Prepared by James G. Crose and Robert M. Jones

324
AIR FORCE REPORT NO. SAMSO-TR-71-103 SAAS III AEROSPACE REPORT NO. TR-0059(S6816-53)-1 FINITE ELEMENT STRESS ANALYSIS OF AXISYMMETRIC AND PLANE SOLIDS WITH DIFFERENT ORTHOTROPIC, TEMPERATURE-DEPENDENT MATERIAL PROPERTIES IN TENSION AND COMPRESSION Prepared by James G. Crose and Robert M. Jones 71 JUN 22 San Bernardino Operations THE AEROSPACE CORPORATION Prepared for SPACE AND MISSILE SYSTEMS ORGANIZATION AIR FORCE SYSTEMS COMMAND Ai r Force Uni t Post Offi ce Los Angeles, California 90045 Approved for publ ic release; distribution unlimited.

Transcript of Prepared by James G. Crose and Robert M. Jones

Page 1: Prepared by James G. Crose and Robert M. Jones

AIR FORCE REPORT NO.SAMSO-TR-71-103

SAAS III

AEROSPACE REPORT NO.TR-0059(S6816-53)-1

FINITE ELEMENT STRESS ANALYSIS OFAXISYMMETRIC AND PLANE SOLIDS WITH DIFFERENTORTHOTROPIC, TEMPERATURE-DEPENDENT MATERIAL

PROPERTIES IN TENSION AND COMPRESSION

Prepared by

James G. Crose and Robert M. Jones

71 JUN 22

San Bernardino OperationsTHE AEROSPACE CORPORATION

Prepared for SPACE AND MISSILE SYSTEMS ORGANIZATIONAIR FORCE SYSTEMS COMMAND

Ai r Force Uni t Post Offi ceLos Angeles, California 90045

Approved for publ ic release; distribution unlimited.

Page 2: Prepared by James G. Crose and Robert M. Jones
Page 3: Prepared by James G. Crose and Robert M. Jones

UNCLASSIFIEDSec:ulity Cl•••iflc.tion

DOCUMIMT CONTROL OATA· ...D(Secu""" cI•••Wee"" ., ,,,,., ... 0' ".'"0''''' ..............."... __.t be _t.NlII _.,. ... 0_.." "POrt .• cl...med)

I O"IOINATINO ACTtV,·V (Co....,. MI''''.') Ie. tlllE_O"T IIlCU'"'''' C t., ..... IPI'IC.TION

The Aerospace Corporation UnclassifiedSan Bernardino, California .. ellllou"

--J "I~OIltT TITLI SAAS III

Finite Element Stress Analysis of Axisymmetric and Plane Solids with DifferentOrthotropic, Temperature-Dependent Material Properties in Tension and Compression

.. OC'CIltI~TJV.NO"., (T..". ##1 ,.~" Mttl 1"./va/_ .,..)

Technical ReportS AUTHOIlli(') (I...., "MIl, H,., "...e. '''111101)

Crose, James G. and Jones, Robert M.

• till. "0 lit" OATI. ,.. TOTA ... NO. O~ ...... 1 'b, NOza; tIIlEpr•71 JUN 22 335

I. CONTlitACT 0" Illflt .... ,. NO. ... OfllleiNATOllll'. "1l_0tllT NUM•• tII(S)

F04701-70-C-0059 TR-0059(S6816-53)-1b PIlIO,JIlC T NO

, II. I"W." _'_0111" NO(') (A,,)' odl., """"...,. ..., "'0" be •••,.."'10 ,.,."

d SAMSO-TR-71-103

"I>. V" IL ••".ITY/LIMIT. TION NOTICII

Approved for public release; distribution unlimited.

11 SU""t. .MINTA." NOTII 11· '~ON'O.IHCI MILIT"'"., ACTIVfTV

Space and Missile Systems OrganizationAir Force Systems CommandNorton Air Force Base, California 92409

" AIIS"".CT

The finite element method is used to determine the displacements, stresses,and strains in axisymmetric and plane solids with different orthotropic,temperature-dependent material properties in tension and compressionincluding the effects of internal pore fluid pressures and thermal stresses.The mechanical loads can be surface pressures, surface shears, and nodalpoint forces as well as acceleration or angular velocity. The continuoussolid is replaced by a system of elements with triangular or quadrilateralcross sections. Accordingly, the method is valid for solids which are com-posed of many different materials and which have complex geometry. A

! listing of the resulting FORTRAN IV computer program and instructions forits use are given in appendices. Two-dimensional mesh generation andtemperature interpolation features allow the computer program to be readilyused. The convergence of the method to exact answers with diminishingelement size is demonstrated and discussed.

DD FORM 1413'l'A(:S' .... ILEJ

UNCLASSIFIEDSecurity Classification

Page 4: Prepared by James G. Crose and Robert M. Jones

••

UNCLASSIFIEDSecurity Cla..ificatiOll

KEY WO"OI

Finite Element MethodStress AnalysisThermal Stress AnalysisAxisymmetric SolidsPlane StrainPlane StressTemperature-Dependent PropertiesOrthotropicPorous MediaUnequal Properties in Tension and CompressionPlastic Analysis

Ab.tract (eMtinued)

UNCLASSIFIEDSecutity Classification

Page 5: Prepared by James G. Crose and Robert M. Jones

Air Force Report No.SAMSO-TR-71-103

Aerospace Report No.TR -0059(S6816 -53)-1

SAAS III

FINITE ELEMENT STRESS ANALYSIS OF

AXISYMMETRIC AND PLANE SOLIDS WITH DIFFERENT

ORTHOTROPIC, TEMPERATURE-DEPENDENT MATERIAL PROPERTIES

IN TENSION AND COMPRESSION

Prepared by

James G. Crose and Robert M. Jones

71 JUN 22

San Bernardino OperationsTHE AEROSPACE CORPORA TION

Prepared for

SPACE AND MISSILE SYSTEMS ORGANIZATIONAIR FORCE SYSTEMS COMMAND

Air Force Unit Post OfficeLos Angeles, California 90045

Approved for public release; distribution unlimited.

1.

Page 6: Prepared by James G. Crose and Robert M. Jones

FOREWORD

The computer program presented in this report was developed over aperiod of years. The initial development was sponsored by the NationalScience Foundation (NSF Research Grant G-18986) and performed byEdward L. Wilson while a student at the University of California, Berkeley,California. Additional developments we re made unde r NASA Contract NAS9 -1986 while Dr. Wilson waS employed by the Aerojet-General Corporation,Sacramento, California. The program was extended to orthotropic materialproperties by Dr. Wilson under purchase order to The Aerospace Corporation,San Bernardino, California. The technical monitor of this activity wasDr. Robert M. Jones.

The second version of the program, SAAS II, was prepared and publishedby Dr. Jones and Dr. James G. Crose as Aerospace Report No. TR-0200(S4980)-1. It included extensive revisions and was augmented with many newfeatures including modified input/ output, clarification of program logic, ex­tension of the nonlinear material properties feature, automatic mesh generation,temperature interpolation, contour plotting, restart capability, and overlaystructure.

The program was further augmented by the addition of finite elementmethods for the stress analysis of porous media by Dr. Crose, reported inAerospace Report No. TR-0200(S4816-76)-1.

The present report, designated SAAS III, includes reV1SlOns to previouslydocumented program versions. A plane-strain/plane-stress option and anunequal properties in tension and compression capability are incorporated.Reorganization of the program logic and additional internal documentation makethe program easier for use by others. Improvements were also made in meshgeneration, plotting, and input/output procedures. A new method for calculat­ing element strains reduces total running time by almost 20 percent. Othercontributions to the program by Mr. Brian Stocks of Lockheed Palo AltoResearch Laboratory, Dr. David Rodriguez and Dr. Frank Weiler of AerothermCorporation, and Mr. Leonard Bass of The Aerospace Corporation areacknowledged at suitable places in the text.

This report by The Aerospace Corporation, San Bernardino Operationshas been prepared under Contract No. F0470 1-70 -C -0059 as TR -0059(S6816-53)-1.The report was submitted by the authors in April 1971 to the Air Force programmonitor, Captain T. Swartz (RNSE), for review and approval.

