an 1 I n 1 + I n = 0

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 105 / 122

    Invariance Concepts ( Contd )

    The vector invariants of an n n matrix are its eigenvectors.

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    106/122

    gThe eigenvectors of symmetric matrices are real and mutually orthogonal, itseigenvalues being real as well.

    This is not so for skew-symmetric matrices but for 3 3 skew-symmetricmatrices, one eigenvalue is real, namely, 0, and its associated vector is theaxial vector of this matrix.

    Two n n matrices related by a similarity transformation have the same setof moments. However, if two n n symmetric matrices share their rst nmoments {I k }n 10 , they are not necessarily related by a similaritytransformation.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 106 / 122

    Invariance Concepts ( Contd )

    For example :

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    107/122

    A = 1 00 1 , B = 1 22 1

    Both matrices share the two moments : I 0 = 2 & I 1 = 2 . The secondmoments are different :

    tr( A 2) = 2 , tr( B 2) = tr 5 44 5 = 10

    To test whether two different matrices represent the same lineartransformation, we must verify that they share the same set of nmoments

    {I k

    }n1 since all n

    n matrices share the same

    I 0 = n .

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 107 / 122

    Invariance Concepts ( Contd )

    The foregoing discussion does not apply, in general, to nonsymmetric

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    108/122

    g g pp y g y

    matrices : they are not fully characterized by their eigenvalues. For example :

    A = 1 10 1

    Moments I 0 = 2 , I 1 = tr( A ) = 2 are equal to those of the 2 2 identitymatrix but the transformations are different.If two symmetric matrices, A and B , represent the same transformation, theyare related by a similarity transformation :

    B = T 1AT

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 108 / 122

    Examples

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    109/122

    ExampleFind out whether two symmetric matrices

    A =1 0 10 1 0

    1 0 2

    , B =1 0 00 2 10 1 1

    are related by a similarity transformation.

    tr( A ) = tr( B ) = 4 . What about I 2 and I 3 ?

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 109 / 122

    Examples ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    110/122

    A 2 = 2 0 30 1 03 0 5

    , B 2 = 1 0 00 5 30 3 2tr( A 2) = tr( B 2) = 8

    A 3 =5 0 80 1 08 0 13

    , B 3 =1 0 00 13 80 8 5

    tr( A 3) = tr( B 3) = 19

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 110 / 122

    Examples ( Contd )

    Example

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    111/122

    ExampleSame as the previous example, for :

    A =1 0 20 1 0

    2 0 0

    , B =1 1 11 1 0

    1 0 0

    tr( A ) = tr( B ) = 2 , but tr( A 2) = 10 while tr( B 2) = 6

    Therefore, A and B are not related by a similarity transformation

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 111 / 122

    Applications to Redundant Sensing

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    112/122

    If redundant sensors are introduced, and we attach frames Aand B to each of these, then each sensor can be used to determine the orientation of theend-effect- or with respect to a reference conguration.

    For this task it is needed to measure rotation R that each frame underwentfrom the reference conguration.

    Assume that the measurements produce the orthogonal matrices A and B ,representing R in Aand B, respectively. Determine the relative orientation Qof frame B with respect to frame A(instrument calibration ).

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 112 / 122

    Applications to Redundant Sensing ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    113/122

    We have : A [R ]A and B [R ]BNeed to determine [Q ]A or [Q ]B, which can be obtained from

    A = [ Q ]AB [QT ]A or A [Q ]A = [ Q ]AB

    This problem can be solved with three invariant vectors associated with A andB .Since A and B are orthogonal, they admit one real invariant vector : their axialvector .

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 113 / 122

    Applications to Redundant Sensing ( Contd )

    To determine Q , we need two more invariant vectors, represented in and .

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    114/122

    p

    A BTo this end, take two measurements of the orientation of A0 and B0 withrespect to Aand B.Let the matrices representing these orientations be given by A i and B i , witha i and b i being the corresponding axial vectors, for i = 1 , 2.

    There are two possibilities :

    (i) Neither of a 1 and a 2 and, consequently, neither of b 1 and b 2, is zero ;(ii ) at least one of a 1 and a 2, and consequently, the corresponding vector of

    the

    {b 1, b 2

    }pair, vanishes.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 114 / 122

    Applications to Redundant Sensing ( Contd )

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    115/122

    In the rst case compute a 3rd vector for each seta 3 = a 1 a 2, b 3 = b 1 b 2 (2.143)

    In the second case, two more possibilities : angle of rotation of orthogonalmatrix, A

    1 or A

    2, whose axial vector vanishes, is either

    0 or

    .