This technical report has been reviewed and is approved.-"

~~~~~~~~ ~1r:f:caPt.,~RNSE

ii

Page 7: Prepared by James G. Crose and Robert M. Jones

UNCLASSIFIED ABSTRACT

SAAS III,FINITE ELEMENT STRESS ANALYSISOF AXISYMMETRIC AND PLANESOLIDS WITH DIFFERENT ORTHOTROPIC,TEMPERATURE -DEPENDENT MATERIALPROPERTIES IN TENSION AND COMPRESSIONby James G, Crose and Robert M. Jones

TR -0059(S6816-5 3)-171 JUN 22

The finite element method is used to determine the displacements, stresses,and strains in axisymmetric and plane solids with different orthotropic,temperature -dependent material propertie s in tension and compre ssionincluding the effects of internal pore fluid pressures and thermal stresses.The mechanical loads can be surface pressures, surface shears, and nodalpoint forces as well as acceleration or angular velocity. The continuoussolid is replaced by a system of elements with triangular or quadrilateralcross sections. Accordingly, the method is valid for solids which arecomposed of many different materials and which have complex geometry.A listing of the resulting FORTRAN IV computer program and instructionsfor its use are given in appendices. Two-dimensional mesh generationand temperature interpolation features allow the computer program to bereadily used. The convergence of the method to exact answers withdiminishing element size is demonstrated and discussed. (Unclassified Report)

iii

Page 8: Prepared by James G. Crose and Robert M. Jones

CONTENTS

I

II

III.

INTRODUCTION

METHOD OF ANALYSIS

A. Scope of Analysis

1. Axial Symmetry

2. Plane Strain

3. Plane Stress

4. Material Models - General Discussion

a. Orthotropic Elasticity

b. Orthotropic Bilinear Plasticity

c. Unequal Properties in Tension and Compression

d. Temperature Dependence and Thermal Stress

e. Porous Media

B. Equilibrium Equa tions and Finite Element Discretization

C. Linear Displacement Triangular Element Approximation

1. Displacement Model

2. Material Description

3. Thermal, Mechanical, and Pore Pressure Loads

D. Quadrilateral Element

E. Boundary Conditions

SUMMARY

iv

I- I

II-I

II - I

II-I

II- 2

II- 2

II-2

II- 2

II-3

II- 3

11-3

II-4

II-4

II-8

II-8

II-14

II-IS

II-20

II-21

III-I

Page 9: Prepared by James G. Crose and Robert M. Jones

CONTENTS (Continued)

APPENDIX A:

A.l

A.2

A.3

A.4

A.5

APPENDIX B:

B.l

B.2

B.3

B.4

APPENDIX C:

C.l

C.2

APPENDIX D:

D.l

D.2

D.3

D.4

D.5

APPENDIX E·

E.l

E.2

APPENDIX F:

SPECIAL COMPUTER PROGRAM FEA TURES

Finite Element Mesh Generation

Skew Boundaries

Nodal Point Temperature and Pore PressureInte rpola tion

Stres s -Strain Calculations

Restart and Multiple Case Capability

MA TERIAL MODELS

Orthotropic Linear Elastic Behavior

Orthotropic Plastic Behavior

Orthotropic Linear Behavior with Different ElasticModuli in Tension and Compression

Effect of Pore Pressures

SOLUTION OF LINEAR EQUA TIONS

Gaussian Elimination

Simplification for Band Ma trices

CONVERGENCE OF FINITE ELEMENT RESULTS

Introduction

Error Analysis

Methods of Improving Accuracy

Convergence of Stresses in SAAS III

Conclusions and Recommendations

COMPUTER PROGRAM OUTPUT

Printed Output

Plotted Output

COMPUTER PROGRAM INPUT INSTRUCTIONS

v

A-I

A-I

A -10

A-II

A-12

A -14

B-1

B-1

B-7

B-ll

B-18

C-l

C-2

C-3

D-l

D-l

D-3

D-5

D-9

D-9

E-l

E-l

E-2

F-l

Page 10: Prepared by James G. Crose and Robert M. Jones

CONTENTS (Continued)

APPENDIX G: FORTRAN IV COMPUTER PROGRAM G-1

REFERENCES

G. I

G.2

G.3

G.4

G.5

G.6

G.7

APPENDIX H:

H. I

H.2

H.3

H.4

H.5

H.6

H.7

H.8

Description of FORTRAN Auxiliary Units

Functions of Subroutines

IBM 360 FORTRAN IV COIT1puter PrograIT1 Listing

UNIVA C II 08 FORTRAN IV COIT1puter PrograIT1Listing

CDC 6600 FORTRAN IV COIT1puter PrograIT1 Listing

PLT360, IBM 1627 Plotting Routine

Modification of PrograIT1 Capacity

EXAMPLE PROBLEMS

Hollow Cylinder with UniforIT1 Internal and ExternalPressure (Lame Cylinder)

Hollow Cylinder with Noncylindrical Orthotropy ­Uniform Pressure

Hollow Cylinder with Noncylindrical Orthotropy ­Axial Load

Thick Spherical Shell of a Bilinear IsotropicMaterial under Uniform Internal Pressure

Hollow Cylinder Composed of Two Materials

Solid Porous Cylinder

Thick Spherical Shell of a Multimodulus IsotropicMaterial under Internal and External Pressure

Plane Stre s s Solution to the Bending of a CantileverBeam

vi

G -1

G-3

G-7

G- 65

G-7Z

G-75

G-II0

H-I

H-l

H-9

H-19

H-24

H-34

H-46

H-58

H-67

R-I

Page 11: Prepared by James G. Crose and Robert M. Jones

FIGURES

I.

2.

3.

4.

5.

A-I.A-2.

A-3.

A-4.

A -5.

A-6.

A-7.

A -8.

A -9.

A -10.

B-I.B-2.

D-I.D-2.

D-3.

D-4.

F-I.

F-2.

F-3.

The Finite Element Idealization

The Finite Element Idealization of Plane Solids

Triangular Element

Definition of Principal Ma terial Coordinates

Quadrilateral Element

Laplacian Grid with Equally Spaced Boundary Points

I-J Grid Transformed from Laplacian Grid in Figure A-I

Laplacian Grid with Unequally Spaced Boundary Points onTwo Sides

Laplacian Grid with Internal Line Specification

Laplacian Grid with Triangular Elements

I-J Grid Transformed from Laplacian Grid in Figure A-5(Note diagonal line segment. )

Mesh Plot Utilizing Eq. (A -1)

Mesh Plot Utilizing New Circular Region Option [Eq. (A - 2)J

Angle to Skew Boundaries

Triangular Area Determined by Input Temperature Points

Effective Stres s -Strain Relationship

Relation of Material Orthotropy to Principal Stress andBody Coordinates

SAAS I Convergence of Solutions - Lam'; Cylinder

Comparison of Old and New Integration Schemes withRespect to Discretization Errors

Illustration of the Use of Double Precision Arithmetic toImprove Accuracy

Convergence of New Stress-Strain Calculations

Orientation of Principal Material (MN) Axes Relative toBody (RZ) Axes

Boundary Pressure Sign Convention

Boundary Shear Sign Convention

vii

1-2

1-3

II-9

II-15

II- 21

A-3

A-3

A-5

A-5

A-6

A-6

A-7

A-9

A-IO

A-12

B-9

B-12

D-4

D-6

D-8

D-IO

F-16

F-18

F-20

Page 12: Prepared by James G. Crose and Robert M. Jones

FIGU RES (Continued)

H-l.

H-Z.

H -3.

H-4.

H -5.

H-6.

H-7.

H-8.

H-9.

H-IO.

H-ll.

H-IZ.

H-13.

H-14.

H-15.

H -16.

H-17.

H-18.

H-19.

H-ZO.

H-Zl.

H-ZZ.

H-Z3.

Four -Element Idealization of Hollow Cylinder

Computer Program Output for Example 1

Hollow Cylinder - Uniform Pressure

Computer Program Output for Example Z

Hollow Cylinder - Axial Load

Computer Program Output for Example 3

Schematic Diagram of Wedge-Shaped Ring

Computer Program Output for Example 4

Ten-Element Idealization of Hollow Cylinder Composedof Two Materials

Computer Program Output for Example 5

Radial Stress in Hollow Cylinder

Axial Stres s in Hollow Cylinder

Circumferential Stress in Hollow Cylinder

Ten-Element Idealization of Solid Cylinder

Computer Program Output for Example 6

Radial and Circumferential Stress in Solid Cylinder

Axial Stress in Solid Cylinder

Schematic Diagram of Wedge -Shaped Ring

Computer Program Output for Example 7

Element Plot

Computer Program Output for Example 8

Deformed Grid

Contours of Longitudinal Stress

viii

H-Z

H-3

H-ll

H-13

H-l9

H-ZO

H-Z5

H-Z6

H-34

H-36

H-43

H-44

H-45

H-46

H-48

H-56

H-57

H-59

H-60

H-68

H-69

H-83

H-84

Page 13: Prepared by James G. Crose and Robert M. Jones

TABLES

H-l

H-2

H-3

Exact and Computer Stresses for Hollow Cylinder ofFigure H-l

Exact and Computer Results for Stresses in a ThickSpherical Shell of a Bilinear Isotropic Material

Exact and Computer Results for Stresses in a ThickSpherical Shell of a Material with Different Tensile andCompressive Moduli

ix

H-2

H-33

H-66

Page 14: Prepared by James G. Crose and Robert M. Jones

\"

"\

\\

"\

\

\(This page intefY'ionally left blank)

\fi\

'\

;/

/.

//

;

,I!

!r

xrl

\\""

\.\

\\ ...

\.

Page 15: Prepared by James G. Crose and Robert M. Jones

SECTION I

INTRODUCTION

The finite element terminology as applied to the analysis of continua

was first used in 1960 (Ref. 1). Prior to 1960, two-dimensional elements

were used in conventional methods of structural analysis as a means of

improving the stiffness idealization of complex aircraft structures (Ref. 2).

Since the introduction of the finite element method for the stress analysis

of plane stress bodies, the technique has been successfully applied to plates

(Ref. 3), axisymmetric solids (Refs. 4, 5, 6), axisymmetric shells (Refs.

7, 8), three-dimensional solids (Refs. 9, 10), torsion of shafts (Ref. 11),

and other boundary value problems (e. g., Refs. 12, 13).

Stress analysis of complex solids subjected to arbitrary loads is a

fairly common problem. At the present time, the solution of arbitrary

three-dimensional stress problems is impractical because of the large amount

of computer time required (Ref. 10). However, for a reasonable amount of

computer time, a large class of practical two-dimensional problems can be

readily solved (Ref. 6).

In the finite element approximation of solids, the continuum is replaced

by Cl system of elements which are interconnected at their corners (nodes).

In the case of an axisymmetric solid, the nodes are actually circles and are

called nodal circles. In the case of a plane body, the nodes are points. A

finite element idealization of a simple axisymmetric solid is shown in Figure

1, and the finite element idealization of a plane body is presented in Figure 2.

Two equilibrium equations, which are expressed in terms of unknown nodal

circle or point displacements, are derived for each node of the finite element

system. A solution of the resulting set of linear algebraic equations consti­

tutes an equilibrium solution to the finite element approximation.

I- 1

Page 16: Prepared by James G. Crose and Robert M. Jones

z

z

a. Actual Solid

• R

b. Finite Element Approximation

Figure 1. The Finite Element Idealization

1-2

Page 17: Prepared by James G. Crose and Robert M. Jones

....------------+R

z

....------------.. Ra. Plane Solid

z

No

~l:l;:: b. Finite Element Idealization

Figure 2. The Finite Element Idealization of Plane Solids

1-3

Page 18: Prepared by James G. Crose and Robert M. Jones

The advantages of the finite element method over other methods are

numerous. The finite element method affords nearly complete generality in

the specification of geometrical and material properties, i. e., geometrically

complex bodies of many different materials are easily represented. Dis­

placement or stress boundary conditions can be specified at any node of the

finite element system. Thermal and mechanical loads can be specified at

nodes and, if the number of nodes is sufficient, nearly arbitrary distributions

of the loads can be represented. In addition, the body as a whole can be

subjected to accelerations and/or angular velocities.

In the present report, the finite element method is applied to the

determination of stresses, strains, and displacements in arbitrary axisym­

metric and plane bodies with orthotropic, temperature -dependent material

properties that can be different in tension and compression. The bodies can

be subjected to arbitrary axisymmetric mechanical, thermal, and pore pres­

sure loading. The mechanical loads can be surface pressures, surface

shears, and nodal point forces as well as acceleration or angular velocity.

The equilibrium equations for a finite element system are derived, and the

corresponding computer program is described and displayed. This computer

program is named SAAS III for the third version of ~tress :6:nalysis of :6:xi­

symmetric ~olids. The present report embodies extensive revisions of

Refs. 14 and 15 in which the SAAS I and SAAS II programs are described.

SAAS III is based on fairly extensive use of SAAS I and SAAS II, and the

revisions were undertaken to increase the capability of SAAS and to make it

easier to use.

The program's capability was improved by the introduction of plane

stress/strain options, unequal properties in tension and compression, and

a porous :media option. Program efficiency was improved by incorporating

a new procedure for calculating element strains (Ref. 16).

1-4

Page 19: Prepared by James G. Crose and Robert M. Jones

The SAAS III program is mOre user oriented than is SAAS Ior SAAS II.

Improvements consist of extensive internal documentation through the liberal

use of comments cards as well as reorganization and restructuring of the

program so that each subroutine represents a specific computing task. The

two-dimensional mesh generation scheme first implemented in SAAS II has

been improved by correcting some minor deficiencies and adding an option

which aids automatic mesh generation in circularly shaped regions. In

addition, a new pressure interpolation subroutine is employed to make the

inputting of surface pressures a much easier task. Material property input

was simplified so that one needs to input only those properties that are unique

for the material type. Contour plotting has been improved and an option was

added to permit plotting of the deformed grid. More extensive instructions

are included for use in modifying the program capacity, and detailed descrip­

tions are given of modifications required in the program for its implementa­

tion on CDC 6600 and UNIVAC 1108 computers.

All of the SAAS II features that have been retained for SAAS III are

also described in this report. The features include temperature interpolation,

restart and multiple case capability, skew boundaries, and elastic -plastic

analysis. In addition, numerical examples and convergence studies were

performed and are presented again to verify the computational accuracy of

the program.

1-5

Page 20: Prepared by James G. Crose and Robert M. Jones

(This page intentionally left blank)

1-6n

Page 21: Prepared by James G. Crose and Robert M. Jones

SECTION II

METHOD OF ANALYSIS

The finite element method and the general equations which govern the

equilibrium of the system are given in the literature. However, for com­

pleteness and in order to define the various terms involved, the equations

are rederived here.

A. SCOPE OF ANALYSIS

The SAAS III computer program performs a static stress analysis of

three general two-dimensional structures: solids of revolution, solids in a

state of plane strain, and solids in a state of plane stre s s. In each of these

problems, three clas ses of material behavior can be modeled: orthotropic

linear elasticity, orthotropic linear behavior with different elastic moduli

in tension and compression, and orthotropic bilinear plasticity. In addition,

the materials may be porous with internal pore fluid pressures and tempera­

ture dependent.

1. Axial Symmetry

Symmetrically loaded bodies of revolution are solved by

applying a triangular ring element idealization of the solid. The orthotropy

of material properties is as general as possible within the assumption of

axial symmetry. All mechanical loadings in the meridional plane can be

handled in addition to body forces due to acceleration and rotation. Arbitrary

axisymmetric temperature and pore pressure distributions are internally

converted to thermal and pore fluid stresses which eventually become equi­

valent nodal point force s.

II-I

Page 22: Prepared by James G. Crose and Robert M. Jones

2. Plane Strain

The plane strain feature of the computer program can be

invoked by the input of a single quantity. It is accomplished internally by

applying a triangular plane element idealization of the solid. The total

transverse strain is set to zero, and all equations are modified accordingly.

All of the material and loading options are available as in the case of axial

symmetry. Distributed loads in the form of pressures are converted in­

ternally to equivalent nodal point forces. Body forces due to an acceleration

in the plane are admissible.

3. Plane Stress

The plane stress feature of the computer program can be

invoked by inputting a single quantity just as in the case for plane strain.

The only difference is that the transverse stress is set to zero to obtain

the appropriate equations. All the program features are available in a

way similar to plane strain.

4. Material Models - General Discussion

The following is a general description of the material models

available in the computer program. Detailed discussions appear in Appen­

dix B.

a.9rthotropic Elasticity

There are only two restrictions to linear elastic

material modeling; rotational symmetry in the axial symmetric mode of

operation and orthogonality of material axes. The input quantities are in

the form of Young's moduli and Poisson's ratios. These quantities are con­

verted internally to stress-strain properties and put in matrix form. A

detailed description of the model and definitions of input quantities are pre­

sented in Appendix B, Section B. 1.

II-2

Page 23: Prepared by James G. Crose and Robert M. Jones

b. Orthotropic Bilinear Plasticity

The computer program has provision for input of a

bilinear form of Young's moduli. By application of an orthotropic form of

the von Mises' yield criterion and through a recursive iteration procedure,

a final solution is obtained wherein the stress and strain results are con­

sistent with the appropriate secant modulus description of an effective

stress -effective strain relationship. This is known as the deformational

plasticity approach to this class of problems. As such, the user should be

reminded that a specific history of loading cannot be accounted for. How­

ever, the procedure is well-founded and accurate for proportional loading

problems of isotropic plasticity. A detailed description of the process is

given in Appendix B, Section B.2. This feature of the computer program

cannot be used simultaneously with the unequal propertie s option.

c. Unequal Properties in Tension and Compression

The computer program has provision for input of

differe nt orthotropic temperature -depe ndent mater ial pr ope rtie s in tens ion

and compression. By suitable definition of cross-compliance terms in the

resulting stress-strain relation and through a recursive iteration procedure,

a final solution is obtained wherein tension and compression properties are

consistent with stress magnitudes and signs. A detailed description of the

process is given in Appendix B, Section B. 3. This feature of the computer

program cannot be used simultaneously with the bilinear plasticity option.

d. Temperature Dependence and Thermal Stress

Material properties can be input as a multilinear

function of temperature. During solution of a problem, each element tem­

perature is used to obtain element material properties from the tabular

input by linear interpolation. The coefficients of thermal expansion used to

compute thermal stresses are also input as a multilinear function of tem­

perature and can be input as either "coefficients of thermal expansion" or

" free thermal strains. "

II-3

Page 24: Prepared by James G. Crose and Robert M. Jones

e. Porous Media

The effect of internal pore fluid pressures in porous

materials can be handled in the program by inputting a pore pressure field

similar to the temperature field. All program options relating to the handling

of temperature data are also available for pore pressure data. The theory of

deformation of porous elastic solids by M. A. Biot is specialized for appli­

cation herein. A detailed description of the approach taken is presented in

Appendix B, Section B.4.

B. EQUILIBRIUM EQUATIONS AND FINITE ELEMENT DISCRETIZATION

Derivation of the matrix equations utilized in the finite element method

of analysis is given in the following discussion. At each step it is shown how

the pore pressures augment the relationships normally used for solid media

analyses.

The potential energy of a porous elastic solid is given by

v = U - fvol

w.F. dV ­1 1 f

area

w.P. dA1 1

(1)

where U is the total strain energy of the solid, or

U = f [fCi

a. dC i ] dV1

vol 0

(2)

F. is a body force, P. is a surface traction, w. is a displacement, and1 1 1

'if. is the total stress due to both the solid and the pore fluid. The meaning1

of a. is more thoroughly explained in Section B.4 of Appendix B.1

For a body composed of M elements, the potential energy can be

written as

M

V =L:m=l

[ u= - fvol

mm fw. F. dV -1 1

area

II-4

m m ]w. P. dA1 1

(3)

Page 25: Prepared by James G. Crose and Robert M. Jones

For each element, assume a displacement field

where the vector of nodal displacements and Cd] m

(4)

is an undete r-

mined matrix of coefficients. In transposed form,

(5 )

In addition, let the strains of an element I € 1m

be given in terms of

nodal point displacements, or

(6)

and

(7)

where [a]m depends on the geometry of the problem and is undetermined

at this point.

The thermoelastic stress-strain equation for a porous material is

given in Appendix B, Section B.4, and is written for an element, m, as

where IT I are thermal stresses. They correspond to the state of stress

due to the complete restraint of thermal expansion. The I(J Im represents

the pore stress in the element. Note that it is implicitly assumed that the

pore pressure and thermal stress are constant throughout the element,

II-5

Page 26: Prepared by James G. Crose and Robert M. Jones

The strain energy of an element can now be formulated in terms of

the element displacements as

um

= tf IEj';: [C]m /El m dV - f lEI';: l-rjm dVvol

+ f lEI';: Hm dVvol

(9)

The total potential energy of the system can be found by a summation

of the element strain energies, body forces, and surface tractions as

M

V = EJt llEI';: [CJ m IElmdV

- LIEI;;HmdV

+ f H;; jujdV - f H;; IFlm dV - f /wi ;; Iplm dA]vol vol area

(IO)

By substitution of Eqs. (7) and (5) into Eq. (10), the potential energy

of the system can be expressed as a function of nodal point displacements.

Then, the potential energy is made stationary by requiring that

av = 0 i = 1, NaUi

where N is the total number of nodal point displacements.

Il-6

( 11)

Page 27: Prepared by James G. Crose and Robert M. Jones

The result is a set of N simultaneous equations which can be written

in matrix forIn as

(12 )

It is customary to introduce the following notation. The individual

element stiffness is

[a]T [C] [a] dVm m m

(13)

The body force vector for an element is

II-7

(14 )

Page 28: Prepared by James G. Crose and Robert M. Jones

Note that the effect of pore pressures is to augment the body force vector.

The surface force vector is

(15)

area

Only those elements having a portion exposed to the surface are involved in

the surface force vector. The system stiffness is obtained by a summation

of the element stiffnesses. That is,

M

[K] = Lm=l

(16)

The total load on the system is a summation of the element loads, or

(17)

Therefore,

(18)

This equation is recognized as the general equilibrium relationship for a

finite element system. The unknown displacements Iu I can be obtained by

solving the N simultaneous equations.

C. LINEAR DISPLACEMENT TRIANGULAR ELEMENT APPROXIMATION

1. Displacement Model

Let the body be idealized by a

plane elements as shown in Figures 1 and 2.

triangular element is illustrated in Figure 3.

II-8

system of triangular ring or

The cross section of a typical

The displacement of the

Page 29: Prepared by James G. Crose and Robert M. Jones

element is assumed to be a linear function of the coordinates. To simplify

documentation, rand z are chosen to be coordinate name s for the plane

problems instead of the usual x and y. The r -z displacements are

(19a)

(l9b)

or, expanded in matrix form,

(20)

This linear displacement field assures continuity between elements since

line s which are initially straight remain straight in their displaced position.

r.J

OJr.

0 ILtl

..M i

1Zi

MM

ZkN

~

Figure 3. Triangular Element

In the plane stress problem, there is a third displacement normal to the two­

dimensional body. Since the third displacement is not required in the solution

process, it is ignored in the analysis.

II-9

Page 30: Prepared by James G. Crose and Robert M. Jones

When Eq. (20) is evaluated at the three nodal points of the

triangular element, the following matrix is obtained:

i i 1fb l b41u u r. z.

r Z 1 1

U j U j 1 (21 )= r. z.

lb2

bS jr Z J J

k k 1 b 3b6u u r k zkr Z

Note that the nodal point displacements are not in vector form. A conversion

to the vector form is necessary prior to their use in the theoretical equation,

Eq. (18). By inverting Eq. (21) and writing in vector form,

where

(22)

rjzk -rkzj0 rkz i -rizk

0 r.z.-r.z. 01 J J 1

Zj -Zk 0 Zk -Zi 0 Z.-z. 01 J

1 rk

-rj

0 ri

-rk 0 1'.-1'. 0[h] =- J 1 (23 )m )...

0 r/k -rkzj0 rkz i -r iZk 0 1".z.-r.z.

1 J J 1

0 Zj -zk 0 zk-zi 0 2.-Z.1 J

0 rk

-rj

0 ri-rk0 r. -r.

J 1

and

r. (z. - zk) + r k (z. - z.)1 J 1 J

II-10

(24 )

Page 31: Prepared by James G. Crose and Robert M. Jones

The element strains are obtained from Eqs. (19a) and (19b):

OwE

rb 2= fiT =rr

OW z b6Ezz = ()Z =

w=l...br + b 2 + z

b3E()(} = -r r I r

OW OWE = r + z b 3 + b

5=rz Oz or

(25a)

(25b)

(25c)

(25d)

For plane strain, c(}(} = O.

For plane stre s s, E () () is computed from the other strains

and the material properties with the condition, (J(}() = O.

These strains can be written in matrix form for axial

symITletryas

b l

c 0 I 0 0 0 0 b 2rr

Ezz 0 0 0 0 0 I b3

= (26 )I

Iz

0 0 0E(}(} r r b 4

c 0 0 I 0 I 0 b 5rz

b 6

II-ll

Page 32: Prepared by James G. Crose and Robert M. Jones

or, symbolically,

(27)

For plane problems, the third row of [gJ is set to zero.

Substitution of Eq. (22) into Eq. (27) yields

(28 )

Thus, the strain-displacement transformation matrix, as defined in Eq. (6),is

(29 )

With this definition of [aJm , the element stiffness matrix, Eq. (13), is

rewritten as

[k]m = f[h]';: [g]T [C]m [gJ [hJm dV

vol

Since [hJm

is not a function of rand z, Eq. (30) becomes

(30)

(31 )

Because of the need to perform the integration term by term,

the matrices under the radical are multiplied by hand. The result for axial

symmetry is:

II-12

Page 33: Prepared by James G. Crose and Robert M. Jones

The result for plane problems is

0 0 0 0 0 0

0 Cll C l4 0 Cl4 CIZ

[g]T [C][g] =0 C14 C44 0 C44 CZ4 (33)0 0 0 0 0 0

0 Cl4 C44 0 C44 C24

0 C IZ CZ4 0 CZ4 CZZ

II-13

Page 34: Prepared by James G. Crose and Robert M. Jones

Equations (32) and (33) are programmed directly, and the integrals in Eq. (32)

are evaluated numerically in the computer program. Note that for plane

problems, the result of integration is simply the element area. Thus, each

term is multiplied by that quantity.

2. Material Description

For bodies with orthotropic material properties, the principal

axes of which are not aligned with the body r-z coordinates, stress-strain

relations in the principal m-n coordinates are

, 1 ,O"mm Cll C l2 C 13

I , I

0" C l2 C22 C 23nn=

1 I 1

0"(j (j C l3C23 C 33

0" 0 0 0mn

o

o

o

fmm

fmn

Tmm

o

(34)

whereI 1 I

Tmm = T (C ll(t + C l2(tn + C 13(te)m

I 1 I

T = T (C l2(t + C22(tn + C

23(te) (35 )

nn m, I ,

Tee = T (C l3(t + C23(tn + C

33(te)

m

and the m-n coordinates are defined in terms of the r-z coordinates in

Figure 4.

II-l4

Page 35: Prepared by James G. Crose and Robert M. Jones

zn

m

'- .rFigure 4. Definition of Principal Material Coordinates

Equation (34) can be abbreviated as

(36)

where the subscripts refer to the coordinate system in which the quantities

are expressed. The stresses in the local m-n coordinates are transformed

into the body r-z coordinates by use of the transformation

(37)

where [t]T is the transpose of

2 . 20cos Cl sm Cl

. 2 20SIn CJ. cos ex

[t] =0 0 I

-2sinClcosCl 2 sinClcosCl 0

sinacosa

-sinacosa(38 )

o2 . 2

cos Cl-Sln Ct

The strains in the local m-n coordinates are transformed into the body r-z

coordinates by use of the transformation

(39 )

II-IS

Page 36: Prepared by James G. Crose and Robert M. Jones

The inverse of Eq. (39) is

(40)

Upon substitution of Eqs. (37) and (40) in Eq. (36), it is seen that

la Irz = [C]rz 1< Irz - IT Irz

where

[C]rz = [tf [C]ns[t]

ITlrz = [tf Hns

Equation (41) can be expanded to read

a C ll C IZ C 13 C l4 < Tlrr rr

a zz C IZ C ZZ C Z3 C Z4 < TZzz

=a()() C 13 C

Z3 C 33 C 34 fee T3

a C l4 CZ4 C 34

C44 f T4rz rz

where

Tl = T (CllCir + CIZCiz + C 13Ci()}

TZ = T (CIZCir + CZZCiz + C

Z3Ci e)

T3 = T (C

I3Ci

r + CZ3

Ciz + C

33Cie)

T4 = T (CI4

Cir + C

Z4Ci

z + C 34Ci()}

(41 )

(42 )

(43 )

(44)

(45)

The coefficients of thermal expansions,

r, z, and (j directions, respectively,

within the element.

Cir

and

, Ci z and Cie , are in the

T is the temperature change

II-16

Page 37: Prepared by James G. Crose and Robert M. Jones

For axial symmetry and plane strain, the stress-strain matrix

[C] and the thermal stress vector ITI are used in the form shown.rz rzFor plane stress, it is necessary to incorporate the condition a

OO= 0 in

[C] and IT I . The third equation of Eq. (44) becomesrz rz

(46 )

With this definition of too ' Eq. (44) can be rewritten as

a ell e lZ 0 e 14t T lrr rr

a e lZ e ZZ 0 e Z4t TZzz zz

= (47)0 C 13 CZ3 C 33 C 34 too T3

a e 14 e Z4 0 e44

t T4rz rz

where the barred quantities are

C 13Z

ell Cll (48a)= - C33

=

=

=

=

C 1Z

CZ3 C 13- C 33

C 14

C13

C34- C33

CZ3

Z

CZZ - C33

CZ4

CZ3 C 34- C 33

II-17

(48b)

(48c)

(48d)

(48e)

Page 38: Prepared by James G. Crose and Robert M. Jones

=

=

=

=

(48f)

(49a)

(49b)

(49c)

The barred quantities are used in Eq. (33) for plane stress analyses and in

setting up the thermal stress vector.

3. Thermal, Mechanical, and Pore Pressure Loads

The body force vector, Eq. (14), can be put in the following

form by combining it with Eqs. (4), (5), (6), (22), and (29):

/L\m = [hJ;:' f l[g]T !TI + [e]TIFI - [gJT/alldv (50)

vol

where the vector, being integrated, can be written explicitly for axisym­

metric problems as

Fr

rFr

zFr

F z

rFz

1+ r (T3

-a)

+ Tl + T

3 - 2a

+ ~(T _ a) + T4r 3(51)

+

zFz +

II-18

Page 39: Prepared by James G. Crose and Robert M. Jones

The pore fluid stre ss is given by

a = - fp

and f is the porosity and p is the pore pressure.

(52 )

In the case of rotation of the body with angular frequency, w ,

the body force in the r -direction is

and, for acceleration of the body in the z -direction, a z ' the body force

in the z -direction is given by

F = -maz z

where m is the mas s density of the material.

(53 )

(54)

For plane strain and plane stress problems, Eq. (51) becomes

Fr

rF + 71 - a

r

zF + 7 4r(55 )

F z

rF + 74z

zF + 72 - a

z

where F is now interpreted as a body force in the r-direction due to anr

acceleration in the r-direction.

F = - mar r

( 56)

Integrations of Eqs. (51) and (55) are performed numerically in

the computer program. The vector 1L I is formed by standard matrix opera­

tions and is added to the load vector ·1 Q I as indicated in Eq. (17).

II-19

Page 40: Prepared by James G. Crose and Robert M. Jones

D. QUADRILA TERAL ELEMENT

A typical quadrilateral element is composed of four triangular elements

as illustrated in Figure 5. The ten equilibrium equations for the quadri­

lateral are developed by the application of Eqs. (31) and (50) and can be

written in the following matrix form,

[~;:---+---~~-] = (57)

where ua

and qa are associated with points 1 to 4 and ~ and qb are

associated with point 5. Equation (57) can be written as two matrix equations.

[kaall ua I[kba] Iu a I

+ [kab ] lubl = Iqal

+ hb] !ub ! = !qb!

(58 )

(59 )

Equation (59) can be solved for the displacements ub '

If Eq. (60) is substituted in Eq. (58), an expression is found which relates

the force s at points 1 to 4 to the unknown displacements at points 1 to 4

and the known thermal loads.

where the quadrilateral stiffness matrix is

(60)

(61 )

II-20

(62)

Page 41: Prepared by James G. Crose and Robert M. Jones

1...,... 4

2

......... ,/......... ./

.......... /'

...................... 5 ,//

--->(-- \\\

\

Figure 5. Quadrilateral Element

and the modified load matrix is

(63)

The use of the quadrilateral as a separate element is desirable since

the resulting set of equilibrium equations has fewer unknowns for a given

number of triangular elements. In the computer program, the above procedure

is applied to only 1 degree of freedom at a time for the center point. There­

fore, the procedure first reduces [K] to a 9 x 9 and then to an 8 x 8

matrix. In this way, the inversion of [KbbJ is triviaL

E. BOUNDARY CONDITIONS

Equation (18) repre sents the relationship between all nodal point force s

and all nodal point displacements. Mixed boundary conditions are considered

by rewriting Eq. (18) in the following partitioned form:

(64)

II-2l

Page 42: Prepared by James G. Crose and Robert M. Jones

where

IOal = the specified nodal point forces,

lObi = the unknown nodal point force s,

hi= the unknown nodal point displacements, and

jUb I = the spec ified nodal point displacements.

The first part of Eq. (64) can be written as a separate matrix equation,

(65)

and then expre s sed in the following reduced form,

(66 )

where the modified load vector is given by

(67)

In the computer program, the above procedure is performed for 1

degree of freedom at a time by row and column manipulations. For displace­

ment boundary conditions, the load vector is modified as in Eq. (67), and then

the corresponding rows and columns are set to zero except for the diagonal

terms which are given the value 1. Then, the corresponding terms in the

load vector are given the value of the specified displacements. Force

boundary conditions are implemented by simply modifying the load vector.

Note that this procedure preserves the order of the original system; that is,

specifying a displacement does not reduce the number of equations being

solved.

II~22

Q

Page 43: Prepared by James G. Crose and Robert M. Jones

SECTION III

SUMMARY

The governing equations are developed for the finite element stress

analys is of com plex axis ymmetric and plane solids. The as sodated com­

puter program is very general, but spedal options make it particularly

suitable for the thermal stress analysis of solids with orthotropic, tempera­

ture-dependent material properties. In addition, unequal properties in

tension and compression, internal pore pressures, and elastic plastic

behavior can be accounted for in plane and axisymmetric solids. Due to

the requirement for iteration in plastic and unequal properties problems,

the two features cannot be implemented simultaneously.

Several special computer program features are described in

Appendix A. These s pedal features include: automatic mesh generation,

skew boundaries, temperature and pore pressure interpolation, orthotropic

material properties, and restart and multiple case capability.

A complete description of the various material models that can

be implemented in SAAS III is given in Appendix B. These models are very

general, and a great deal of effort was expended to make them eas y to use.

A very important and time consuming part of the computer program

is the solution of the equilibrium equations. The technique used is the

well- known Gauss elimination method. A complete desc ription of this

me thod as a pplied to band matrices is contained in Appendix C.

An important consideration in the use of an approximate method

such as the one presented here is whether or not convergence can be demon­

strated. Convergence of the approximate solution to the exact solution for

a Lam;:;' cylinder problem is discussed in Appendix D. Relative magnitudes

of discretization and round-off errors are identified as a function of element

size and computational accuracy.

III-l

Page 44: Prepared by James G. Crose and Robert M. Jones

Printouts of the computer program and the plotted output are given

in Appendix E. The computer program input sequence described in Appendix

F has been made simple for the user. Only that information necessary

for solving a particular problem need be input. In Appendix G, the complete

IBM 360 computer program is listed with instructions for modification of

capacity, implementation on CDC 6600 and UNIVAC 1108 computers, and

a des c ription of the plotting package. Eight simple numerical example s

with known solutions are presented in Appendix H. These examples illustrate

the use of various program capabilities and provide test cases for the

SAAS III program.

1II-2Q

Page 45: Prepared by James G. Crose and Robert M. Jones

APPENDIX A

SPECIAL COMPUTER PROGRAM FEATURES

Certain special computer program features not implied by the report

title are discussed in this appendix. These special features include finite

element mes h generation, skew boundaries, tern pe rature interpolation,

stress-strain calculations, and restart and multiple case capability. In

addition, it may be noted from Appendix F, Computer Program Input Instruc­

tions, that a constant temperature can be specified for the body (a feature

which can be utilized in cool-down problems), and free thermal strains

can be input as an alternative to coefficients of thermal expansion.

A. 1 FINITE ELEMENT MESH GENERA nON

A. 1. 1 Introduction

The finite element mesh generation scheme was obtained

from Mr. Brian Stocks of the Lockheed Palo Alto Research Laboratory and

adapted by the authors for use first with SAAS II and now with SAAS III.

Mesh generation is accomplished in three steps.

The first step in mesh generation is to define the perimeter

of the two-dimensional region (in right-handed R-Z coordinates) in terms of

a finite number of line segments. The line segments are defined by the locations

of the end points. Circular line segments are defined by one intermediate

point, or the center, in addition to the end points. Intermediate points on the

perimeter are generated by linear interpolation. A two-dimensional indexing

scheme determines the number of finite elements into which the area is divided.

The second step in mesh generation is to determine the

coordinates of the nodal points which are interior to the perimeter. This step

is accomplished by satisfaction of Laplace's equation over a corresponding

A -1

Page 46: Prepared by James G. Crose and Robert M. Jones

(transformed) grid in the 1- J plane (I and J are right-handed coordinates).

The use of Laplace's equation results in finite elements which are similar in

size and shape to adjacent elements.

The final step in mesh generation is to renumber (index)

the two dimensionally generated nodal points and elements in accordance with

the one-dimensional numbering scheme used in the analysis.

Any reasonable combination of internal and external

line segments which represent circles, straight lines, or points in the R-Z

plane and horizontal, vertical, or 45-degree diagonal straight lines in the

I-J plane can be used to generate a finite element mesh.

A. 1. 2 Point Generation

A region in the R - Z plane which is to be divided into

finite elements is shown in Figure A -1. The perimeter of the area is defined

by a series of line segments which, in turn, are defined by the R-Z coordinates

of a set of points such as are designated by dots in Figure A -1. The remainder

of the perimeter points are determined by linear interpolation along the

prescribed line segments. The region in the R- Z plane can be transformed

into a region in the I-J plane as shown in Figure A-2. Note the 1:1 corre­

spondence between points in the R-Z plane and points in the I-J plane.

The interior points of the finite element grid are found

by satisfying Laplace's equation in finite difference form over the transformed

grid for each of the coordinates, Rand Z. That is, for each point of the

transformed grid, the following equations must be satisfied:

Z + Z + ZI+l,J I-l,J I,J+l

+ RI , J - 1

+ ZI J-l,

o

o

(A -1 a)

(A-lb)

The above linear simultaneous equations are solved by specifying the R- Z

coordinates on the boundary and working into the interior by a relaxation

technique. It is seen that the R-Z coordinates at each point (I, J) take on

values which are the average of the R-Z coordinates of the four surrounding

points.

A-2

Page 47: Prepared by James G. Crose and Robert M. Jones

z

a

Figure A-L Laplacian Grid with Equally SpacedBoundary Points

J

12d

11e

109

876 f c5432

'" 1 a b0

'"l:l 0t:l 0 1 2 3 4 5;::

Figure A-2. 1- J Grid Transformed from LaplacianGrid in Figure A-I

A-3

R

Page 48: Prepared by James G. Crose and Robert M. Jones

A. 1. 3 Special Features

A considerable

the present type of mesh generation.

following parag raphs.

variety of effects can be obtained with

Two special effects are discussed in the

Internal line segments can be utilized in addition to

boundary line segments in the generation of a finite element mesh. Consider

the effect of moving points c and f in Figure A-I in an attempt to generate

a finer mesh in the region cdef as shown in Figure A-3. The mesh in

Figure A-3 can be considerably improved by specifying the internal line

segment cf to be a straight line as in Figure A -4.

Diagonal line segments in the I-J plane are an additional

feature of mesh generation. For example, the finite element mesh in Figure A-4

is refined in the region abcf to yield the mesh shown in Figure A-5 by specifying

a 45-degree diagonal line segment ga (Figure A-6). Note that line segment

gha is a circular segment in the R-Z plane. Diagonal line segments can have

only a 45-degree inclination in the I-J plane so that all intersections of lines

in the I-J plane occur at integer values of I and J.

A. 1. 4 Mesh Generation in Circular Regions

It was found through use of SAAS II that circular regions

(in the R-Z plane) were not always modeled adequately by Eq. (A-I). The

deficiency is illustrated in Figure A-7 where it can be seen that the elements

are too small near the inner boundary and too large near the outer boundary

of the circular region. At the suggestion of Dr. Frank Weiler, an option was

incorporated in SAAS III whereby the I-J coordinate system could be

interpreted as a polar system through inputting variable parameters to the

program to adjust the relative curvatures in the I-J plane. The equations

which are equivalent to Eq. (A-I) and are used in SAAS III are:

RItl , J + R I _I , J + R I , HI + R I , J-l - 4RI , J + Ci (RItI , J

- R I _ l , J)/2 (I + Is) + Cj (RI , HI - R I , J_l)/2 (J + J s ) = 0

A -4

(A - 2a)

Page 49: Prepared by James G. Crose and Robert M. Jones

z

a

Figure A-3. Laplacian Grid with Unequally SpacedBoundary Points on Two Sides

­...

z

a

Figure A-4. Laplacian Grid with InternalLine Specification

A-5

d

e

R

Page 50: Prepared by James G. Crose and Robert M. Jones

­...

z f

Figure A-5. Laplacian Grid with Triangular Elements

h

e

f

)/

/

d

c

­...a

1234567b I8 9 10

Figure A-6. 1- J Grid Transformed from LaplacianGrid in Figure A-5 (Note diagonalline segment.)

A-6

Page 51: Prepared by James G. Crose and Robert M. Jones

e.

s.

0.0

-2.

-4.

-6.

-e.

c

b

a

d

ELEMENT PLOT

C/J....x~ -to.N

0.0 2.R-AXIS

s. e.

Figure A-7. Mesh Plot Utilizing Eq. (A-l)

A-7

Page 52: Prepared by James G. Crose and Robert M. Jones

+

When C. = C. = 0,1 J

This occurs as a default in the program.

appropriate quantities are input. When

(A-2b)

ZI, J_l)/2 (J + J s ) = °Eq. (A - 2) reduces to Eq. (A -1).

That is, Eq. (A-l) is used unless

C. = 1, C. = 0, and J = 0, J isJ 1 s

the radial component. With C. = C. = 1 and I = J = 0, both I and J1 J S S

are radial components. The variable parameters Is and J s determine the

location of the origin of the I-J coordinate system. When C. and/or C.1 J

are set to positive values other than 1, the effect is emphasized or

de-emphasized according to these values in comparison with 1. The

parameters C., C., I ,J are input to the program and, with some1 J S s

experimentation, curved regions can be modeled very satisfactorily.

The results of applying Eq. (A-2) to mesh generation in

a circular region are shown in Figure A-S. Line segments ab, be, cd, and

da were input along with C. = 1, C. = 0, I = 10, J = 0. It can be seen that1 J s s

the resulting mesh is superior to that of Figure A-7.

A. 1. 5 Nodal Point Numbering

The final step in mesh generation is to number the

nodal points and elements in accordance with the one-dimensional numbering

scheme. This procedure is initiated on the line represented by the least

value of J. The point on that line with the least value of I is then designated

as the first point (say, a in Figure A-2). A simple counting is initiated by

proceeding in the direction of increasing 1. When the maximum value of I

corresponding to the current value of J is reached, the next point is found

by incrementing J. This sequence continues until the maximum value of J

is reached. Element numbers are assigned by a similar counting procedure.