    If angle is 0, then A, as well as B, underwent a pure translation from A0 andB0, correspondingly. Then, a new measurement is needed, involving arotation.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 115 / 122

    Applications to Redundant Sensing ( Contd )

    If the angle is , then associated rotation is symmetric and the unit vector eparallel to its axis can be determined from eq.( 2.49 ) in both Aand B.

    2 2

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    116/122

    Then, we end up with two pairs of nonzero vectors {a i }21 and {b i }

    21.

    a i = [ Q ]Ab i , for i = 1 , 2, 3 (2.144)

    E = [ Q ]AF (2.145)

    E a 1 a 2 a 3 , F b 1 b 2 b 3 (2.146)

    [Q ]A = EF 1 (2.147)

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 116 / 122

    Applications to Redundant Sensing ( Contd )

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    117/122

    F 1 = 1

    (b 2 b 3)T (b 3 b 1)T (b 1 b 2)T , b 1 b 2 b 3 (2.148)

    Therefore,

    [Q ]A = 1

    [a 1(b 2 b 3)T + a 2(b 3 b 1)T + a 3(b 1 b 2)T ]

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 117 / 122

    Example

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    118/122

    Example (Hand-Eye Calibration)Determine the relative orientation of a frame B attached to a camera mounted on arobot end-effector, with respect to a frame Axed to the latter, as shown in Fig. 2.5 .It is assumed that two measurements of the orientation of the two frames with respect

    to frames A0 and B0 in the reference conguration of the end-effector are available.These measurements produce the orientation matrices A i of the frame xed to thecamera and B i of the frame xed to the end-effector, for i = 1 , 2.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 118 / 122

    Example ( Contd )

    The numerical data :

    A 0 .92592593 0 .37037037 0 .07407407

    0 28148148 0 80740741 0 51851852

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    119/122

    A1 = . . .0 .25185185 0 .45925926 0 .85185185

    A 2 =0 .83134406 0 .02335236 0 .555267250 .52153607 0 .31240270 0 .793980280 .19200830 0 .94969269 0 .24753503

    B 1 =0 .90268482 0 .10343126 0 .41768659

    0 .38511568 0 .62720266 0 .676980600 .19195318 0 .77195777 0 .60599932

    B 2 =0 .73851280 0 .54317226 0 .399453050 .45524951 0 .83872293 0 .298817210 .49733966 0 .03882952 0 .86668653

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 119 / 122

    Example ( Contd )

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    120/122

    F IG .: Measuring the orientation of a camera-xed coordinate frame with respect to aframe xed to a robotic end-effector.

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 120 / 122

    Example ( Contd )

    0 02962963 0 04748859

    http://find/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    121/122

    a 1 = .0 .088888890 .32592593

    , b 1 = .0 .304819890 .14084221,

    a 2 =0 .07784121

    0 .373637780 .27244422

    , b 2 =0 .12999385

    0 .448696360 .04396138

    a 3 =0 .097560970 .017302930 .00415020

    , b 3 =0 .076553430 .016220960 .06091842

    = 0 .00983460

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 121 / 122

    Example ( Contd )

    T 0 .00078822 0 .00033435 0 .00107955

    http://goforward/http://find/http://goback/
  • 8/12/2019 Present Ac i on Cap i Tulo 2 Angeles

    122/122

    a 1(b 2 b 3) = 0 .00236467 0 .00100306 0 .003238660 .00867044 0 .00367788 0 .01187508

    a 2(b 3 b 1)T =0 .00162359 0 .00106467 0 .001756800 .00779175 0 .00510945 0 .00843102

    0 .00568148 0 .00372564 0 .00614762

    a 3(b 1 b 2)T = 0 .00746863 0 .00158253 0 .005943260 .00132460 0 .00028067 0 .00105407

    0 .00031771 0 .00006732 0 .00025282

    [Q ]A =0 .84436553 0 .01865909 0 .535457500

    .41714750

    0

    .65007032

    0

    .63514856

    0 .33622873 0 .75964911 0 .55667078

    Jorge Angeles (McGill University ) Chapter 2: Mathematical Background 2009 122 / 122

    http://find/