A-8

Page 53: Prepared by James G. Crose and Robert M. Jones

8.

6.

0.0

-4.

-8.

ELEMENT PLOT

({J.....xCf -10.N

0.0R-RXIS

6. 8.

Figure A-S. Mesh Plot Utilizing New Circular Region Option[Eq. (A-Z)J

A-9

Page 54: Prepared by James G. Crose and Robert M. Jones

A.2 SKEW BOUNDARIES

If the number in Columns 21-30 of the BOUNDARY CONDITION

CARD or in Columns 6-15 of the NODAL POINT CARD is negative, it is

interpreted as the magnitude of an angle (in degrees) illustrated in Figure A -9.

2

No

~

z

... .. r

1

Figure A -9. Angle to Skew Boundaries

The term in Columns 36-55 of the NODAL POINT CARD is

then interpreted as follows:

XR is the specified load in the I-direction.

XZ is the specified displacement in the 2-direction.

The angle must be input as a negative angle and can range

from -0.001 to -180 degrees. Hence, +1. 0 degree is the same as -179.0

degrees. The displacements of these nodal points which are printed by the

program are:

u = the displacement in the 1 -directionr

u = the displacement in the 2-directionz

The stresses and strains are calculated in the rand z directions.

A-IO

Page 55: Prepared by James G. Crose and Robert M. Jones

A.3 NODAL POINT TEMPERA TURE AND PORE PRESSUREINTERPOLA TION

If not specified on nodal point information cards, nodal point

temperatures and pore pressures are interpolated from a finite set of input

points. That is, the temperature or pressure and the corresponding rand

z coordinates are specified at a finite number of points in the region of

interest. The temperature or pressure "surface" (in r, z, T space) which

is defined by the input is approximated by a set of triangular-shaped planes.

The vertices of the planes are located at the intersection of the actual surface

with the input points.

The interpolation procedure consists of searching the list of

input points for the three closest to the nodal point for which the temperature

is to be determined. If the area in the r-z plane of the triangle defined by

the three closest input points is too small relative to an area determined by

one of the sides of the triangle and the dis tance from the nodal point to the

closest input point, then the fourth closest point replaces the third closest

point. The area test is repeated until a suitable trio of points has been found.

Four input points, a, b, c, d, are shown in the vicinity of

nodal point n in Figure A -1 O. Points a, b, and c are the closest to n so

they would be the initial choices for the area test. Distance ab is a measure

of the fineness of the input temperature field. Distance an: is a measure of

the proximity of the input temperature points to the nodal point. To satisfy

the area test, the area of triangle abc must be greater than k· ab . an where

k is a constant which can be adjusted to make the test more or less severe.

It was found for the cases studied that a value of k = 0.1 was satisfactory.

If the point c is located such that the area test cannot be satisfied with

triangle abc, point d (the fourth closest point) is used in place of c. By

inspection, it is apparent that the triangle determined by points a, b, and d

would satisfy the area test and hence be used for interpolation.

A-l1

Page 56: Prepared by James G. Crose and Robert M. Jones

d

a

n

c

Figure A-I O. Triangular Area Determined by InputTemperature Points

A.4 STRESS-STRAIN CALCULATIONS

After the unknown nodal point displacements have been found,

the total strains, stresses, and mechanical strains are computed and output.

. In SAAS II, strains were calculated from displacements by a method that

required reformulating the quadrilateral stiffness matrix. Since stiffness

generation is a significant part of the problem in terms of time usage, this

method proved to be very expensive. In SAAS III, a new method by Robert

D. Cook (Ref. 16) has been incorporated. It employs a linear displacement

function derived from a least squares fit of the nodal point displacements.

The result of Cook's derivation is

(' = (X3

Y l XzYZ)/D (A-3a)rr

(' = (Xl Y3 - XZY4 )!D (A-3b)zz

(' = XIYZ

+ X 3Y4 - XZ(Y I + Y3 )/D (A-3c)rz

A-IZ

Page 57: Prepared by James G. Crose and Robert M. Jones

f.()() = (t: U i ) /4r 0

where

Xl L z= r.1

i

Xz = L r.z.1 1

i

X 3 L z= Z.1

i

Y l = L r.u.1 1

i

YZ = L Z.ll.1 1

i

Y3 = L z.v.1 1

i

Y4 = L r.v.1 1

i

D = XiX 3 - X

ZZ

(A-4a)

(A-4b)

(A-4c)

(A-4d)

(A-4g)

All summations run from 1 to 4. The terms u. and v. are the radial and1 1

axial displacements at nodal point i, r. and z. are measured from the centroid1 1

of the element to nodal point i, and r 0 is the radius of the centroid. For

plane strain and plane stress, the operations are the same except that the

calculation of f.()(j is ignored.

The stresses are calculated in the usual way by formulating

the stress-strain matrix (taking into account any temperature dependence) and

applying Eq. (8). Mechanical strains are found by inverting the stress-strain

matrix and multiplying by the stress vector.

A -13

Page 58: Prepared by James G. Crose and Robert M. Jones

Although it was necessary to use double precision arithmetic

for evaluating Eqs. (A-3) and (A-4) when working on the IBM 360, the above

procedure saves roughly 20 percent of total computer running time for average

problems.

The old method of computing stresses is retained as an option

and is required when one needs to approximate the fundamental frequency of

the structure. This procedure requires the stiffness matrix to be reformulated

so, when it is elected, the old stress calculation procedure is used. Con­

vergence of stresses by these two methods is discussed in Appendix D,

Section D.4.

A.5 RESTART AND MULTIPLE CASE CAPABILITY

For the purpose of operational efficiency, the SAAS III program

can be stopped and restarted at appropriate places by use of FORTRAN Unit

10. The first stopping location occurs after finite element mesh plotting and

is useful when it is desired to view only the mesh without expending the effort

to obtain the full solution. The second location for stopping is after the solution

is obtained, but before any contour plotting is performed. A tape can be saved

so that the problem can be restarted with contour plotting being the first

operation. This second starting location is especially useful when an initial

view of a few contour plots is desired. The tape can be used to generate more

contour plots without significant execution time.

Multiple cases can be run on the SAAS III program as described

in the input instructions. However, the restart capability can be used only in

conjunction with the last case as information for preceding cases is destroyed

in the process of solving multiple cases.

A-14Q

Page 59: Prepared by James G. Crose and Robert M. Jones

APPENDIX B

MATERIAL MODELS

There are several material models (stress -strain relationships)

available in SAAS III: (1) orthotropic linear elastic behavior, (2) ortho­

tropic plastic (nonlinear elastic) behavior, (3) orthotropic linear behavior

with different elastic moduli in tension and compression, and (4) porous

media. Orthotropic linear elastic behavior is described in Section II,

Method of Analysis, and in Section B. 1 of this appendix. Orthotropic

plastic behavior is described in Section B. 2 and multimodulus behavior in

Section B. 3. The effect of internal pore pressures in porous media is

discus sed in Section B. 4.

B.l ORTHOTROPIC LINEAR ELASTIC BEHAVIOR

For an axisymmetric elastic body under axisymmetric loading, the

most general orthotropic material model (stress-strain relationship) is

given by the following strain-stress relations:

1 V VmOmn 0 a(0 E"" -~ -~mm mmm m m

vmn 1 VnO

(0-~ E - E"" 0 a

nn nnm n n

= Vm 0 vnO 1 ( B-1)

(000 -~ - E"" EO0 a

OOm n

1(0 0 0 0 c;-- amn mn

mn

B-1

Page 60: Prepared by James G. Crose and Robert M. Jones

where m and n are the principal material directions in the r-z plane

and () is the circumferential direction (and is, of course, a principal

material direction by virtue of the axial symmetry). For many materials,

the principal material directions, m and n, are in the rand z (radial

and axial) directions. However, for materials such as tape -wrapped rein­

forced phenolics, the principal material directions are not aligned with the

rand z directions. Note that in Eq. (B-1) there are seven independent

elastic constants, Em' En' E(), vmn' Vm ()' Vn ()' and Gmn ; there are

no relationships between any of these moduli for a truly orthotropic material.

An example of an orthotropic material is a three dimensionally reinforced

composite material with unequal numbers and/or sizes of fibers in the three

directions.

a (all other stresses zero)

directionmodulus in the ()

for the loading am = a (all other stresses zero)

for the loading

Young'sEnn

Young I S modulus in the n direction

_ E ()()

Emm

---Emm

E =m

E =n

E() =

V =mn

Vm () =

The elastic constants in Eq. (B-1) are further defined as

Young's modulus in the m direction

= _ E()()Enn

for the loading a (all other stre s se s zero)

= shear modulus in the mn plane

The quantities V ,V ()' and V () are often called Poisson's ratios ortnn rn n

strain ratios. Note that the considered body is axisymmetric and is loaded

axisymmetrically; hence, there is no shearing in the m() and n() planes.

B-2

Page 61: Prepared by James G. Crose and Robert M. Jones

An alternative way of writing Eq. (B-1 ) is

I vmn vme0<

~ - --r- -~ ammmm m m mvnm I Vne

0< -~ E -~ annnnn n n

= vern ven (B-2)1

fee -~ -Ee Ee0 a

ee

0 0 0I

< c-- a mnmnmn

wherein there are apparently ten constants. However, by virtue of the sym­

metry inherent in the definition of stre s s -strain re lations for an orthotropic

material, certain of the constants are related (i. e., not independent):

=

= (B-3)

=

Equation (B-3) is an alternative expression of the reciprocal relations of

orthotropic elasticity. The Poisson's ratios that have not yet been defined are:

= a (all other stresses zero)

Vnm =

=

for the loading a =n

for the loading <7e

a (all other stresses zero)

a (all other stresses zero)==<nn

- -,- for the loading aeee eNote from the above definitions and Eq. (B-3) that V is obviously not

mnequal to V •nm

B-3

Page 62: Prepared by James G. Crose and Robert M. Jones

B. 1. 1 Transverse Isotropy

The strain- stress relations for a transversely isotropic

material (a typical example is A TJ -S graphite) are

f1 v' v 0mm E - ET -E (jmm

V' 1 V' 0f nn - ET E"' -r (jnn

= (B-4)

f8f)V v' 1

0 (j()()-E" ET E

0 0 01

f GT (jmn mn

wherein there are five independent elastic constants: E, E', v, v', and G'.

The plane of isotropy for the material in Eq. (B-4) is the m-() plane. For

ATJ-S graphite, the plane of isotropy is "with the grain." Thus, perpendicular

to the plane of isotropy is "across the grain. "

The elastic constants in Eq. (B-4) are further defined as:

E =E' =

Young's modulus in the plane of isotropy

Young's modulus perpendicular to the plane of

isotropy

Vf mm

for a (all other stresses zero)= --- a() =f()()

V =f()()

for a = a (all other stresses zero)-f-- mmmf

v' mmfor a (j (all other stresses zero)= --- =

t nnn

v' = - f()() for a = a (all other stresses zero)f nn

n

G' = shear modulus for planes normal to the plane of

isotropy

B-4

Page 63: Prepared by James G. Crose and Robert M. Jones

Note that the definition of v' requires that the stress be applied perpendicularly

to the plane of isotropy and the lateral strains be measured in the plane of

isotropy. If the stress were applied in the plane of isotropy and the lateral

strains measured perpendicular to the plane of isotropy, a different Poisson's

ratio, vIr, would govern the behavior where

v" = v' ~E' (B- 5)

Thus, the terminology "with and across grain Poisson's ratios" is inadequate

since the direction of loading is not specified. Note that v" is not an

independent constant but is defined in the terms of the independent constants

by use of the reciprocal relations

( B-6)

Finally, for a transversely isotropic material, the terms in Eq. (B-l)

are identified by comparison with Eqs. (B-4) and (B-5) as

E = E, E = E' EO = Em n,

V = ,E v = v, v'lJ EI, vnO =mn mO

G = G'mn

B.l.2 Isotropy

In the context of Eq. (B-l), the strain-stress relations for

an isotropic material are

1 v v 0E -E -E

v 1 v-E E -y 0

Emm

Enn

=

E 00

Emn o o

B-5

1E

o

o

2(1 + V)E

(Jmm

(Jnn

(B-7)

(Jmn

Page 64: Prepared by James G. Crose and Robert M. Jones

whe rein there are only two independent elas tic cons tants. E and V.

The terms in Eq. (B-1) are identified by comparison with

Eq. (B-7) as

E = E = EO = Em n

vmn = Vme = lJ ne = V

G = E/[2(1 + lJ )]mn

B. 1. 3 Engineering Use of Material Models

Despite the fact that a certain number of elastic constants are

required to properly describe a particular material model, often the available

material data do not include all the constants. In such cases, it is necessary

to make some engineering approximations in order to accomplish an analysis.

However, the validity of such approximations is always open to question, and

analyses with such approximations must be clearly labeled as approximate.

The validity of the approximations Can be established in two ways: (I) experi­

mental determination of the unknown constants, and (2) parametric numerical

examination of the importance of the unknown constants. Experimental

determination is preferable, but difficult and expensive. Parametric studies,

on the other hand, are of considerable aid to the analyst and to the experi­

mentalist as well.

An example of a commonly missing property is G' in

Eq. (B-4). Often it is approximated by

G' = E + E'4(1+V')

( B-3)

or similar relations. For a woven material such as three-dimensional (3-D)

quartz phenolic, it should be anticipated that the shear stiffness is considerably

lower than that given by Eq. (B-3). Lenoe, Oplinger, and Serpico (Ref. 17)

compared the use of a relation like Eq. (B-3) with experimentally determined

values (lower than Eq. B-3) in a buckling analysis and found discrepancies of

about 30 percent in the buckling loads calculated with the two shear moduli.

Thus, considerable reservation about the validity of an analysis should be

expressed when approximations such as Eq. (B-3) are used.

B-6

Page 65: Prepared by James G. Crose and Robert M. Jones

B. 2 OR THOTROPIC PLASTIC BEHA VIOR

In this section, an attempt is made to define the behavior of an ortho­

tropic material which has a bilinear effective stress-effective strain curve.

This work should not be construed as being anything more than a rough

approximation since practical orthotropic materials mayor may not be

representable by the effective stress function used here. Accordingly, this

theory should be applied with considerable reservation when orthotropic

materials are treated. However, for isotropic materials, the effective

stress function is well-founded (it is related to the von Mises yield criterion)

and can be used with confidence as is demonstrated in Appendix H.

A method of successive approximations is used to solve for displace­

ments, stresses, and strains in bodies with nonlinear material properties.

Basically, this method involves the repeated solution of the following equation

for the displacements of the system:

(B-9)

where

[K]. 1 = an estimate of the effective stiffness of the system based1-

on the previous solution (i-l)

= an estimate of the loads acting on the system (since the

thermal loads are a function of the stiffne s s)

= the displacements of the system for the ith approximation.

The load and stiffne s s used in the first approximation (i= 1) are based on the

initial linear material properties. Since deformations are assumed to be

small, the development of the effective stiffness depends only on the estima­

tion of an effective stress-strain relationship for each element in the system.

It is apparent that this approach has certain disadvantages. First, the

procedure is not guaranteed to converge. However, experience has indicated

that, for systems where the nonlinear effects are small compared to the initial

linear analysis, the procedure does converge. Second, to obtain a unique

solution, the method is restricted to elastic materials -- in other words,

materials with single-valued stress-strain relationships.

B-7

Page 66: Prepared by James G. Crose and Robert M. Jones

Apparently, a general stress -strain relationship for an orthotropic

nonlinear tnaterial has not been fortnulated. The specific relationship used

in this cotnputer progratn has little experitnental justification, however, it

does degenerate to the von Mises yield condition in the case of isotropic

tnaterial.

The von Mises yield condition for isotropic tnaterial is given by

(- - )2(J _ (J

2 3(B-IO)

where

yield

(Jl' (J2' and (13 are the principal stresses, and (Jy is the uniaxial

stress. Equation (B-IO) can be rewritten in nortnalized fortn

1 J(- -)2 (- -)2 (- -)2= _1_ ~ _ (J2 + ~ _ (J3 + (J2 _ (J3

~2 (J (J (J (J (J (J'Ie. y y y y y y

(B-ll)

For orthotropic tnaterials, Eq. (B-ll) is tnodified without justification to

11=

f2(B-12)

where and (J 3y are the yield stresses in the principal directions.

Now, for all values of stress, the "nortnalized effective stress" for

orthotropic tnaterials is defined as

1(J =

IZ

B-3

(B-13 )

Page 67: Prepared by James G. Crose and Robert M. Jones

The normalized effective stress -strain relationship is shown in Figure B-1.

An approximate consideration of strain hardening can be included in the

formulation as shown in the figure.

(J

enen o .... Icc>-en...>>­c.:>......... 1.0...Cl...N

-'C2;...oz

______'- '!!- -+e1.0 e j

NORMALIZED EFFECTIVE STRAIN

Figure B -1. Effective Stres s -Strain Relationship

The solution procedure for the nonlinear problem is as follows:

1. After each approximate solution, the normalized effective stres s is

calculated for each element (linear properties are used in the first

approximation).

E-9

Page 68: Prepared by James G. Crose and Robert M. Jones

(B-14)R.

1

2. The ratio of nonlinear properties to linear properties for each element

for a given approximation i is defined by

a.1

=e.

1

Therefore, the corresponding normalized effective strain is

(R. is set equal to 1 for the first approximation. )1

(B-16)e.

1

=

3. If the strains are as sumed not to change, an estimation of the pIa sticity

ratio for the next approximation is

+ n (e. - 1)1

4. In the next approximation, the linear propertie s for E , E , E e .rn n

and G are multiplied by the ratio in Eq. (B-16) before they aremnused. The Poisson's ratios are changed according to the following

relation:

= 1/2 (1/2 (B-17)

This procedure must be repeated until convergence is obtained. The

displacements, stresses, and strains are printed by the program after each

approximation. The nurnber of approximations required will depend on the

specific problem and must be specified as computer input. Hence, a certain

amount of experience is required in using the nonlinear option. An arbitrary

number of approximations can be requested, but the program will stop when

R itl for 'all elements changes by 0.5 percent or less.

B -10

Page 69: Prepared by James G. Crose and Robert M. Jones

B.3 OR THOTROPIC LINEAR BEHA VIOR WITH DIFFERENT ELASTICMODULI IN TENSION AND COMPRESSION

Although many materials exhibit orthotropic behavior, a significant

subclass of those materials exhibits a further complexity of behavior, namely,

different orthotropic moduli under tensile and compressive loading.

Ambartsumyan (Ref. 18) has developed a material model (stress-strain

relationship) for such materials, but does not correctly treat the shear

moduli. A new material model (derived by R. M. Jones) is presented in

this section and is incorporated in the SAAS III program.

Because the material properties depend on the stress state and vice

versa, the basic problem is statically indeterminate. However, the indeter­

minancy can be resolved by an apparently convergent iterative procedure

consisting of four steps. First, displacement and stress calculations are

performed based on an initial assumption of stress signs which, in turn,

implie s an initial choice of material properties. Second, the appropriate

material properties are selected based on the principal stresses calculated

in the previous step. Third, displacements and stres se s including the new

principal stresses are recalculated. Fourth, steps two and three are

repeated until convergence to the desired accuracy is achieved.

In this procedure, three different coordinate systems are required:

(1) body (r -z) coordinate s, (2) principal material (m-n) coordinates, and

(3) principal stress (p-q) coordinates. All three coordinate systems are

shown in Figure B-2 along with the definition of the angles between the systems.

As will be shown in the following discussion, transformations of stresses and

material properties must be made between the various coordinate systems.

For an axisymmetric body under an axisymmetric loading field, the

following strain-stress relations in principal stress (p-q) coordinates are

B-ll

Page 70: Prepared by James G. Crose and Robert M. Jones

proposed by the second author for orthotropic materials that exhibit different

moduli in tension and cOlTIpression:

£ spq spq spq spq GP 11 12 13 14 P

£ spq spq spq spqG qq 12 22 23 24

= (B-18)£0 spq spq spq spq

GO13 23 33 34

Y spq spq spq spq 0pq 14 24 34 44

z

q

Figure B-2.

m

....:::...- I-. .l.- r

Relation of Material Orthotropy to PrincipalStress and Body Coordinates

B -12

Page 71: Prepared by James G. Crose and Robert M. Jones

Note that the principal stress directions do not coincide with the principal

strain directions. The compliances. s~q, are as signed according to the1)

signs and magnitudes of the principal stresses:

if a > 0 spq = S·pqP 11 11 t

if a < 0 spq = spqP 11 llc

if a > 0 spq = spqq 22 22t

if a < 0 spq = spqq 22 22c

if a() > 0 spq = spq33 33t

if a() < 0 spq = spq33 33c

if a > 0 and a > 0 spq = spqp q 12 l2t

(B"19)

if a < 0 and a < 0 spq = spqp q 12 l2c

if a > o and a < 0 spq = k spq + k spqp q 12 ppq l2t qpq l2c

if a < o and a > 0 spq = k spq + k spqP q 12 ppq l2c qpq 12t

if a > o and > 0 spq pqa() = S13tp 13

if a < o and a() < 0 spq = spqP 13 13c

if a > 0 and a() < 0 spq = k spq + k spqp 13 ppt 13t tpt 13c

if a < o and a() > 0 spq = k spq + k tpt sljtp 13 ppt 13c

B-13

Page 72: Prepared by James G. Crose and Robert M. Jones

if <7 > 0 and <7() > 0 spq = spqq 23 23t

if <7 < 0 and <7() < 0 spq = spqq 23 23c

if <7 > 0 and <7() < 0 spq = k spq + ktqt s~jcq 23 qqt 23t

if <7 < 0 and <7 > 0 spq = k spq + k spqq () 23 qqt 23c tqt 23t

if <7 > 0 spq = spqP 14 14t

if <7 < 0 spq = spqP 14 14c

if <7 > 0 spq = spqq 24 24t

if <7 < 0 spq = spqq 24 24c

(B- 19)

if <7() > 0 spq = spq (Cant. )34 34t

if <7() < 0 spq = spq34 34c

if <7 > 0 and <7q > 0 spq = spqP 44 44t

if <7 < 0 and <7 < 0 spq = spqp q 44 44c

if a > 0 and a < 0 spq = k spq + k spqP q 44 ppq 44t qpq 44c

if a < 0 and a > 0 spq = k spq + k spqP q 44 ppq 44c qpq 44t

B-14

Page 73: Prepared by James G. Crose and Robert M. Jones

etc. could be chosen as some other

where

k =lapl

k =Iaql

ppq! apl + laql qpq I apl + laq I

k = rpl ktpt =

lao I(B - 20)ppt Iapl + ! aol lap! + laol

klaq !

k tqt =laol

=qqtlaql + Iaol laql + laol

The weighting factors, k ,ppq

function of the principal stresses (full qualification of the form of the weighting

factors awaits definitive experimental work). Note that only two of the three

principal stresses are used to determine each of the cross compliances Sli,

S15' and S~5' Furthermore, a single principal stress is used to determine

each of the cross compliances sti, S~4' and S~4- Although S~4 is not

required in principal stress (p-q) coordinates, it is required to be defined

there so that transformations to any other coordinate system reduce properly

to the results of anisotropic elasticity when the tensile and comprIOssive

moduli are the same. This last point was neglected by Ambartsumyan

(Ref. 18).

The compliances S?qt and S?q in the principal stress (pq) coordi-1J 1JC

nates are related to the compliances S'::tn and S,::n in the principal material1J 1JC

(mn) coordinates by the usual transformations of anisotropic elasticity:

spq mn 4 (2Smn + Smn ) . 2fJ 2fJ + Smn . 4fJ= Slltc cos j3 + 44tc Sln cos 22tc SlnlItc 12tc(B-21)

pq mn + (Smn + mn 2Smn mn . 2 2S12tc = SlZtc S22tc - S44tc) sm/3 cos fJlItc 12tc

B-15

Page 74: Prepared by James G. Crose and Robert M. Jones

pq Smn 2 + Smn . 2f3Sl3tc = cos f3 23tc SIn13tc

spq mn mn2S~~c) cos

3f3 sinfJ14tc = (S44tc 25 lltc +

mn mn + 2S~~c) sin3iJ cos fJ- (S44tc - 2S22tc

spq mnsin4f3 + (2S~~c mn . 73 2 mn 4

= Slltc + S44tc) sm cos f3 + S22tc cos fJ22tc

spq Smn . 2 mn 2= sm fJ + S23tc cos iJ23tc 13tc

spq mn mn + 2S~~c) sin3fJ cosfJ= (S44tc 2S lltc24tc

(B-21)(Cont. )

Spq =33tc

pq . =S34tc

mnS33tc

pq Inn mn mn Inn Inn . 2 2S44tc = S44tc + 4(Slltc + S22tc - 2S 12tc - S44tc) sm fJ cos iJ

where the subscript t or c is taken as appropriate, and iJ is the angle

between the principal material and the principal stress coordinates.

The compliances in principal material coordinates,

related to the technical constants (direct moduli, Pois son I s

shear moduli) by:

mnSijtc' areratios, and

mnSlltc = liE

mmtc

Sml

n = _ IJ IE = _ IJ IE2tc mntc mmtc nmtc nntc

B-Ib

(B-22)

Page 75: Prepared by James G. Crose and Robert M. Jones

smn = -v IE = -Vemtc/Eeetcl3tc mete mmtc

smn = liE22tc nntc

smn = -v IE = - v IEee (B-22)23tc netc nntc entc tc(Cont. )

Smn = l/Eeetc33tc

Smn = l/G44tc ITlntc

where V t = -E lEfor a = at and all other stresses are zero.ron n m 1TI

There are apparently seven independent material propertie s in tension in

Eq. (B-22) and the same number in compression. However, the compliances

s:~ and S:~ (l/Gmnt and l/Gmnc respectively) cannot be measured in a

shear test on an orthotropic material with different moduli in tension and com­

pression since one principal stress is tension and the other is compression.

Rather, in accordance with a suggestion by Tsai (Ref. 19), the tension

modulus at 45 degrees to the principal material axes, E't' is measured

d Smn. b' d fan 33t 1S 0 ta1ne rom

1 4

(Em~t1 2v )Smn = = E' - + r- - E rnnt (B-23)

33t Gmnt t nnt mmt

A similar relation is us e d to define Smn when E' is known.33c c

In the body (r-z) coordinates, the compliances,

from the sPq according to1J

rzS .. ,

1Jare obtained

(B-24)

where the D matrix is given in Section II, Method of Analysis.

B-17

Page 76: Prepared by James G. Crose and Robert M. Jones

At this stage, all required compliances have been defined for an

orthotropic material with different moduli in tension and compression.

Thermal stress terms are incorporated in the principal material directions

in an obvious manner in Subroutine MPROP, and further description of the

procedure is given there and in Subroutine STRESS at the appropriate locations.

An example problem is shown in Section H. 4 of Appendix H.

B.4 EFFECT OF PORE PRESSURES

The material in this section has been published separately (Ref. 20)

and is repeated here, for convenience, with slight modification.

B. 4. 1 Introduction

The theory of deformation of porous materials containing a

viscous fluid has been developed by Biot (Ref. 21). This theory is applicable

to a wide variety of practical problems (Refs. 22, 23, 24). The essential

elements of the theory are:

(l) Definition of a stress tensor for porous material

which includes the stress in the pore fluids.

(2) Generalization of Hooke's law to include the

deformational characteristics of the pore fluid.

(3) Addition of Darcy's law to obtain complete solutions

where a coupling occurs between the displacements

of the pore fluid and the solid.

Although Biot's theoretical developments are extensive, there

is a notable deficiency in the availability of methods of analysis that can be

used to obtain solutions for practical problems involving porous media. The

application of the finite element method of analysis to a particular class of

problems involving porous media is discussed in Ref. 20 where it was also

shown that, by making certain reasonable assumptions, SAAS II could be

adapted to this class of problems. The necessary assumptions are described

in the following paragraphs, and derivations presented of the theoretical

B-18

Page 77: Prepared by James G. Crose and Robert M. Jones

relations. The SAAS III computer program has been given this capability,

it being only necessary to input a point by point description of the pore

pressure field and the effective porosity of the material.

B. 4. 2 Basic Theoretical Eguations

The state of stress in a porous material has been given by

Biot (Ref. 21). The stress tensor is:

a + a axx xy

ayx ayy + a

a azx zy

with the symmetry property

a .. = a ..1) Jl

axz

ayz

a + azz

(B-25 )

(B-26)

where a.. are the forces and tractions transmitted by the solid material1)

across the face of a unit cube of the material.

a = - fp (B-2?)

is the total normal tension force applied to the fluid part of the faces of the

cube, f is the porosity of the material, and p is the pore pressure.

The total stress field of the bulk material satisfies the

equilibrium equations (Ref. 1):

o~ (axx + a) +oaxy

+oaxz + px 0=

oY Oz

oayx+ o (a + a) +

oayz + pY = 0 (B-28)oX Oy yy oz

oazx +oazy + ..£

( °zz + a) + pZ 0ax =OY Oz

B·19

Page 78: Prepared by James G. Crose and Robert M. Jones

where p is the mass density of the bulk material, and X. Y. Z are the body

forces per unit mass.

It is convenient to introduce a quantity a .. where1J

a.. = a .. + a11 11

and a.. = a..1J 1J

(B-Z9)

If a stress -strain relationship can be found for a.. , then11

stress analyses can be performed for porous media using the same methods

as those employed for solid media. Now, in general, the state of stress in

an elastic porous material is related to strains by a matrix of material

constants (Ref. Zl) as follows:

axx Cll C IZ - - - - - C17 e xx

ayyCZl CZZ

eyy

\

a \e

zz zz\ (B-30)

a = \ eyz

\yz

a \ ezx zx

\

axy\ e

\xy

a C71 - - - - - - - Cn E

where the e .. are elastic strains in the conventional sense and E is the1J

volumetric strain of the pore fluid. This relationship is seen to be a

generalization of Hooke's law.

An important class of problems can be solved by making the

assumption that pore fluid pressure is independent of the deformations of the

solid. With this assumption and the symmetry property,

Ci7 = C 7j = 0 (i, j = 1, 6)

B-ZO

(B-31)

Page 79: Prepared by James G. Crose and Robert M. Jones

Therefore, the pore stress can be uncoupled frOITI the stress-strain relation

of the solid ITIaterial. It should be noted that conventional testing procedures

will yield the reITIaining C .. for the porous solid as long as area ITIeasureITIents1J

are not ITIodified by deducting pore areas.

With the assUlTIption that the pore pressure is known as a

function of the space coordinates, C77

and I' can be ignored in the stress

analysis probleITI. PresuITIably, the given pore pressures could be obtained

frOITI consideration of Darcy's law and therITIodynaITIic relationships.

The stress-strain relationship can then be written as

where

= [CJ + 1(7\ (B-32)

(7 + (7xx

(7 + (7yy

(7 + (7

la-Izz

(7yz

(7zx

(7xy

and

I'xx

I'yy

I'

Ie Izz

=Eyz

Ezx

Exy

B-21

(B-33)

(B-34)

Page 80: Prepared by James G. Crose and Robert M. Jones

[c] is a 6 by 6 matrix of constants to be determined by experiment.

(1

(1=ooo

where

(J = - fp

and

f = !lx, y, z)

and

p = pIx, y, z)

which are assumed to be known.

(B-35)

(B-36 )

(B-37)

(B-38)

In Biot's theory, f is the ratio of the area of pore spaces

accessible by fluids to the total area over a plane section through the porous

material. Biot indicates that this ratio can be shown to be equal to the

volumetric porosity. In many cases, and especially in the case of particulate

material, this has not been correlated through experiment. Although it appears

to be true for ductile solids, brittle and particulate materials may require a

special interpretation of f. Therefore, the selection of volumetric porosity

for the factor f should be made with caution.

This approach to the stress analysis of porous media is

consistent with the assumption of small deflections, and is valid when the

porosity and permeability change insignificantly during deformational processes

and when Hooke's law holds for the solid material. It also requires that the

fluid flow characteristics be relatively unaffected by the stress state and

deformation of the solid. Moreover, it is implicitly assumed that deformations

B-22

Page 81: Prepared by James G. Crose and Robert M. Jones

will not open new pore areas, e. g., opening a closed crack. It is anticipated

that the approach will be valid for the analysis of transpiring pressure vessels

of porous metal materials where the reservoir pressure is held in a steady

state. In addition, problems of diffusing gases can be approached utilizing

these assumptions if the change in pore volume (and, therefore, in pressure,

volume, and temperature of the gas) is assumed to be small.

B-23

Page 82: Prepared by James G. Crose and Robert M. Jones

(This page intentionally left blank)

B-24n

Page 83: Prepared by James G. Crose and Robert M. Jones

APPENDIX C

SOLUTION OF LINEAR EQUATIONS

The equilibrium equations can be written in the following form:

AllX l + AlZXZ + A 13 X3 + .... + AlNXN = B l

(C-la)

AZlX l + AZZXZ + AZ3

X3 + + AZNXN = B

Z(C-lb)

A 3lX l + A3Z

X Z + A33

X3 + .... + A

3NX

N = B3

(C-lc)

or, symbolic ally,

where

[A] = the stiffness matrix

IX I = the unknown displacements

IB) = the applied loads

C-l

(C-lN)

(C-l)

Page 84: Prepared by James G. Crose and Robert M. Jones

(C-Z)

C.l GA USSLAN ELIMINATION

The first step in the solution of the above set of equations is to solve

Eq. (C-la) for Xl:

Xl = Bl/A ll - (AlZ/All)XZ-(A13/All) X3----(AIN/All)XN

If Eq. (C-Z) is substituted into Eqs. (C-Ib, c, •••• , N), a modified set of

N-I equations is obtained:

I I IB

IAZZXZ + A Z3 X

3 ---------- + AZNXN = Z (C -3«)

I I I I(C-3b)A 3Z XZ + A

33X

3 ---------- + A 3NXN

= B 3

where

(- -)

(C-4a)

Bl = B.i 1

(C-4b)

A similar procedure is used to eliminate Xz from Eq. (C-3), etc. A

general algorithm for the elimination of X can be written asn

X = (Bn -l IAn-I) - L(An~l IAn-l)X. J = n + 1, .... , N (C-5 )

n n nn nJ nn J

A:'.n-l n-l (An~l/An-l) i, . n + 1, .... , N (C-6)= A .. A. =

IJ IJ In nJ nn J

B:' n-l n-l (Bn-l/An-l)i n + 1, .... , N (C-7)= B. A. =1 1 In n nn

C-Z

Page 85: Prepared by James G. Crose and Robert M. Jones

Equations (C-5), (C-6), and (C-7) can be rewritten in compact form:

x = D LH .X. J = n + 1, .... , Nn n nJ J

n n-l n-lH i, j 1,A .. = A .. A. = n + .... , N

1J 1J In nj

B:'n-l n-l

D i 1,= B. A. = n + .... , N1 1 In n

(C-8)

(C-9)

(C-IO)

where

D = Bn-l/An - ln n nn

Hn-l/ n-l

= A. Anj nJ nn

After the above procedure is applied N -1 times, the original set of equations

is reduced to the single equation

which is solved directly for XN

:

X = BN-I/A N - IN N NN

In terms of the previous notation, this is

(C-il)

The remaining unknowns are determined in reverse order by the repeated

application of Eq. (C-8).

C. 2 SIMPLIFICATION FOR BAND MA TRICES

For the present class of problems, the stiffness matrix occurs in a

"band" form which results in the concentration of the elements of the stiff-

ne s s matrix along the main diagonal. Therefore, the following simplifications

C-3

Page 86: Prepared by James G. Crose and Robert M. Jones

in the general algoritlun [Eqs. (C -8), (C-9), and (C-IO) ] are possible:

X = D LH .X. j = n + I, .... , n + M - 1 (C-12)n n nJ J

A?n-l n-l

H j I, M I (C-13)= A .. A. 1, = n + .... , n + -IJ IJ m nj

B?n-l n-l

D i I, M I (C_14)= B. A. = n + .... , n + -1 1 m n

where M is the bandwidth of the matrix.

The number of numerical operations can further be reduced by

recognizing that the reduced matrix at any stage of the procedure is sym­

metric. Accordingly, since

n nA .. = A ..

Jl 1J

Eq. (C-13) can be replaced by

n-l n-l i = n + l, .... , n + M - 1A? = A .. A. H

1J IJ m nji, + M IJ = .... , n

(C-IS)

The number of numerical operations required for the solution of a

band matrix is proportional to NM2

as compared to N 3 which is required

for the solution of a full matrix. Also, the computer storage required by the

'cand matrix procedure is NM as compared to N2

required by a set of N

·trb·i: 'ary equations.

Furthermore, the complete matrix is not required to be in high speed

storage while the matrix is being reduced. The equations which are not

being operated on can be placed on tape or disk storage and then moved into

the high speed storage area when required.

C-4Q

Page 87: Prepared by James G. Crose and Robert M. Jones

APPENDIX D

CONVERGENCE OF FINITE ELEMENT RESULTS

This appendix was a part of the SAAS I! documentation. It is repeated

here for convenience with slight modification. The results of this study apply

equally to the SAAS II! computer program.

D.l INTRODUCTION

Tong and Pian (Ref. 25) show that finite element solutions converge to

exact solutions for linear elastic problems as element size decreases. The

only apparent proviso is that the geometrical and loading parameters must be

smooth functions (1. e., well-behaved, differentiable, etc.) of the independent

variables. The error, termed a discretization error, is shown to be of order

A1+ where)... is an element dimension. For comparative purposes, finite

difference methods can be shown to have a discretization error of order >--2due to truncation of the approximating function. Evidently, the finite element

procedure has not been proved to be as rapidly convergent as finite difference

procedures.

The very important practical consideration of round-off error

resulting from the inherent limitations of digital computers is excluded from

the foregoing discussion. It must be recognized that only with large digital

computers is the finite element procedure practical. Thus, the problem of

round-off error cannot be ignored.

The magnitude of round-off error increases with an increasing

number of elements because a larger and larger system of equations must be

formulated and solved. This situation must be contrasted with the

discretization error which diminishes with an increasing number of elements.

D-l

Page 88: Prepared by James G. Crose and Robert M. Jones

Thus, there is not necessarily any convergence in an absolute sense. That

is, round-off error can dominate the solution and cause it to diverge from the

exact solution. Round-off error, per se, is a phenomenon which is difficult

to isolate and study. Although not generally conclusive, well-defined

computational experiments lead to a practical assessment of the accuracy of

resulting answers.

During the development of SAAS II, certain discrepancies were noted

in the results from the various computers on which the program was used.

(SAAS I had a capacity of 600 elements and was exercised on the IBM 7094

computer. SA AS II and SAAS III have a capacity of 1000 elements and were

exercised on the IBM 360 and the CDC 6600 computers for this study.)

Specifically, oscillatory behavior was noted in the stresses while using the

IBM 360 (single precision results). This had never been observed in

IBM 7094 results. The problem was traced to round-off error, which is

related to the number of significant figures carried in the arithmetic

calculations of each computer. Five to six significant figures are carried

in the IBM 360 (13-14 in double precision), seven to eight in the IBM 7094

(l5-16 in double precision), and fourteen to fifteen in the CDC 6600 (27-28

in double precision). Thus, round-off error is more likely to occur on the

IBM 7094 than on the CDC 6600, and is much more likely to occur on the

IBM 360 than on the CDC 6600 if single precision arithmetic is used in each

computer.

The effect of round-off errors was investigated by performing

meaningful computational experiments on all three of the digital computers

on which SAAS is used. It was found that a divergence of results occurs

when very large systems of equations are solved. The divergence is

evidently related to the number of elements in each direction as well as to

the total number of elements. That is, when divergence occurs with nd

elements in one direction for a one-dimensional problem, divergence will

not occur until the num.ber of elements in one of two directions in the

equivalent two-dimensional problem exceeds nd

.

D-2

Page 89: Prepared by James G. Crose and Robert M. Jones

Two predominant sources of round-off errors were isolated by

performing computational experiments wherein certain program operations

were carried out in double precision. For the problem studied, the

occurrence of round-off error is strongly associated with the situation where

a single element dimension is very small compared to its nodal point

coordinate values. In this case, the computed element area is in considerable

error and this error is propagated through the solution. Also, round-off

errors accumulate in the Gauss elimination procedure. The use of double

precision arithmetic in these operations results in considerable improvement

in accuracy in the IBM 360 version of the program. The CDC 6600 version

does not require double precision arithmetic.

D.2 ERROR ANALYSIS

In order to study the convergence of solutions with an increasing

number of elements, a Lame' cylinder problem for which the exact solution

is available was idealized by use of SAAS I and SAAS II with a decreasing

element size for a fixed-dimension problem. First, the problem was

simulated by a one-dimensional plane strain model. Second, a two­

dimensional model was used where axial displacements on the boundary were

suppressed. The radial displacement of the inner cylinder wall as a function

of finite element size is shown in Figure D-l. Curve A is from the CDC 6600

program, Curve B is from the IBM 7094, and Curve C is from the IBM 360.

Curve D was obtained by using double precision arithmetic to solve the

governing simultaneous equations in the IBM 360 program. Curve E was

obtained for the two-dimensional grid. It may be seen that the CDC 6600

and IBM 7094 give superior results due to the inherently higher accuracy

of the machine s. This occurred in spite of the fact that double precision

arithmetic was used for the Gauss elimination procedure in the IBM 360

version of the program.. In fact, this use of double precision arithmetic

actually made the solution worse because the inaccurate stiffness matrix

was used in an accurate equation-solving routine.

D-3

Page 90: Prepared by James G. Crose and Robert M. Jones

LEGEND:• DOUBLE PRECISION "SOLVE"

•• SOLUTION NOT OBTAINED

ELEMENT SIZEMESH MACHINE

0.167 in. 0.002 in.

1-D CDC 6600 2.435101 2.455551-D IBM 7094 2.435098 2.44104l-D IBM 360 2.435064 1.995851-D IBM 360' 2.435049 1. 808812-D IBM 360' 2.434969 ••

2.456

2.455

2.454....C> 2 453-x.!E 2.452

.... 2.451~

ex:....ac 2.450::l(I)

ac 2.449....zi!:.... 2.448Q

.... 2.447z....:IE.... 2.446~ex:.....a.. 2.445(I)

Cl

2.444

A (CDC 6600) "EXACT" SOLUTION

2. 443~~"'!!!"!!"!!~!!'!""~!"'!"~!!"!!!"!"~~~o 0.01 0.020.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10FINITE ELEMENT SIZE - in.

Figure D-l. SAAS I Convergence of Solutions - Lame Cylinder

D-4

Page 91: Prepared by James G. Crose and Robert M. Jones

The divergence of results is apparently more a function of the element

size than the number of elements. An element size of 0.0715 inch corresponds

to 7 elements in the I-D mesh and 49 elements in the 2 -D mesh. Although

solution of the 2-D problem requires far more arithmetic operations, the

solution error is about the same (0.0046 inch compared to 0.0043 inch). This

may be due to the absence of variations in the unknown parameters

(displacements) in one direction, it may be attributed to the particular way

in which the equations are set up, it may be due to the way in which errors

accumulate in the Gauss elimination procedure, or it may be indicative of

the fact that the discretization error is independent of the number of elements.

The closeness of solutions for a relatively coarse mesh (0. 167 inch) suggests

that the observed error is due entirely to discretization.

Since Curve A is apparently converging for all element sizes attempted,

it is reasonable to conclude that Curve A represents solutions in which round­

off error is unimportant compared to discretization error. It is, of course,

expected that Curve A would eventually diverge in the same manner as

Curves B to E. Round -off errors become relatively important for element

sizes of about 2 percent of the cylinder thickness for problems on the

IBM 7094 and of about 8 percent for the IBM 360. Element sizes smaller

than 0.2 percent are evidently feasible on the CDC 6600 for this particular

problem.

Observation of the errors at a mesh size of 0.002 inch leads to the

conclusion that round-off errors can cause serious errors in the solution.

It would be better to use a coarser mesh where the primary error is due to

discretization.

D.3 METHODS OF IMPROVING ACCURACY

The integration procedure in SAAS I was found to contribute signifi­

cantly to discretization errors. The program subroutine used a three-point

numerical integration scheme. Dr. Frank Weiler developed a subroutine in

D-5

Page 92: Prepared by James G. Crose and Robert M. Jones

which a five -point numerical integration scheme is used and also a subroutine

in which an exact integration scheme is used. Results of the three -point and

five -point schemes are illustrated in Figure D-Z. Curve A, which is redrawn

from Figure D-l, represents a Lame cylinder solution for varying element

sizes and was obtained by use of the old (three -point) method. Curve B was

obtained with the new (five -point) method. The relative benefit in using the

new procedure is readily apparent, as the exact integration procedure offers

very little improvement over the five-point procedure and utilizes over twice

the computer storage. Therefore, the five-point integration method is used

in SAAS II and SAAS III.

2.456

...C) 2.455....x

C 2.454

....~ 2.453CI:....c::::::lc;) 2.452c::....z 2.451!:....C)

.... 2.450z....:2:~ 2.449CI:.....D-c;) 2.448is

"EXACT" SOLUTION

A (old-SAAS I)

B (new-SA AS II)

No

i 2.447 0....- ...·0·...0·2- ....0....04-...-0•.•06----0.....08-..........10. 10

FINITE ELEMENT SIZE - in.Figure D-Z. Comparison of Old and New Integration Schemes

with Respect to Discretization Errors

D-6

Page 93: Prepared by James G. Crose and Robert M. Jones

A study of round-off errors was accomplished by solving the Lame"

cylinder problem with double precision arithmetic used in locations where it

was expected that round-off errors might be serious. Mr. Leonard Bass of

The Aerospace Corporation made an extensive number of computer runs in

which the use of double precision arithmetic was varied in an attempt to

isolate the locations for which double precision is required. Two distinct

locations in the program appear to be especially prone to the accumulation

of round-off errors. The first is in the Gauss elimination process. This

can be expected and requires little explanation. The other location is the

computation of element area (or volume) in the integration subroutine. When

an element dimension is small compared to the coordinate values of the

element nodal points, the area computation is relatively inaccurate. This

inaccuracy is cumulative throughout the body. These effects are demonstrated

in Figure D-3. Curve A represents a solution of the Lame cylinder problem

for varying element sizes and was obtained without any double precision On

the IBM 360. Curve B represents a solution where the aforementioned

operations were accomplished in double precision. Curve C is redrawn from

Figure D-2 and represents solutions obtained from the CDC 6600. The

differences between Curve C and the others can be attributed to round-off

errors. The difference between Curves A and B is attributed to the use of

double precision arithmetic in the Gauss elimination scheme and in the

elemental area computation.

Due to storage limitations of The Aerospace Corporation IBM 360,

not all computations could be performed with double precision arithmetic.

Thus, the best IBM 360 results (Curve B in Figure D-3) are affected by

round-off error in a different manner from the single precision IBM 360

results (Curve A in Figure D-3). In fact, the round-off error causes the

finite element solution to exceed the exact solution. This situation would

appear to be contradictory to the established theorem that finite element

D-7

Page 94: Prepared by James G. Crose and Robert M. Jones

2.455

2.453~

CI-x.5. 2.451....

uC101-ICI::::::IenICI: 2.449....~101­CI

~

ffi 2.447:::E....uc-'D-~CI 2.445

B

C

A

(SAAS II on IBM 360 with selecti ve O. P. )

"EXACT" SOLUTION

(SAAS II on CDC 6600)

(SAAS II on IBM 360 without O. P.)

2. 443!-__~~__~~_~~__~~_.-.o.!~

o O. 02 O. 04 O. 06 O. 08 O. 10

FINITE ELEMENT SIZE in.

Figure D-3. Illustration of the Use of Double PrecisionArithmetic to Improve Accuracy

D-8

Page 95: Prepared by James G. Crose and Robert M. Jones

displacements approach the exact displacements from below as the number of

elements increases. The theorem proof is based on the presence of

discretization error only and ignores the effect of round-off error. Thus,

the theorem is not contradicted since the presence of round-off error

invalidates the necessity for the finite element displacements to be less than

the exact displacements.

SAAS III includes the new integration subroutine and utilizes double

precision operations in the aforementioned locations in the IBM 360 version.

It is apparent that these modifications are essential in obtaining reasonable

accuracy from the IBM 360 computer. Double precision arithmetic is not

required in the CDC 6600 version of SAAS III, but is used in the UNIVAC 1108

version.

D.4 CONVERGENCE OF STRESSES IN SAAS III

The SAAS III computer program embodies a faster method of

calculating stresses and strains from the resulting displacement field than

SAAS II offered. This new procedure is discussed in Appendix A, Section A-4.

It will be shown in the ensuing discussion that the new method converges as

well as the old. The same Lame" cylinder problem illustrated in the previous

sections was solved using SAAS Ill, and displacement results were virtually

unchanged, as expected. However, comparison of the stresses revealed

some differences as illustrated in Figure D-4. Although, in this case,

SAAS III results appear to be better, this should not be expected to be true

for all problems. However, since discretization errors should be of the

same order with both methods, it is expected that the new method will prove

to be superior because it is so much faster.

D.5 CONCLUSIONS AND RECOMMENDATIONS

The convergence of solutions with decreasing element size has been

demonstrated for the SAAS III finite element computer program. Two kinds

of errors were identified (discretization and round-off) and their relative

D-9

Page 96: Prepared by James G. Crose and Robert M. Jones

r = 0.75 (center of cylinder)

U r = 8704 psi }U z = 7000 psi "EXACT"

U t = 14,630 psi

200

100

0U zen ...........~".... '~ .......

~ .........., .......IX " ....Cl " ' ....IX " .... U ZIX -100 , , ........ , , ....en , , , ,en , ,ur ,.... , , ,IX.... , , ....en , , ....

-200 ut- ', ,, , ...., , ,, , ....,, , ,, ,, ,

-300"NEW" STRAIN CALCULATION ' ,, ,1 ELEMENT

- - - "OLD" STRAIN CALCULATION, ,, ,

MAX ERROR = 5% ' ,\ \ •

31 ELEMENTS , ,-400

ELEMENTS ' ,

r\ ,

7 ELEMENTS \

3 ELEMENTS\

N0 -5000

"' 0 . 1 .2 .3 .4 .5'"'"NFINITE ELEMENT SIZE~ in.~

Figure D-4. Convergence of New Stress-Strain Calculations

D-IO

Page 97: Prepared by James G. Crose and Robert M. Jones

values as a function of element size presented in the context of a particular

problem (Lame' cylinder). A substantial portion of the discretization error

experienced with SAAS I was eliminated by the use of the more accurate

numerical integration procedures in SAAS II and III. Two primary sources

of round-off error were isolated and demonstrated with the use of double

precision arithmetic.

It has been found also that the relative accuracy of one computer

versus another (e. g., CDC 6600 versus IBM 360) is a matter of considerable

importance when solving large complex problems with SAAS III.

It is recommended that:

1. More accurate numerical integration schemes such as

those presented in SAAS III be used with finite element

computer programs.

2. Double precision arithmetic be used in the computation

of elemental areas and in the Gauss elimination process

when SAAS III is exercised on computers with limited

accuracy (such as the IBM 360, which carries only five

to six significant figures) to solve large problems.

3. A coarse mesh be used wherever practical to avoid

the possibility of solution divergence due to round­

off error.

D-ll

Page 98: Prepared by James G. Crose and Robert M. Jones

(\

(This

\page intentionally lei \ blank)

D-l2n

Page 99: Prepared by James G. Crose and Robert M. Jones

APPENDIX E

COMPUTER PROGRAM OUTPUT

In a computer program as comprehensive as the SAAS Ill, it is easy

to generate enough information to overwhelm the interpretive capabilities of

the user for a considerable period of time. Consequently, much thought was

given to the problem of making the job of interpretation by the user as easy

as possible. There are two types of output: printed and plotted. The

plotted output serves as a quick guide to the more extensive information

printed by the program.

E.l PRINTED OUTPUT

The following information is printed by the program:

1. Input data. (An image of each data card is printed prior to

execution of any data case. Input data are also printed out

and described for each data case as it is executed.)

2. Mesh generation information.

3. Nodal point locations and interpolated temperatures.

4. Element makeup (with respect to nodal points) and

interpolated temperature s.

5. Material properbes.

6. Pressure boundary conditions.

7. Shear boundary conditions.

8. Nodal point displacements.

Preceding page blank

E -1

Page 100: Prepared by James G. Crose and Robert M. Jones

9. Stresses and mechanical strains (total strain minus free

thermal strain) at the center of each element.

10. An approximate fundamental frequency if desired at the

cost of extra time. (If the mass densities of all the

materials are given, the displacements for the given

load condition are used as an approximate mode shape

in the calculation of a frequency by Rayleigh's procedure.

A considerable amount of engineering judgment must be

used in the interpretation of this frequency. )

E.2 PLOTTED OUTPUT

The following information is optionally plotted by the program:

1. Finite element grid. (Two options are available. In one,

the grid is plotted to a large scale suitable for use as a

working drawing. In the other, the grid is plotted with a

maximum dimension of 10 inches.

2. Contour plots of stresses, strains, and temperatures.

(Contour locations are determined by linear interpolation

between function values at the center of each element.

The contour plots are the same scale as the finite

element grid plots, and are obtained only if the latter

are requested.)

3. Deformed grid. (With appropriate input parameters, a

plot of the finite element mesh deformed by exaggerated

nodal point displacements can be obtained. When this

option is elected, contour plots are drawn on the

resultant deformed shape.)

E-2{J

Page 101: Prepared by James G. Crose and Robert M. Jones

APPENDIX F

COMPUTER PROGRAM INPUT INSTRUCTIONS

The first step in the computer stress analysis of an axisymmetric

solid is to select a finite element representation of the two-dimensional

cross section of the solid. The definition of positive directions of the R-Z

coordinate system for axisymmetric and plane problems is shown in

Figures 1 and 2 in the main text. The R-Z coordinate system IS right­

handed as must be the I-J coordinate system in mesh generation. The

following punched cards define the problem to be solved. Recall that all

integer (I) fields must be right-justified.

Only the last data case can utilize the complete restart feature.

That is, results are written on FORTRAN Unit 10 starting at the same

location so only the last data case results are preserved. However, any

data case can be stopped at the allowed locations. Succeeding data cases

are executed if no data for the stopped case appears in the input data deck

after the stop request. That is, after a stop, the next card to be read must

be the first card of the next data case.

After each data case, a card with END rbF CASE beginning in Column 1

must appear. After the last data case, a card with END rbF DATA must

appear (after END rbF CASE).

F-l

Page 102: Prepared by James G. Crose and Robert M. Jones

NUMBER OF CASES INPUT

This card is not to be repeated for each successive case.

Format (IS)

Columns 1-5

TITLE CARD

Total number of cases in data deck

This card must be present for each case.

Format (20A4)

Columns 1-80 Title

JOB CONTROL CARD

This card must be present for each case.

Format (12, 13,

Columns 1-2

3-5

6-10

11 -12

13 -15

IS, 12, 13, SIS, 13, 12, 215, F5.0, 215)

Plane s'train/ stress option. (If 1, plane

strain; if 2, plane stress

Start parameter (If 1, start at beginning.

If 2, start with contour plotting. If 2,

a card with READ in Columns 1-4 must be

inserted in the data deck in front of the

next data to be read.)

Stop parameter (If 1, stop after mesh

plotting. If 2, stop before contour

plotting. )

Deformed grid parameter (If 1, plot deformed

grid. )

Plot parameter (If 1, small plot with 10 -inch

maximum dim.ension. If 2, large plot with

10-inch minimum dimension. If 101, small

plot with specified dimensions. If 102, large

plot with specified dimensions. If 101 or 102,

the PLOT SCALE CARD must be included

F-2

Page 103: Prepared by James G. Crose and Robert M. Jones

16-20

21-25

26-30

31 -35

36-40

41-43

44-45

46-50

51-55

56-60

61-65

66-70

before the MATERIAL PROPERTY INFORMATION.

If the field is blank, no mesh is plotted nor can

there be any contour plots generated. )

Number of nonlinear approximations

Mesh generation parameter (If 1, the mesh is

generated. )

Number of temperature cards (If zero,

temperatures are given on nodal point cards.

If -1, temperatures are given on input tape 14.

If -2, a constant temperature is specified. )

Number of nodal points (1000 maximum)':'

Number of elements (1000 maximum)':'

Number of pore pressure cards (If zero, the

pore pressures are given on nodal point cards.

If -1, pore pressures are given on tape 14.

If -2, a constant pore pressure is specified.)

Number of different materials (6 maximum)

Number of boundary pressure cards

Number of boundary shear cards

Reference temperature

Number of tension-compression approximations

Natural frequency parameter (If 1, compute

natural frequency and input next card with

accelerations and angular velocities. )

':' It is not necessary to specify this value if the mesh is generated.

F-3

Page 104: Prepared by James G. Crose and Robert M. Jones

ACCELERATION CARD

This card is req\lired only if Columns 66-70 of thq previous ~ard (JOB

CONTROL CARD) is nonzero.

Format (2F10.0)

Columns 1 -10

11 -20

If plane problem, R acceleration. Ifaxisymmetric

problem, angular velocity.

Z acceleration

F-4

Page 105: Prepared by James G. Crose and Robert M. Jones

MESH GENERATION CONTROL CARD

This card is included only if a mesh is generated and Column 25 of the

JOB CONTROL CARD contains the integer I.

Format (615, 2FlO.0, 215)

Columns 1-5 MAXI, maximum value of I in mesh':' (not to

exceed 25)

6-10

11 -15

16-20

21-25

26-30

31-40

41-50

51-55

56-60

MAXJ, maximum value of J in mesh':' (not to

exceed 100)

Number of line segment cards

Number of BOUNDARY CONDITION CARDS

Number of material block cards

Number of iterations in relaxation technique

(If 0, program automatically sets appropriate

value. )

Polar coordinate parameter I (See Appendix A,

Section A. 1. )

Polar coordinate parameter J (See Appendix A,

Section A. 1. )

I curvature modification (See Appendix A,

Section A. 1. )

J curvature modification (See Appendix A,

Section A. 1. )

Note that Columns 31-60 are left blank for mesh

generation in noncircular regions.

>:< Note that because of the limitation to 1000 nodal points the product ofMAXI and MAXJ cannot exceed 1000 unless the I-J grid is nonrectangular.

F-5

Page 106: Prepared by James G. Crose and Robert M. Jones

LINE SEGMENT CARDS

These cards are included only if a mesh is generated.

The order of LINE SEGMENT CARDS is immaterial.

The number of cards must agree with the numbers m Columns 11-15 of

the MESH GENERATION CONTROL CARD.

Format (3(213 • 2F8. 3), 15)

Columns 1-3 I coordinate of 1st point

4-6 J coordinate of 1st point

7 -14 R coordinate of 1st point

15 -22 Z coordinate of 1st point

23-25 I coordinate of 2nd point

26-28 J coordinate of 2nd point

29-36 R coordinate of 2nd point

37 -44 Z coordinate of 2nd point

45-47 I coordinate of 3 rd point

48-50 J coordinate of 3rd point

51-58 R coordinate of 3rd point

59-66 Z coordinate of 3rd point

67 -71 Line segment type parameter

If the number in Column 71 is

o point (input only 1st point)

1 straight line (input only 1st and 2nd points)

2 straight line as an internal diagonal (input

only 1stand 2nd points)

3 circular arc specified by 3 points with the

1st and 3rd points at the ends of the arc. The

2nd point on the arc can be anywhere between

the 1st and 3rd points.

4 circular arc specified by 1st and 2nd points

at the ends of the arc with the coordinates of

the center of the arc given as the 3rd point

(delete I and J)

F-6

Page 107: Prepared by James G. Crose and Robert M. Jones

BOUNDARY CONDITION CARDS

These cards are included only if a mesh is generated.

Each card assigns a particular boundary condition to a block of elements

bounded by 11, 12, Jl, J2. For a line, 11 =12 or Jl =J2. For a point,

11 = 12 and J 1 = J2.

The number of cards must agree with the numbers in Columns 16-20 of the

MESH GENERATION CONTROL CARD.

Maximum

Minimum11-15

16-20

Format (415, 3F10.0)

Columns 1 -5 Minimum 1

6-10 Maximum 1

J

J

21-30

31-40

41-50

Boundary condition code ~:~

Radial boundary condition,

Axial boundary condition,

XR

XZ

If the number in Columns 21-30 is

O.

1.

2.

3.

!XRis the specified R -load and

XZ is the specified Z-load

!XRis the specified R -displacement and

XZ is the specified Z -load

!XRis the specified R-load and

XZ is the specified Z -displacement

!XRis the specified R-displacement and

XZ is the specified Z -displacement

All loads are total forces acting on a one-radian segment.

':' See Appendix A, Section A. 2 for instructions to input skew boundaryconditions.

F-7

Page 108: Prepared by James G. Crose and Robert M. Jones

MATERIAL BLOCK ASSIGNMENT

These cards are included only if a mesh is generated.

Each card assigns a material definition number to a block of element,

defined by the I, J coordinates.

The number of cards must agree with the number in Columns 21 -25 of the

MESH GENERATION CONTROL CARD.

Format (SIS, FlO.O)

Columns 1-5 Material definition number (1 through 6)

6 -10 Minimum I

11-15 Maximum I

16-20 Minimum J

21-25 Maximum J

26-3.5 0, material principaL property inclination :1.nglc

F-8

Page 109: Prepared by James G. Crose and Robert M. Jones

NCASE

TEMPERATURE FIELD INFORMATION

These cards are not required if Columns 26-30 of the JOB CONTROL CARD

are blank.

If the temperature field is given on the cards (i. e .. a number greater than 1

appears in Columns 26-30 of the JOB CONTROL CARD), one card must be

supplied for each point for which a temperature is specified.

Format (3Fl0.0)

Columns 1-10 R

11 -20 Z

21-30 Temperature

If the temperature field is given on tape (i. e •• -1 in Columns 26-30 of the

JOB CONTROL CARD), a single card is used to indicate the file record

desired.

Format (IS)

Columns 1-5

If a constant temperature field is specified (i. e •• -2 in Columns 26-30 of

the JOB CONTROL CARD), the value is given on a single card.

Format (FlO. 0)

Columns 1-10 Temperature

F-9

.~

Page 110: Prepared by James G. Crose and Robert M. Jones

PORE PRESSURE CARDS

These cards are not required if Columns 41-43 of the JOB CONTROL CARD

are blank.

If the pore pressure field is given on the cards (i. e., a number greater than 1

appears in Columns 41-43 of the JOB CONTROL CARD), one card must be

supplied for each point for which a pore pressure is specified.

Format (3FI0.0)

Columns 1-lOR

11-20

21 -30

zPres sure

If the pressure field is given on tape (i. e., -1 in Columns 41-43 of the JOB

CONTROL CARD), a single card is used to indicate the file record desired.

Format (15)

Columns 1-5 NCASE

If a constant pore pressure field is specified (i. e., -2 in Columns 41-43 of

the JOB CONTROL CARD), the value is given on a single card.

Format (FlO. 0)

Columns 1-10 Pressure

F-IO

Page 111: Prepared by James G. Crose and Robert M. Jones

NODAL POINT CARDS

One card is required for each nodal point in numerical sequence. These

cards are not included if a mesh is generated.

Format (15, 7 FlO. 0)

Columns 1-5 Nodal point number

6-15 Boundary condition code ,;,

16-25 R -coordinate

26-35 Z-coordinate

36-45 XR

46-55 XZ

56-65 Temperature (if not given on temperature cards

or on tape)

66-75 Pore Pressure (if not given on cards or on tape)

If the number in Columns 6-15 is

O.

I.

2.

3.

tR is the specified R -load and

XZ is the specified Z -load

!XRIS the specified R -displacement and

XZ is the specified Z-load

!XRis the specified R-Ioad and

XZ is the specified Z -displacement

\XRis the specified R -displacement and

XZ IS the specified Z -displacement

All loads are total forces acting on a one-radian segment.

If NODAL POINT CARDS are omitted, nodal points will be generated at equal

intervals along a straight line between the defined nodal points. The

boundary condition code is then O. along with XR and XZ . The

temperature s are linearly interpolated from the defined temperature s.

,;, See Appendix A, Section A. 3 for instructions to input skew boundaryconditions.

F-ll

Page 112: Prepared by James G. Crose and Robert M. Jones

ELEMENT CARDS

These cards are not included if a mesh is generated.

One card is required for each element in numerical sequence.

Material identification

Ci, material principal property

angle

Format (615, FIO.O)

Columns 1-5 Element number

6 -IONodal point 1

J

111-15 Nodal point

16-20 Nodal point KLJ

21 -2 5 Nodal point

26-30

31-40

1.

2.

Order nodal points counter­clockwise (see Figure 1 ofmain text) around element.

Maximum difference betweennodal point numbers mustbe less than 25.

inclination

If ELEMENT CARDS are omitted, the program generates the omitted elements

by incrementing by 1 the preceding I, J, K, and L. The material

identification code for the generated elements is the value specified on the

first nongenerated card. The last ELEMENT CARD must be supplied.

Triangular elements are specified by repeating the last nodal point number,

i. e., I, J, K, K.

F-12

Page 113: Prepared by James G. Crose and Robert M. Jones

PLOT SCALE CARD

This card is not included if plots with a 10 -inch maximum or minimum

dimension are elected and/or if a deformed grid plot is not desired. If

101 or 102 appears in Columns 11-15 of the JOB CONTROL CARD, the

following information must be supplied to describe the scale of the plots:

Format (4FlO.0)

Columns 1-10 Radial location of plot orIgIn

11-20 Axial location of plot origin

21-30 Plot scale (number of units per inch of

plot paper)

31 -40 Factor by which displacements will be

multiplied for purposes of plotting nodal

point deflections to an exaggerated scale

on the element plot

F-13

Page 114: Prepared by James G. Crose and Robert M. Jones

MATERIAL PROPER TY INFORMATION

The following group of cards must be specified for each of a maximum of

six materials.

a. MATERIAL IDENTIFICATION CARD

Format (2.I5, FIO.O, 15)

11 -20

21 -30

31-40

41-45

Columns 1-5

6-10

Mate rial identific ation num be l'

Number of temperatures for which properties

are given (12 maximum)

Mass density of material (if required)

Thermal expansion parameter (If 1, free

thermal expansions are on the material

property cards. Otherwise, coefficients of

thermal expansion are on the material

property cards.)

Material effective porosity

Isotropy parameter, ISO (If 0, all moduli must

be input. If 1, material i$ transversely isotropic

and E Q, VMN

need not be input. Also, GMN

is

input in place of E~. If 2, material is isotropic

and only EM' VMN , I;tM' and aM need be input. )

b. MATERIAL PROPERTY CARDS

Three cards are required for each temperature.

TENSILE PROPERTIES CARD Format (8FlO.O)

Columns 1-10

11 -20

21-30

31-40

41-50

Temperature

Modulus of elasticity, E MtModulus of elasticity, E

NtModulus of elasticity, E QtPoisson's ratio, V

MNt

F-14

Page 115: Prepared by James G. Crose and Robert M. Jones

51-60

61-70

71-80

(Note that vMNt =

are zero.)

Poisson's ratio, VMGt

Pois son's ratio, VNGt

Modulus of elasticity at 45 degree s to MN

coordinate system':' E~ (If ISO = I, input

shear modulus GMNt

• )

EN- EM for aM = at and all other stresses

(Note that E~ can be calculated from

+ + IE

Nt

where GMNt

is the shear modulus in an all-tension stress field. )

COMPRESSIVE PROPERTIES CARD

Format (lOX, 7FIO.0)

Columns II -20 Modulus of elasticity, EMc

21-30 Modulus of elasticity, ENc

31-40 Modulus of elasticity, EGc

41-50 Poisson's ratio, vMNc

51-60 Poisson's ratio, vMGc61-70 Poisson's ratio, v

NGc71-80 Modulus of elasticity at 45 degrees to MN, ,

coordinate system E where VMN

and Ec c c

defined in a manner similar to VMNt and

(If ISO = 1, input shear modulus GMN c' )

,;, The relative location of the M-N coordinate system to the R -2 bodycoordinate system for the angle ct input on the MATERIAL BLOCKASSIGNMENT CARD or the ELEMENT CARDS is described III

Figure F-l.

F-15

Page 116: Prepared by James G. Crose and Robert M. Jones

THERMAL AND YIELD PROPERTIES CARD

Format (lOX, 7FIO. 0)

Columns 11-20

21-30

31 -40

41-50

51-60

61-70

71-80

N

No:;;~

Fre e the rmal s tra in, aM T, or

Coefficient of thermal expansion, aM

Free thermal strain, aNT, or

Coefficient of thermal expansion, aN

Free thermal strain, a g T, or

Coefficient of thermal expans ion, a g

Yield stress, JM

Yield stress, aN

Yield stress, ag

Ratio of effective plastic to elastic

modulus, PEMR

z

M

... ...... R

Figure F-l. Orientation of Principal Material (MN) AxesRelative to Body (RZ) Axes

F-16

Page 117: Prepared by James G. Crose and Robert M. Jones

BOUNDARY PRESSURE CARDS

The numbe r of cards must corre spond to the value of NUMPC input in

Columns 46-50 of the JOB CONTROL CARD. If the number is positive, the

pressure input corresponds to the element bounded by nodal points I and J.

The positive sense of pressure is shown in Figure F-2a. Surface normal

tensile force is input as a negative pressure.

Format (215, FIO.O)

Columns 1-5 Nodal point I

6-10 Nodal point J

1 I -20 Normal pressure

If NUMPC is negative, pressures are linearly interpolated between end points

identified by the two-dimensional (mesh generation is required) nodal point

numbering system. One card is required for each part of the boundary so

designated. The positive sense of pressure is shown in Figure F-2b which

also illustrates the meaning of the input quantities.

Format (415, 2FIO.0)

Columns 1 -5 II

6-10 Jl

11 -15 12

16-20 J2

21 -30 PI

31-40 P2

F-17

Page 118: Prepared by James G. Crose and Robert M. Jones

z

12. J2---4--,

P2

NoN

'"Ml=.l

(a)

NORMALPRESSU R.-=E:..-,....o...

11, J 1

P1 (b) R

Figure F-2. Boundary Pressure Sign Convention

F-18

Page 119: Prepared by James G. Crose and Robert M. Jones

BOUNDAR Y SHEAR CARDS

The number of cards must correspond to the value of NUMPC input in

Columns 51-55 of the JOB CONTROL CARD. If the number is positive, the

shear input corresponds to the element bounded by nodal points I and J

The positive sense of shear is shown in Figure F-3a.

Format (215, F10.0)

Columns 1 -5 Nodal point I

6-10 Nodal point J

11-20 Surface shear

If NUMPC is negative, shears are linearly interpolated between end points

identified by the two-dimensional numbering system. One card is required

for each part of the boundary so designated. The positive sense of shear is

shown in Figure F-3b which also illustrates the meaning of the input

quantities.

Format

Columns

(415, 2FlO. OJ

1-5 Il

6-10 Jl

11-15 12

16-20 J2

21-30 Sl

31-40 S2

F-19

Page 120: Prepared by James G. Crose and Robert M. Jones

z

12. J2 S2---

'- t----- J '-

----- ---------- ----\ \

\ \\ ~ACE \

\ SHEAR 11 , J1 \

Sl

(a) (b)N0 R'"'"t:lN

:::

Figure F-3. Boundary Shear Sign Convention

F-20

Page 121: Prepared by James G. Crose and Robert M. Jones

CONTOUR PLOTTING CARDS

a. PLOT CONTROL CARD

This card must be included if stop parameter (Columns 3 -5 on JOB

CONTROL CARD) equals 0 or 1. It can be blank if no contour

plots are desired.

Format (16)

Columns 1-6 Number of plots

b. PLOT CARD

One card is required for each contour plot.

Format (216, 1OF6. 0)

Columns 1-6 Plot code (see below)

7-12 Number of contours

13 -18

19 -24

25 -30

31 -36

37 -42

43 -48

49-54

55-60

61-66

67-72

Value of each contour (10 maximum)

The following plot code numbers (Columns 1-6) specify the functions to

be plotted:

1 R stress 1 a R2 Z stress, a Z3 9 stress, a g

4 R-Z stress, T RZ

F-21

Page 122: Prepared by James G. Crose and Robert M. Jones

5 Maximum principal stress in R-Z plane

6 Minimum principal stress ifl R-Z plane

7 Angle to maximunl principal stress

8 M stress, aM

9 N stress, aN

10 M-N stress, TMN

I I R strain, ER

12 Z strain, EZ

13 Q strain, EQ

14 R -Z strain, YRZIS Maximum principal strain in R-Z plane

16 Minimum principal strain in R-Z plane

17 Angle to maximum principal strain

18 M strain, EM

19 N strain, EN

20 M-N strain, YMN21 Temperature, T

22 Pore pres sure, P

If the plot code is a negative integer, the first plotted contour for the

lowest and highest contour value is labeled with the contour value.

Additional contours of the same value are not labeled. The contour

values need not be input in any special order as they are arranged in

ascending order in Subroutine CONTR.

F-ZZ

Page 123: Prepared by James G. Crose and Robert M. Jones

END OF CASE

This card is the last card for each case and must always be included for

each case.

Format

Columns

END OF DATA

(20 A4)

1 -1 1 END OF CASE

This card is the last card in the data deck and must always be included

as such.

Format

Columns

(20 A4)

1-11 END OF DATA

F-23

Page 124: Prepared by James G. Crose and Robert M. Jones

(This page intentionally left blank)

F-24Q

Page 125: Prepared by James G. Crose and Robert M. Jones

APPENDIX G

FOR TRAN IV COMPUTER PROGRAM

The SAAS III program has been made operational on three "third

generation" computers, the IBM 360/65, the UNIVAC 1108, and the CDC

6600. Most of the development work on the program was performed on the

IBM 360/65 at The Aerospace Corporation, San Bernardino Operations.

An alternative version was simultaneously made operational on The

Aerospace Corporation, El Segundo Operations' CDC 6600. More recently,

a third version was made operational on the Southern Methodist University /

Alpha Systems, Inc. UNIVAC 1108. The IBM 360/65 program listing is given

in this appendix along with those changes required to make the program

operational On the UNIVAC 1108 and the CDC 6600. First, however, the

FORTRAN auxiliary units are described as are the functions of each of the

subroutines. Finally, The Aerospace Corporation plotting routine PLT 360

is described to aid in conversion of the program to other computer systems.

G.l DESCRIPTION OF FORTRAN AUXILIARY UNITS

Six FORTRAN auxiliary units, 1, 2, 3, 9, 10, and 14, are used in

addition to the standard input and output files (Units 5 and 6 respectively)

as well as about 216 10 K bytes of IBM 360 core storage, 1428

K words of

CDC 6600 core storage, and about 50 10 K words of UNIVAC 1108 core

storage. The auxilary units can be tapes, disks, or drums.

Unit 1 is a scratch unit used for storage of the reduced simultaneous

equations in SOLVE and, after that storage is no longer needed, for storage

of arrays SIG and EPS as well as element center coordinates in CONTR. Unit

2 is a scratch unit used for storage of the stiffness matrix as generated in

G-l

Page 126: Prepared by James G. Crose and Robert M. Jones

STIF. Unit 3 is a scratch unit used to transfer the principal stresses from

STRESS to MPROP. Unit 9 is a scratch unit used as an input file after all

data cards have been written on Unit 9 and on the output file. Unit lOis a

"restart" or saved unit provided for the optional feature of restarting the

program as described in Appendix A, Section A. 5. Unit lOis also used as

a scratch unit to transfer stresses and strains from STRESS to CONTR. Unit

14 is an input unit for temperature information in TEMI (which may also be

the output unit for a thermodynamics program used to predict temperatures

in the body for which the thermal stresses are desired). On the UNIVAC

1108, auxiliary Units .. and 31 are used for plotting and encode/decode of

numbers respectively. Unit 4 is assigned in MAIN, and Unit 31 is called in

BDF.

Page 127: Prepared by James G. Crose and Robert M. Jones

G.2 FUNCTIONS OF SUBROUTINES

The functions of the subroutines which comprise SAAS III are as follows:

1. MAIN Program

The input data are read and written, certain parameters are initialized,

and Subroutines DATA, MESH, PNTIN, FLDIN, PLTM, MATLP,

PRESIN, STIFF, SOLV, STRESS, and CONTR are called.

2. Subroutine DATA

All data case card images are read, written on the output file, and

written on FORTRAN Unit 9 for access by the calling routine.

3. Subroutine REST

Certain blocks of COMMON are written on, or read from, FORTRAN

auxiliary Unit 10.

4. Subroutine MESH

The input data for mesh generation are read and used to define the

mesh in two dimensions. Subroutines MNIMX, ANGLE, CIRCLE,

and POINTS are called.

5. Subroutines MNIMX, ANGLE, CIRCLE

These subroutines perform minor functions as noted in the comment

cards.

6. Subroutine POINTS

The two-dimensional mesh is transformed into a one-dimensional

mesh by use of function NODE.

7. Subroutine PNTIN

This subroutine enables the user to input nodal point and element data

without two-dimensional mesh generation. It is consistent with the

original SAAS I program.

G-3

Page 128: Prepared by James G. Crose and Robert M. Jones

8. Subroutine FLDIN

This subroutine inputs temperature and pressure field data in the form

of an arbitrary set of point values. A two-dimensional linear inter­

polation subroutine (Subroutine TEMP) transfers field values to the nodal

point set.

9. Subroutine TEMI

FORTRAN auxiliary Unit 14 is read to obtain temperatures at arbitrary

Rand Z coordinates.

10. Subroutine TEM2

A constant temperature is read and assigned to all nodal points.

11. Subroutine TEMP

Temperatures at arbitrary Rand Z coordinates are interpolated to

nodal point values.

12. Subroutine MA T LP

The material properties are read from FORTRAN Unit 9 and written on

the output file.

13. Subroutine PRESIN

This subroutine inputs pressure or shear boundary conditions. It

calls Subroutine PBNDR Y.

14. Subroutine PBNDRY

This subroutine converts boundary pressures and shears to equivalent

nodal point forces and stores the results in the boundary condition

vectors.

15. Subroutine STIFF

Subroutine QUAD is called. The quadrilateral stiffness matrices are

combined to form the complete stiffness matrix in blocks. Subroutine

MODIFY is called prior to writing the blocks on FORT RAN auxiliary

Unit 2.

G-4

Page 129: Prepared by James G. Crose and Robert M. Jones

16. Subroutine QUAD

The 10 by 10 quadrilateral stiffness matrix is formed for the nth

element by calling Subroutine TRISTF four times. Subroutine MPROP

is called.

17. Subroutine MPROP

This subroutine finds the stress-strain relationship in body coordinates.

Subroutines SYMINV and ROTATE are called.

18. Subroutine ROTATE

The transformation matrix is calculated for a rotation.

19. Subroutine TRISTF

The 6 by 6 stiffness matrix for a triangular cross-section ring element

is formed. Subroutine INTER is called.

20. Subroutine INTER

Numerical integration is performed over the triangular ring elements.

The contribution of this subroutine by Dr. Frank Weiler while working

for The Aerospace Corporation is gratefully acknowledged.

21. Subroutine MODIFY (NEQ, N, U)

The stiffness matrix A and load matrix B are modified for a specified

displacement U at Eq. No. N.

22. Subroutine SYMINV (A, NMAX)

The symmetric matrix A (NMAXxNMAX) is inverted.

23. Subroutine SOLV

The stiffness and load matrices are read from FORTRAN auxiliary Unit

2 and solved for the nodal point displacements which are stored in the B

arra y. Note that, for problems with more than 50 nodal points, the B

array will overflow into the A array, but the storage is available at this

time.

G-5

Page 130: Prepared by James G. Crose and Robert M. Jones

24. Subroutine STRESS

The stresses and mechanical strains are calculated output and written

on FORTRAN auxiliary Unit 10. Subroutines QUAD, MPROP, SYMINV,

and REST are called.

25. Subroutine PLTM

The mesh is plotted with a maximum dimension of 10 inches if IPLOT = I,

or with a minimum size of 10 inches if IPLOT = 2.

26. Subroutine CONTR

The stresses and strains are transferred from FORTRAN auxiliary

Unit 10 to Unit 1. Subroutine REST is called. The plotting of stress,

strain, and temperature contours is controlled from this subroutine.

Subroutines DRAW, BDF, and PLT are called in addition to function

NODE.

27. Subroutine DRAW

DRAW is a standard Aerospace Corporation subroutine for contour

drawing.

28. Subroutine BDF

A number is converted to a hollerith array that can be used as contour

plot annotation. It has IBM 360, CDC 6600, and UNIVAC 1108 versions.

29. Subroutine PLT

PLT is a standard Aerospace Corporation plotting subroutine. Its use

is described in Section G. 4.

G-6

Page 131: Prepared by James G. Crose and Robert M. Jones

G.3 IBM 360 FORTRAN IV COMPUTER PROGRAM LISTING

G-7

Page 132: Prepared by James G. Crose and Robert M. Jones

c••••**•••* MAIN 1C SAAS III. FINITE ELEMENT STRESS ANALYSIS CFAXISYMMETRIC AND PLANEMAIN 2C SOLIDS WITH DIFFERENT ORTHOTROPIC. TEMPERATURE-DEPENDENT MATERIAL MAIN 3C PROPERTIES IN TENSION AND COMPRESSION INCLUDING THE EFFECTS OF MAIN 4C INTERNAL PORE FLUID PRESSURES AND THERMAL STRESSES. MAIN 5C 8Y JAMES G. CROSE AND ROBERT M. JONES MAIN 6C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MAIN 1

COMMON/BASIC/NUMNP.NUMEL.NUMPC.NUMSC.ACELl.ANGYEL.TREF.YOL.IFREQ MAIN BCOMMGN/MATP/ROI61.AOFTSI61.EI12.22.61.EEI211.POROTYI61 MAIN 9COMMCN/NPDATA/R1I0001.CODEII0001.XR1I0001.l1I00DI.XlIIDDOI.TIIOOOIMAIN 10COMMON/ELDATA/IXII000.51.EPRII0001.ALPHAllDOOI.PST1I0001 MAIN 11DOUBLE PRECISION CRl.Xl.RR.ll.S.RRR.lll MAIN 12COMMCN/ARG/RRRI51.lll151.RRI41.ll141.S110.101.CRlI4.41.XIIIOI. MAIN 13

I P1I01.TTI41.HI6.101.HHI6.101.ANGLEC41.SIGII01.EPSII01.N MAIN 14DOUBLE PRECISION X.Y.TEM MAIN 15COMMON/SOLYE/XC17001.YI17001.TEMI17DOI.~UMTC.MBAND MAIN 16COMMON/PTT/IPLOT.TITLEI201.RMIN.lMIN.DELP.TILT.FACT.IDEF MAIN 17COMMON/TD/IMIN1I001.IMAXIIOOI.JMINI251.JMAXI251.MAXI.MAXJ.NMTL.NBCMAIN IBCOMMON/CONYRG/IPDONE,ITCDON.NNLA.HTCA.NTITER.OLOSIGI41 MAIN 19COMMCH/PLANE/NPP MAIN 20

C••••••••••••••••••••**•••••••••••••••••••••••••••••••••••••••••••••••••MAIN 21C REAC AND WRITE INPUT DATA CARD IMAGES fOR ALL CASES MAIN 22C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••HAIN 23

CALL OATA1NCASESl MAIN 24NCASE=O MA I N 25

100 HCASE=NCASE+l MAIN 26REWIND 10 MAIN 27REiolND 14 MAIN 28

C•••••••••••** ••••••••••••••••••••••••••••••••••••••••••••••~••••••••••*MAIN 29C READ AND WRITE CCNTROL INFORMATION MAIN 30C•••••••••••••••* MAIN 31

READI9.10DOI TITLE.NPP.ISTART.ISTOP.IDEF.IPLOT.~NLA.IMESH.NUMTC.MAIN 32INUMNP.NUMEL.NPORPR.NU~MAT.NUMPC.NUMSC.TREf.NTCA.lfREQ MAIN 33

WRITE16.20001 TITLE.ISTART.ISTOP.IDEF.IPLCT.NNLA.IMESH.NUMTC. MAIN 34INUMNP.NUMEL.NPORPR.NUMMAT.NUMPC.NUMSC.TREf MAIN 35IFINPP.E,.11 WRITE16.20041 MAIN 36IFC~PP.E'.21 WRITEC6,200S1 MAIN 31.RITEI6.20301 NTCA MAIN 3BANGYEL=O. MAIN 39ACELl=O. MAIN 40IFllfREQ.EQ.OI GO TO 150 MAIN 41REA019.10011 ANGYEL,ACELl MAIN 42WRITE16.20011 MAIN 43IfINPP.EQ.OI WPITEC6.20021 ANGYEL.ACELl MAIN ~4

IFINPP.EQ.l.OR.NPP.EQ.21 WRITE16.20031 ANGYEL.ACELl MAIN 45150 GO TO 120e, 0;001.1 START MAIN ~6

c••**••**.***•••••***••***.****.**•••****•••••••••**••**.******•••*••••*HAIN 41C GENERATE FINITE ELEMENT MESH MAIN ~B

c••••••••• **.*****.*.***•••••••••••*••******.**•••***.*••••••••***•••••*MAIN 49200 IfIIMESH.NE.OI CALL MESH MAIN 50

C MAIN 51C INIT IALllE MAIN 52C MAIN 53

DC 250 II=I.NUMNP MAIN 54PSTlIlI = O. MAIN 55

250 TIl Il=O. MAIN 56C•••••**$.*****.****.***•••*.**••*********•••****••*******••••••**.*•••*MAIN 57C READ AND WRITE NODAL POINT AND ELEMENT tATA MAIN 58c*.****.*.***********••*••****•••***•••***.*•••••***•••*••••••••••••*•••MAIN 59

IFIIMESH.EQ.OI CALL PNTIN MAIN 60c••••••••••••••**•••••••••••••••••***•••••••••**.*.** •••••••••***•••*•••MAIN 61C READ AND WRITE TEMPERATURE OATA MAIN 62c•••••••••******•••••• *••••••••**•••**.****••****••••••• ***••* ••••••*•••MAIN 63

IFINUMTC.NE.OI CALL fLDINIT.R.l.NUMTC.NUM~P.IMESH.NU~ELI MAIN 64c••*•••*••••*•••••*•••••**•••••••••••*••••*•••••••••••*****•••*•••••**••HAIN 65C READ AND WRITE PORE PRESSURE DATA MAIN 66c••*.*••••**•••••••••**••*••**••********•••••**.*.*****.***••**••••••*••MAIN 61

IFINPORPR.NE.OI CALL FLOINIPST.R,I.NPORPR.NUMNP.IMESH.NUHELI MAIN 68C••••••••••*•••••••••••••**•••**••••*•••••••***•••••*****••••••***••••*.HAIN 69C OUTPUT ELEMENT DATA MAIN 70

G-8

Page 133: Prepared by James G. Crose and Robert M. Jones

c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MAIN 71MPRI~T=O MAIN 12DO 350 N=I.NUMEL MAIN 13IFIMPRINT.NE.OlGO TO 300 MAIN 14wRITE16.20081 MAIN 15MPR I NT=40 MA IN 16

300 HPRI~T=MPRINT-I MAIN 11350 wRITE(6.200~1 N.IIX(N.II.I=I.5l.ALPHAI~I.TINI.PSTINI MAIN 78

DELP=O. MAIN 7~

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MAIN 80C PLOT MESH MAIN 81C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••HAIN 82

IFIIPlOT.LE.~~1 GO TO 400 MAIN 83IPLCT=IPLOT-IOO MAIN 84READI~.IOOII RMIN.lMIN.DELP.FACT MAIN 85

400 IFIIPLOT.EC.I.OR.IPLOT.EC.ll CALL PlTMll1 MAIN 86IFIISTOP.EQ.II GO TO ~IO MAIN 87

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MAIN 88C READ AND WRITE MATERIAL PROPERTIES MAIN 8~C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••HAIN 90

500 IFI~~MMAT.EQ.OI GO TO 600 MAIN ~I

CALL MATLPINUMMATI MAIN ~2

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MAIN 93C READ AND WRITE PRESSURE AND SHEAR 8GUNCARY CONDITICNS MAIN ~4

C MAIN 95600 IF(N~MPC.NE.OI WRITE16.20131 MAIN ~6

IFINUMPC.NE.Ol CALL PRESININUMPC.I.1 MAIN ~1

IFlhUMSC.NE.OI WRITEI6.20ISl MAIN ~8

IFINUMSC.NE.OI CALL PRESININUMSC.D.l MAIN ~~

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••~AIN 100C CCNVERT PORE PRESSURES TO EQUIVALENT STRESSES MAIN 101C••••••••••••••••••••••••••••••••*••••••••••••••••••••••••••••••••••••••MAIN 102

IFINPORPR.EQ.OIGO TO 100 MAIN 103IFIISTART.EQ.2lGO TO 700 MAIN 104DO 650 N=I.hUMEL MAIN lOSMTYPE=IXIN.51 MAIN 106

650 PSTINI=-PSTINI*PO~OTYIMTYPEI MAIN 107C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••~AIN 108C DEIER~lhE BANDWIDTH. 1~ITIAlIIE ELASTI(-Pl~STIC RATIO. MAIN 10~

( AND CONVERT 8ETA FROM DEGREES TO RADIANS MAIN liD, ••••••••••••••••••••*••**••••••••*•••••••••••••••••••••••••••••••••••••MAIN 111

100 J=O MAIN 11200 710 N=I.NUMEL MAIN 113DO 110 1=1.4 MAIN 114DO 110 L=I.4 MAIN 115KK=IA8SIIXIN.II-IXIN.lll MAIN 116IFCKK.GE.JI J=KK MAIN III

110 CONTINUE MAIN 118M8AND=2*J+2 MAIN 11~

DO 120 N=I.NUMEL MAIN 120EPRINI=I. MAIN 121

120 ALPHAINl=ALPHAINI/S7.29S7" MAIN 122C*•• 3 •• $ •••••••••••••••**•••••••**•• **•••• $ ••••••*.********•••••**••••••MAIN 123C SOLVE NONLINEAR EL~STIC PRUtiLEM 8Y SUCCESSivE APPROXIMATIONS MAIN 124C••••••••••••••••••••••_•••••**•••••••••••••••••••••_•••••••••••••••••••MAIN 125

DO 820 NPITER=I.NNlA MAIN 126( MAIN 121C SOLvE TENSICN A~J CU~PkESSICN PRUBLEM ey SUCCESSIVE ~PPROXIMATIONSMAIN 128( MAIN 12~

DO BCD NTITER=I.NTCA MAIN 13CC MAIN 131C FORM STIFfNESS MATRIX MAIN 132( MAIN 133

(All STIFF MAIN 134C MAIN 135C SOLVE FUR UISPlACEMENTS MAIN 136C MAIN 137

CALL SOLv MAIN 138C MAIN 13qC COMPUTE STRESSES MAIN 140

G-9

Page 134: Prepared by James G. Crose and Robert M. Jones

C MAIN 141CAll STRESS MAIN 142

C MAIN 143IFIITCCCN.E'.ll GO TC 810 MAIN 144

800 CONT 1NUe lolA I N 145C MAIN 146

810 IFlITCDCN.E'.I.ANC.NTCA.GT.11 WRITEl6.20201 NTITER MAIN 147IFlITCDCN.NE.I.ANU.NTCA.GT.ll WRITE16.20211 NTITER MAIN 148IF( IPDCNE.E'.I) GO TO 830 MAIN 149

C MAIN 150820 CONTINUE MAIN lSI

C MAIN 152830 IFIIPDONE.tQ.I.AND.NNLA.~T.llWRlTtl6,2022) NPlTER MAIN 153

IFlIPOONE.NE.I.ANC.NNLA.GT.Il .RITEl6.20231 NPITER MAIN 154IFIISTOP.EQ.21 ,,0 TO 910 MAIN 155

C••••••••••••••**•••••••••••••••••••••••••••••••••••••••••••••••••••••••~AIN 156C PLOT OUTPUT CONTOURS MAIN 157C••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••MAIN 158

900 CAll CONTRIISTARTI MAIN 159910 IFINCASE.lT.NCASESI GO TC 100 MAIN 160

CAll PLTl6l MAIN 161C MAIN 162

1000 FORI'lAT C20A4/12,13, I~, 12, 13,515,13, 12,215,F5 .. 0,,z15) HAIN 1631001 FORMAT 14flC.Ol MAIN 1642000 FORMAT 12HI ,20A41 MAIN 165

I 33~O START PARAMtTER---------------�4� MAIN 1662 33~C STOP PA~AMETER----------------141 MAIN 1673 33~C IF I, PLuT OEFLECTWNS 141 MAIN 1684 :l2~C IF I, SMALL PLCT. IF 2, LARGE! MAIN 16<;5 3jHG FLCT. uTHc~.ISE Ne PLUT.------I41 MAIN 1706 33~C NUM8ER U' APP~uXIMATIONS------I41 MAIN 1717 33~0 IF I, GtNERATE MESH-----------141 MAIN 1728 3J~C ~U~rltH Of Tc~PEHATUk~ CARDS---14/ MAIN 1734 33HC NUMdEk Uf NCLAL PCINTS--------141 MAIN 1741 J3HU NUMDtR UF tLEME~TS------------I41 MAI~ 1752 33HC NUMBER UF INTERNAL PRESSURES--141 MAIN 1763 33HO NUMBER OF MATERIALS-----------141 MAIN 1774 33HO NUMBER OF EXTERNAL PRESSURES--141 MAIN 1785 33~C NUMBER UF SHEAR CARDS---------141 MAIN 1796 33HC REFERENCE TEMPERATURE---------EI2.41Il MAIN IBC

2COI FUR~AT 177H A FUNDAME~TAL FREQUENCY hiLL 8E COMPUTED. A LONGER RUNMAIN 181I TIME WILL 8E UBSERVED/80H DUE TO THE NEED TO RECOMPLTE EACH ELEMEMAIN IB22NT STIFFNESS MATRIX IN SUBROUTINE STRESS) MAIN IB3

2002 FORMAT 124H THE ANGULAR VELOCITY IS,EI2.4./3IH AND THE AXIAL ACCELMAIN 184IERATION IS ,E12.41 MAIN 185

2003 FOR~AT 123H THE R ACCELERATION IS .EI2.4/27H AND THE Z ACCELERATIOMAIN IB6IN IS ,E12.4l MAIN 187

2004 FORMAT 11142H THE PLANE STRAIN CPT ION HAS BEEN SELECTEOl MAIN 1882005 FORMAT ll142H THE PLANE STRESS OPTION HAS BEEN SELECTEOl MAIN 1892008 FORMAT 167H1 EL I J K L MATERIAL ANGLE TEMPERATURE MAIN 190

1 PRESSUREl MAIN 1912009 FORMAT 115.414.IB.F11.1,2FI3.3l MAIN 1922013 FORMAT l30HI PRESSURE 80UNDARY CUNDITIONS) MAIN 1932015 FORMAT l27H1 SHEAR 80UNDARY CONOITIC~Sl MAIN 1942016 FORMAT 126H THE SYSTEM CONVERGED IN 12.IIH ITERATIONS) MAIN 1952017 FORMAT l33H THE SYSTEM 010 NOT CONVERGE IN 12.11H ITERATIONS) MAIN 1962020 FORMAT 1/2gH THE PROCEDURE CONVERGED IN .12,34H TENSION - COMPRESMAIN 197

ISION ITERAT1UNS I MAIN 1982021 FORHAT 1/36H THE PROCEDURE 010 NCT CC~VERGE IN .12.33H TENSION - MAIN 19S

lCOHPRESSION ITERATIONSl MAIN 2002022 FORMAT 1/29~ THE PROCEDURE CONVERGED IN .12.30H ND~LINEAR ELASTICMAIN 201

1 ITERATICNS ) MAIN 2022023 FORMAT 1/36H THE PROCEDURE 010 NCT CCNVERGE IN ,I2,30H NONLINEAR MAIN 203

lElASTIC ITERATIONS I MAIN 2042030 FORMAT l/51H NUM8eR OF TENSION-COMPRESSION APPROXIMATIONS----, MAIN 205

1 14//1 MAIN 206STOP MAIN 207END MAIN 208

G-IO

Page 135: Prepared by James G. Crose and Robert M. Jones

SUB~OUTINE CATAINCASESI DATA 1, •••••••••••••••••••••••••••**•••••••**.** ••••••••••**••••••••••••••••••OATA 2C ALL DATA CASE CARD IMAGES ARE READ, oRITTE~ C~ THE DUTPLT FILE, AND DATA 3C ~~ITTEN CN FORTRAN UNIT 9 FOR ACCESS BY THE CALLING RCUTINE. THE DATA 4C PARAMETER NCASES IS USEu IN THE CALLING PROGRAM FOR CCNTRULLING DATA 5C THE NUMBER OF CASES TC EXECUTE DATA 6C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••OATA 1C THE RE'UIRED DATA CARD CECK SETUP FOR N DATA CASES IS DATA BC CARD WiTH TUTAL hUMBER uF DATA CASES, NcASES, RIGHT-JUSTIFIED DATA 9C IN COLUMNS 1 THROUGH? DATA 10C CASE 1 DATA CARDS DATA 11C CARD WITH 'END OF CASE' IN COLUMNS 1 THROUGH II DATA 12C AND SO ON UNTIL DATA 13C CASE N DATA CARDS DATA 14C CA~D WITH 'END OF CASE' Ih C'-'LUMNS I THKGUGH II DATA 15C CARD WITH 'END Of DATA' IN COLUMNS I THRGUGH II DATA 16C•••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••OATA 11

DATA TEST/4hENO I DATA 18DIMENSICN CARO(20) DATA 19

C•••••••••••••••••••••••••• ••• •••••••• • •••••••••••••••••••••••••••••••••OATA 20REWINC 9 DATA 21NCASE=O DATA 22

C••••••••••••••••••• ••••••••••••••• •••••••••••••••••••••••••••••••••••••OATA 23C ~EAD AND oRITl THE NUMBER CF DATA CASES DATA 24c••••••••••••••••••••••• $ ••••*•• ~ ••*•••••••••• *•••***••••••***.*****••••OATA 25

REAOI5.1COOI CARO DATA 26oRITE(6,1001l CARC DATA 27WRITE(9.IDOOI CARU DATA 28

c••••••••••••••••••• ***.**••••••••••••••••• *••••••••••••••••••••••••••••OATA 2~

C READ AND WRITE INPUT DATA CAKU IMAGES FOR ALL CASES CN fCRTRAN UNIT 9DATA 30c••••••••••••••••••••••••*•••••••••••••• ** •••••• ** ••••••••••••••••••••••OATA 31

10 NCARD=O DATA 32NCASE=NCASE+1 DATA 33~PRlhl=O DATA 34

20 REACl5,IOOCI CARO DATA 35IFICAROlll.EQ.T[ST.ANC.NCARG.l~.OI GO TO 40 DATA 36NCARC=NCARC+I DATA 37IFICAROlll.NL.HSTI WRlTEI9,lOOOI CARD DATA 38IFIMPRINT.NE.Ol GU TO 30 DATA 39WRITEl6,lOOll NCASE DATA 40MPRINT=34 DATA 41

30 MPRIN1=MPRINT-l DATA 42_RITEI6,1003) CARD DATA 43IF1CARDI ll.NE. TEST) GO TD 20 DATA 441F(~CARC.NE.ll GC Te 10 DATA 45

l •••••••••••*.*****.*******************•••*.****.*****••• ***••••**••••••OATA 46C INITIALIZE AND TEST ACT CAL NUMBER UF DATA CASES AGAINST INPUT VALUE DATA 47c•••••••••••*•••••**••• *•••••••*_.*_ _ _..•.***••_•••••••••••• OATA 48

40 NCASE:NCASE-l OATA 49RE_INO 9 DATA 50REACI9,l004) NCASES DATA 51IFI~CASE.NE.NCASESI .RITE16,10051 DATA 52RETURN DATA 53

C.***••*****************.********~*.*****************************••*****OATA 541000 FORMAT (2DA41 DATA 551001 FORMAT 19H1 NCAStS=,20A4) DATA 56L002 FORMAT (118Hl NCASE=1211L3X,2HIO,8X,2H20,8X,2H30,8X,2H40,8X,2H50, DATA 57

18X,2h6C,eX,2H70,dX,2H80/5X,8CH12345678S012345678901234567890123456DATA 582789012345678901234567890123456789012345678,01 DATA 59

1003 FOR~AT 15X,20A4) DATA 601004 FORMAT (15) DATA 611005 FORMAT 172H THE NUM8ER GF INPUT CASES DeES NOT AGREE _ITH THE VALUDATA 62

IE CF NCASES INPUT) DATA 63END DATA 64

G -II

Page 136: Prepared by James G. Crose and Robert M. Jones

SUB~OUTIN~ RESTIll REST 1C REST 2

COMMON/BASIC/Alql REST 3COM~ON/MATP/BI16l31 REST 4CCM~CN/NPDATA/CI60001 REST 5COMMON/ElDATA/DIBOOOI REST 6COMMCN/ARG/EI4411 REST 1COMMON/SDlV~/SI40001 REST BCOM~CN/PTT/FI211 REST q

COMMCN/TD/Gl254l REST 10COMMCN/CONVRG/Tl91 REST 11COM~CN/PlANflNPP REST 12

C REST 13IFII.EQ.41 GO TO 300 REST 14IFII.EQ.2.0R.1.~Q.31 GC TO 100 REST 15REwIND 10 REST 16WRITEl101 A,B,C,O,E.F,G,NPP,S,T REST 17HTURN REST 18

C REST lq100 REwiND 10 REST 20

REAC (101 A,B,C,C,E,F,G,NPP,S,T REST 21IFII.EQ.3l RETURN REST 22DATA R/4HREAOI REST 23

200 REAC19,l0001 X REST 24IFIR.NE.XI GO TO 200 REST 25RETURN REST 26

C REST 27C UNIT 10 IS READ TO AN END OF FILE IAT THE END OF COM~ONI TO SAVE REST 28C TIME OVER USING RESTl31 REST 2qC RE ST 30

300 REWiND 10 REST 31READ 1101 REST 32RETURN REST 33

C REST 341000 FORMAT I A41 RE ST 35

END REST 36

G-12

Page 137: Prepared by James G. Crose and Robert M. Jones

SUBRCUTINE ~ESH MESH 1C ~~ 2

COM~CN/TO/IMINII001.I~AXIIOOI.J~INI251.J~AXI251.MAXI.~AXJ.NMTL.NBCMESH 3CO~~CN/NPDATA/RIIOOOI.CODEIIDDOI.XRIIOOOI.IIIOOOI.XZII0001.TII0001HESH 4COMMCN/ELUATA/IXII00C.51.EPRIIOOOI.ALPHAIICOOI.PSTIIOO01 HESH 5OI~E~SICN ARI25.1001.AI125.1001.NCCOEI25.IOCI MESH 6EQUIVALENCE IRIII.ARII.III.IIIII.AIII.III.IIXII.II.NCODEII.111 MESH 7

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MESH 8C MES. CONTROL INFORMATION MESH 9C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MESH 10

REACC9.10001 MAXI.MAXJ.NSEG.NBC.N~TL.NLIM.CONI.CONJ.ISET.JSET MESH II.RITEI6.200CIMAXI.MAXJ.NSEG.NBC.N~TL.~LIM.CONI.CONJ.ISET.JSET MESH 12

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MESH 13C INITIALIZE MESH 14C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MESH 15

ISEO:-l MESH 16PI:3.1415927 MESH 17DC 110 J:l,lOO MESH 1800 leo 1:1.25 MESH 19NCCCEII.JI:O MESH 20ARC I.JI:O. MESH 21Alll.JI:O. MESH 22JMAX 111:0 ME SH 23

100 JMINI II:MAXJ MESH 24IMINIJI=MAXI MESH 25

110 IMAXIJI:O MESH 26C••••••••••••••••••••• $ •••••••••• **•••••••••••••••••••••••••••••••••••••HESH 27C LIM SEGMENT CARCS ME SH 28C••••••••••••••••••••••*•••••** ••••••••••••••••••••••••*••••••••*•••••••M~SH 2q

200 ISEG:ISEG+1 MESH 30IfIISEG.EQ.~SEGI GO TO 500 MESH 31REAC(9,1001J Il,J1,Rl,11,12 t J2,R2,12 t 13,J3 t R3,13,IPTICN MESH 32~RITEI6.2001)ll.JI.Rl.11.12.J2.R2.Z2.13.J3.R3.13.IPTICN MESH 33IFIII.E'.-11 GO TO 500 MESH 34IPTICN=IPTION+1 MESH 35ARIIl.Jll:RI MESH 3tAllll.JlI:ll MESH 37NCOOEIII.JI):1 MESH 38CALL MNIMXIII.JII MESH 39GO TG 12CO.300.3CC.400.4001.IPTION MESH 40

C••••••••** •••••••** ••*••••••••••••••••••• ** ••••••••••••••••••••••••••••MESH 41C GENERATE STRAIG~T LINES ON BOUNDAR V MESH 42C••••••••••••* •••••••*.** •••••••••••••••*•••••••••••••••••••••••••••••••MESH ~3

300 OI:ABSIFLOATI12-1111 MESH 44OJ:ABSIFlOATIJ2-Jll) MESH 45ARI12.J21:R2 MESH 46AII12.J2):12 MESH 47NCDDEI12.J21:1 MESH 48CAll MNIMXI 12.J2) MESH 49ISHT=1l MESH 50ISTp:12 MESH 51JSTRT:JI MESH 52JSTp:J2 ME SH 53OIFF:AMAXIIDI.OJI MESh 54ITER:OIFF-I. MESH 55IlNC:O MESH 56JINC:O MESH 57

dfI12.NE.lll I1NC:112-11I/IABSI12-1l1 MESH 5BIFIJ2.NE.JII JINC:IJ2-JII/IABSIJ2-JII MESH 59KAPPA:I MESH 60IFI12.NE.ll.ANO.J2.NE.JI.ANO.IPTION.NE.3) KAPPA:2 MESH 61IFIKAPFA.EQ.21 0IFF:2.*OIFF MESH 62RINC:IR2-RII/0IFF MESH 63ZINC:112-111/0IFF MESH 64~RITEI6.20021 OI.OJ.OIFF.RINC.lINC.ITER.IINC.JINC.KAPPA MESH 65

C MESh 66C CHECK FOR INPUT ERROR MESH 67C MESH 68

IFIIPTION.E'.3 .ANO.CI.NE.OJI GG TO 310 MESH 69IFIKAPPA.NE.2.0R.OI.EQ.OJI GG TO 32C MESH 7U

G-13

Page 138: Prepared by James G. Crose and Robert M. Jones

310 ~RITElb,20031 MESH 71GO TO 200 MESH 72

C MESH 73C INTHPCLATE MESH 74C MESH 75

320 1= 11 MESH 7bJ=Jl MESH 77~RITElb,20041 MESH 7800 340 ~=1, IHR MESH 79IFIITER.EQ.0.ANO.IPTI0~.E~.21GO TO 340 ~ESH 80IFIKAPPA.H.21 GO TO 330 MESH 81IOLe=1 MESH 821=1+ I H,C ME SH 83JOLC=J ~ESH 84J=J+JINC ME SH 85ARII,JI=ARIIOLO,JOLOI'RINC MESH 8bAZII,JI=AlIIOLD,JOLDI.lINC MESH 87~RITElb,20051 I,J,ARII,JI,AZII,JI MESH 88CALL MNIMXII,JI MESH 89NCCCEll,JI=1 MESH 90GO TC 340 MESH 91

330 10LD=1 MESH 92I=I'IINC MESH 93ARII,JI=ARIIOLU,JI+RI~C MESH 94AllI,JI=AlIICLD,JI+llNC MESH 95~RITE16,20051 I,J,ARII,JI,AZII,JI MESH 96NCCCEII,JI=1 MESH 97CALL MNIMXII,JI MESh 98JDLO=J MESH 99J=J+JINC MESH 100ARII,JI=ARII,JOLDI+RINC MESH 101AlII,JI=Alll,JOLOI+lINC MESH 102NCODEII,JI=1 MESh 103WRITEl6,20D51 I,J,ARII,JI,AZII,JI MESH 104CALL MhlMXll,JI MESH IDS

340 CG~TlNUE MESH lObIFIKAPPA.EQ.11 GO TO 200 MESH 10710LD=1 MESH 108I=I+IINC MESH 109ARII.JI=ARIIOLD.JI+RINC MESH 110AlII,JI=AZIIOLD,JI+lINC MESH IIINCCOEII.JI=I MESH 112WRITEI6.20DSI I.J.ARII,JI,AZII.JI MESH 113CALL MNIMXII.JI MESH 114GO TC 200 MESH US

C••••••••••••••••••*•••******••***.******.***••••••***••*.*••••*********MESH 116C GENERATE CIRCULAR ARCS CN BOUNCARY MESH 117C••••••••••••••••••••••**•• *****••••*** ••***••••••••**••••••**••••*••••*HESH 118

400 ARI12,Jil=R2 MESH 119Al112,J21=Z2 MESH 120NCOCElli,J21 = I MESh 121CALL Mh1MX112.J21 MESH 122IFIIPTION.EQ.SI GO TO 420 MESH 123

C MESH 124C FINe CENTER OF CIRCLE MESH 125C MESH 126

AR113,J31=R3 MESH 127AZ113,J31=Z3 MESH 128NeOCEI13.J31=1 MESH 129CALL MNIHXI13.J31 MESH 130SLAC=122-l11/IR2-RII MESH 131SLBF=-I./SLAC MESH 132SLCE=ll3-Z21/IR3-R21 MESH 133SLCF=-I./SLCE MESH 134

C MESH 135C CHECK FeR INPUT ERROR MESH 136C MESH 137

IFIABSISLAC-SLCEI.GT ••OOll GO TO 410 MESH 138WRITE16.20061 Rl.ll,R2.li,R3,Z3.SLAC.SLCE MESH 139GO Te 200 MESh 140

G-14

Page 139: Prepared by James G. Crose and Robert M. Jones

410 R4=Rl+(Rl-Rl1/2. MESH 14114=11+(12-111/2. MESH 142R5=R2+IR3-R21/2. MESH 14315=12+113-121/2. MESH Ilt4BBF·14-SlBF*R4 MESH Ilt5BDF=15-SLDF*R5 MESH 146RC=leBF-BOF1/ISLDF-SLBFI MESH 1101lC=SIBF*RC+BBF MESH HBWRlTElb,20011 RC,lC MESH 1109KAPPA=I MESH 150GO TO 430 MESH 151

420 KAPPA=2 MESH 152RC=R3 MESH 1531C=l3 MESH 154

430 ISTRT=II MESH 155IS1P=12 MESH 156JSHT=Jl MESH 151JSTP=J2 MESH 158kS IA I=R I MESH 159kS TP=R2 MESH 160IST~T=11 MESH 161ISTP=12 MESH Ib2

440 CAll ANGlEIRSTRT,lSIRT.RC,lC,ANGIJ MESH Ib3CALL ANGLElRSTP,lSTP,RC,lC,ANG21 MESH lblt

C MESH 165C FINe ANGULAR lNCRE~ENT MESH lbbC MESH Ib7

OI=ABSIFLOATIISTP-ISTRTII MESH 16BDJ=AeSIFLuATIJSTP-JSTRTII MESH 169IINc=e MESH 110JI~C=O MESH 111IFIISTRT.NE.ISTPI IINL=IISTP-lSTRTl/IABSIISTP-ISTRTI MESH 112IFIJSTRT.NE.JSTPI JINC=IJSTP-JSTRTI/IA8SIJSTP-JSTRTI MESH 113LA~CA= I MESH 114IFIIINC.NE.C.ANO.JINC.NE.OI LAMDA=2 MESH 115OIFF=AMAXIIOI,DJI MESH 116ITER=DIFF-l. MESH 111IFILAMOA.EQ.21 DIFF=2.*0IFF MESH 118OEL=ANG2-ANGI MESH 119IFICEl.GE.PIIDEL=-12.*PI-DELI MESH lBOIFIOEL.LE.-PIIDEL=DEL+2.*PI MESH 181DELPHI =D ELI 0 I FF MESH 182WRITEI6,20081 ANGI,ANG2,DIFF,OELPHI MESH 183

C MESH 184C CHECK FOR INPUT ERROR MESH 185C MESH 18b

IFllAMDA.NE.2.0R.DI.E~.CJIGO TO 450 MESH 181WRITEl6,20031 MESH 188GG IC 200 MESH 189

C MESH 190450 10=ISTRT MESH 191

JO=JST RT MESH 192WRlTEl6,20041 MESH 193

C MESH 194C INTERPOLATE MESH 195C MESH 196

DO 480 k=I,ITER MESH 191IFILAMOA.EQ.21 GO TO 460 MESH 198I=IC+lINC MESH 199J=JC+JINC MESH 200CALL MNIMXll,JI MESH 201NCOOEII,JI=1 MESH 202CALL CIRCLElANG1,OELPHI,RSTRT,lSTRT,RC,lC,ARlI,Jl,AllI,JII MESH 203WRITEl6,20051 I,J,ARll,Jl,Alll,JI MESH 204GO TO 410 MESH 205

C MESH 20b460 I=IO+IINC MESH 201

J::lIlJ( MESH 208NCOCEIl,JI=1 MESH 209CALL kNIMXII,JI MESH 210

G-15

Page 140: Prepared by James G. Crose and Robert M. Jones

CALL CIRCLEIANGl,DELPHl,RSTRT,ZSTRT,RC,ZC,ARll,Jl,AZll,Jl1 MESH 211wRITEle,2005l I,J,ARll,Jl,AZll,JI MESH 212J=JC+J [NC MESH 213NCDUEII,JI=1 MESH 214CALL M~IMXII,Jl MESH 215CALL CIRCLEIANGI,DELPHI,RSTRT,ZSTRT,RC,ZC,ARII,JI.AZII,Jll MESH 216wRITEl6,20051 I,J,ARII,Jl,AZII,JI MESH 217

410 10=1 MESH 218480 JO=J MESH 219

IFILAMDA.NE.2l GO TO 490 MESW2201=IC+IINC MESH 221NCCCEII,Jl=1 MESH 222CALL MNIMXll,Jl MESH 223CALL CIRCLEIANGI,DELPHI,RSTRT,ISTkT.RC,ZC,ARII,JI,AZII,Jll MESH 224wRITEl6,20051 I,J.ARll,Jl,AZII,JI MESH 225

4~O IFIXAPPA.EO.2l GO TC 200 MESH 226ISTRT=12 MESH 227ISTP=J3 MESH 228JSTRT=J2 MESH 229JSTP=J3 MESH 230RSHT=R2 MESH 231RS TP=R3 MESH 232ISTRT=Z2 MESH 233ZS TP= l3 MESH 234XAPPA=2 MESH 235GO TC 44D MESH 236

L••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••***•••••••••MESH 231C CALCULATE CCORDINATES OF INTERICR PCINTS MESH 238C•••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MESH 239

50C IFIMAXJ.LE.21 GO TO 530 MESH 240J2=MAXJ-I MESH 241IFINLIM.LT.II NLIM = lOa MESH 24200 5LO N=I,NLIM MESH 243RESID=O. MESH 244CO 510 J=2.J2 MESH 24511=IMINIJI+I MESH 24612=HAXIJI-I MESH 241DO 510 1=11,12 MESH 248IFINCODEII,JI.EO.II GU TO 510 MESH 249DR=IARII+I,JI+ARII-I,JI+ARII,J+II+ARII,J-III/4.-ARII,J1 MESH 250

I +CCNI * lAR(J+l,JI - ARII-I,JlllflCATlS*II+ISETlI MESH 2512 + CCNJ * IARII,J+II - ARII,J-Ill 1 FLOATIS*IJ+JSETll MESH 252DZ=IAIII+l,Jl+AIII-I,Jl+AZII,J+II+AZII,J-lll/4.-AZII,J1 MESH 253

I + CONJ * IAIII,J+Il - AZII,J-Ill/FLDATIS*IJ+JSETII MESH 2542 + CONI * IAZII+l,JI - AZII-I,Jll 1 FLCATI8*11+ISETII MESH 255

RESIC=RESID+ABSIDRl+ABSIDZl MESH 256ARII,JI=ARII,JI+I.8*DR MESH 251AIII,Jl=AIII,JI+1.8*DI MESH 258

510 CONTINUE MESH 259IFIN.EO.ll RESI=RESID MESH 260IFI~.E_.I.ANC.RESIC.EO.OI GO TO 530 MESH 261IFIRESI0/RESI.LT.I.E-41 GO TO 530 MESH 262

520 CO~T1NUE MESH 263530 wRITEl6,20091 N MESH 264

c••••••••••••••••••••••••••••••••••••••••••••••••*******••••••**••••••**MESH 265CALL PCINTS MESH 266

c•••••••••••••••••••**••••••••••••••••••••••••**••*******•••••••••••*•••MESH 267RETURN MESH 268

C MESH 2691000 FORM~T 1615,2FIO.O,2151 MESH 21C1001 FORMAT 131213,2F6.3I,151 MESH 2112000 FORMAT 130Hl MESH GENERATION INFORMATIONII MESH 272

I 41HO MAXIMUM VALUE OF I IN THE MESH--------131 MESH 2732 41HC MAXIMUM VALUE OF J IN THE MESH--------131 MESH 2143 41HC NUMBER OF LINE SEGMENT CARDS----------131 MESH 2754 41HC NUMBER OF BOUNDARY CONOITICN CARUS----131 MESH 2765 41HO NUMBER OF MATERIAL BLOCK CARDS--------131 MESH 2716 41HO NUMBER OF ITERATIONS------------------131 MESH 2787 41HC POLAR COORDINATE PARAMETER 1----------EI2.41 MESH 2198 41HO POLAR COORDINATE PARAMETER J----------EI2.41 MESH 2BC

G-16

Page 141: Prepared by James G. Crose and Robert M. Jones

9 ~1~0 I CURVATURE ~OOIFICATION--------------131 ~ESH 2811 ~IHO J CURVATURE ~GOIFICATI0N--------------1311Il ~ESH 282

2001 FORMAT 11/88H INPUT 11 Jl RI II 12 J2 R2 Z~ESH 28312 13 J3 R3 Z3 IPTION/8X,31214,2F8.3l,161 ~ESH 284

2002 FORMAT ISH GI=F4.0.5H OJ=F4.0,lH OIFF=F4.0.1H RI~C=F8.3.1H IIMESH 285INC-F8.3.1H ITER=13,1H IINC=13,l~ JINC=13.8H KAPPA=lll ~ESH 286

2003 FORMAT I1X,38H ••8AD INPUT--THIS LINE IS ~GT DIAGONAL) MESH 2812004 FORMAT 130H I J AR AI) MESH 2882005 FORMAT 1215.2FIO.31 MESH 2892006 FORMAT 151H •• 8AD INPUT - THESE POI~TS DC NCT DEFINE A CIKCLE,I. MESH 290

13X,6FI2.4,10X,2E20.81 MESH 2912001 FORMAT 121H CENTER COORDINATE IF8.3.1H.F8.3.IHII MESH 2922008 FORMAT ITH ANGl=F9.6.1H ANG2=F9.6,lH DIFF-F3.0.9H DELPHI=F9.6IMESH 2932009 FORNAT 11130H COORDINATES CALCULATED AFTER 13,IIH ITERATIONSI MESH 294

END ~ESH 295

G-17

Page 142: Prepared by James G. Crose and Robert M. Jones

SL8~CUTI~E MNIMXII,JI MNIM 1C M~IM 2

COMMON/TO/IMINII001.IMAXII001,JMINI251,JMAXI251,MAXI,MAXJ,NMTL,NaCMNIM )C M~IM "

IFIJ.LT.JMINIIII JMINIII=J MNIM 5IFIJ.GT.JMAXIIII JMAXIII=J MNIM 6IFII.LT.IMINIJIl IMINIJI=I MNIH 1IFII.GT.IMAXIJII IMAXIJI=I M~IM a

C M~IM 9RETURN MNIH 10END MNIM 11

G-18

Page 143: Prepared by James G. Crose and Robert M. Jones

SUBROUTINE ANGLE IR,Z,RC,ZC,ANGI ANGl IC•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••ANGl 2C FI~C ANGLE (F INCLINATION BEThEEN 0 AND Z.PI ANGl 3C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••AhGl 4

PI=3.1415~Z7 ANGl 5Ol-II-ICI ANGl bOZ= IR-RCI ANGl 7IFIABSIR-RCI.GT.I.E-BI GO TL 100 ANGl BANG.PI/Z. ANGl ~

IfIDI.GT.I.E-81 RETURN ANGl 10ANG=I. ;.Pl ANGl IIRETURN ANGl IZ

C••••••••••••••••••••••••••••••*••••••••••••••••••••••••••••••••••••••••ANGL 13C Alll~ CIRCLE Tl CRGSS AXiS ANGl 14l •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••A~Gl 1,

100 AhG=ATANZIOI,DZI ANGl 16IFIANG.LE.l.E-5IANG=2 •• Pl+ANG ANGl 17

C ANGl 18RETURN ANGl I~

END ANGl ZO

G-19

Page 144: Prepared by James G. Crose and Robert M. Jones

SU8PCUTINE CIRCLE(A~~I.DELPHI.RSTRT.lSTRT.RC.lC.AR.All CIRC IC CIRC 2, •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••ClRC 3C fiNe INTERSECTIG~ Of LI~E AND CIRCLE z NE. RAND l CIRC ~

c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••CIRC 5PI·3.1~159~7 CIRC 6ANGI=ANGI+DELPHI CIRC 7IFIANGI.GT.2.*PIIANGI=ANGI-2.*PI CIRC 8RRzSQRTIIRSTRT-RCI**2+(lSTRT-lCl**21 CIRC 9AR.PC+RR*COSIANGIl CIRC 10Al=lC+RR*SINIANGII CIRC II

C CIRC 12RETURN CIRC 13END CIRC 14

G-20

Page 145: Prepared by James G. Crose and Robert M. Jones

FU~CT(ON NOUEII.JI NODE 1C NODE 2

COMMCN/TD/IMINIIDOI.IMAXIIDDI.JMIN(251.J~AXI251.MAXI.MAXJ.NMTL.N~CNOOE 3C NODE 4

NOOE"'O NODE 5DC 100 JJ=I.J NODE b~START=IM1NIJJ) NODE 7NSTOP=IMAXIJJ) NODE 800 100 ll=NSTART.NSTCP NODE 9NOOE=NODE+ I NODE 101FIJJ.EQ.J.AND.1[.E~.11 RETURN NODE 11

100 CONT 1NUE NODE 12C NODE 13

RtTURN folCOE 14END NODE 15

G-21

Page 146: Prepared by James G. Crose and Robert M. Jones

SUBROUTINE POINTS POIN 1C POIN 2

CCHHON/BASIC/NUHNP.NUHEl.NUHPC.NUHSC,ACEll,ANGVEL,TREF.VOL,IFREQ PCIN 3COH~CN/NPDATA/RII0001.CODEII0001.XRII0001.ZIIOOOI.XZIIOOOI,TIIOOOIPOIN 4COHHCN/ELDATA/IXII000.5I,EPRIIOOOI,ALPHAIICOOI.PSTIIOO01 POIN 5DOUBLE PRECISION X.Y.TEH POIN 6CUM~ON/SOLVE/XI11001.YII100I,TEHI1100I,NUHTC.HBAND POIN 1CCHMON/TD/IHINIIOOI.IMAXIIOOI.JHINI25I,JHAXI25I,MAXI.HAXJ.NHTL.NBCPOIN BCOM~ON/PLANE/NPP POIN 9OIMENSICN ARI25,1001.AZI25.100I,HATRILI6.51,BLKANGIIOI POIN 10EQUIVALENCE IRIII,ARII.III,IZIII.AZII,111 POIN II

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• POIN 12C ESTABLISH NODAL POINT INFORHATION POIN 13C POIN 14

NEt=C POIN 15NCDSlJM=O POIN I~

00 100 J=I.HAXJ POIN 11NSTART=IMINIJI PCIN 18NSTCP=IHAXIJI PCIN 19Db 100 I=NSTART,NSTOP POIN 2C

100 NODSUH=NDOSUH+I PCIN 21NELSUH=O POIN 22JJMAX=MAXJ-I POIN 23DO 110 JJ=I,JJHAX PLIN 24NSTCP=MINOIIHAXIJJI,IMAXIJJ+III-1 POIN 25NSTART=MAXOIIHINIJJI,IMINIJJ+III PCIN 26DO 110 II=NSTART,NSTOP POIN 27

110 NELSUH=NELSUM+l POI N 28NUMNP=NODSUH POIN 29NU~Et=NELSUH POIN 30DO 120 J=I,HAXJ PCIN 31NSTART=IMINIJI POIN 32NSTOP=IHAXIJI PCIN 33Rl=ARINSTART,JI POIN 34II=AIINSTART,JI POIN 35R3=ARINSTOP,JI POIN 36Z3=AIINSTOP,JI POIN 37DI=tR3-RII**2 + 123-211**2 POIN 38DO 120 I=NSTART,NSTDP POIN 39NP=NOOEII,Jl POIN 40RINPl=ARlI,JI POIN 41

120 Z1NPI=Alll,JI POIN 42C••••••••••••••••••••••••••••••••••••••••••••••••••••••••**•••••••••••••POIN 43C READ AND ASSIGN BOUNDARY CONDITIONS POIN 44C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• POIN 45C INIT !AllIE POI N 46C POIN 47

DO 200 I=l,NUHNP POIN 48CODEIII=O. POIN 49IFCRCI1.EQ.0•• ANO.NPP.EQ.OI CODEIII = I. POIN 50XRIII=O. POIN 51XLI 11-0. POIN 52IFINUMTC.NE.-4l TIII=O. POIN 53

200 CONTINUE POIN 54C POIN 55

IFINBC.EQ.OI GO TO 220 POIN 56DO 210 IBCON=I.N~C POIN 57READ19.10021 1I,12,JI.J2,CON,RCON,ICON POIN 58DO 210 1=11,12 POIN 59DO 210 J=JI,J2 POIN 60NP=NOOEII,JI POIN 61CODE I NP I =CON PO IN 62XRCNPI=RCON POIN 63

210 XlINPI=lCON POIN 64220 MPRINT=O POIN 65

DO 240 J=I,MAXJ POIN 66NSTART=IMINIJI POIN 67NSTCP=IHAXIJI POIN 68DO 240 I=NSTART,NSTOP POIN 69NP=NODEII,JI POIN 70

G-22

Page 147: Prepared by James G. Crose and Robert M. Jones

IFIHPRINT.NE.OI GO TO 230 POIN 11WRITElb,20001 POIN 72HPR INT=40 POI N 73

230 HPRINT=HPRINT-I POIN 74240 WRITElb,20011 I,J,NP,COOElNPI,RINPI,IINPl,XRINPI,XIINPI POIN 75

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••POIN 16C ASSIGN HATERIALS IN BLOCKS POIN 77C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• POIN 78

DO 300 Hl=I,NUHEL paiN 79300 IXIHI,51=0 PUIN BO

DO 310 IHTL=I,NHrL POIN 81READ 19,10001 HTL,IHATRILlIHTL,IHI,IH=2.SI.BLKANGIHTL) POIN B2

310 HATRILIIHTL,11=HTL paiN 83c.··.· ..···· POIN 84C ESTABLISH ELEHENT INFORHATION POIN B5c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••POIN 86

JJHH=HAXJ-I paiN B7N=O POI N B8HlL= I POI N B9DO 440 JJ=I,JJHAX POIN 90NSTOP=HINOIIHAXIJJI,IHAXIJJ'III-1 paiN 91NSTART=HAXOIIMINIJJI,IHINIJJ'III POIN 92DO 440 II=NSTART,NSTOP POIN 93NEL=NEL+l PLJIN 94DO 400 I HTL=I.NHTL POIN 95IFlll.LT.HATRILIIHTL,211 GO TO 400 POIN 9bIFlll.GE.HATRILIIHTL,311 GO TO 400 POIN 97IFIJJ.LT.HATRILIIHTL,411 GO TO 400 paiN 9BIFIJJ.GE.HATRILIIHTL,511 GO TO 400 POIN 99HAT=HATRILIIHTL,11 paiN 100

400 CONTINUE paiN 101IFlHAT.EQ.HTLl GO TO 410 paiN 102Hll=HAT POI N 103GO TO 420 paIN 104

C PLJIN 105410 IFIII.EQ.NSTARTI GO TO 420 POIN lOb

IFIJJ.NE.JJHAX.UR.II.NE.NSTOPI GU TO 440 paiN 107420 I=NODEIII,JJI POIN lOB

J=I+1 paiN 109K=NODEIII'I,JJ'II POIN 110L=K-I paiN IIIH=NEL POI N 112IXIH.II=1 POIN 113IXIH,21=J paiN 114IXIH,31=K PCIN 115IXIH,41=L POIN libIXlH,51=HTL POIN 117ALPHAIHI=BLKANGIHTLI POIN 118

430 N=N'l paiN 119IFIH.LE.NI GO TO 440 POIN 120IXIN,II=IXIN-I,II'1 paiN 121IXIN,21=IXIN-I,21'1 paiN 122IXIN,31=IXIN-I,31'1 paiN 123IXIN,41=IXlN-l,41'1 paiN 124IXIN,51=IXIN-I,51 paiN 125ALPHAINI=ALPHAIN-11 paiN 12bIFIH.GT.NI GO TO 430 POIN 127

440 CONTINUE POI N 128IFINUHNP.GT.I000) WRITElb,20021 POIN 129

c••••••••••••••*••••••••**••****•••••••••*••*•••••• ** •••••••••••••••••••POIN 130C SET NOOAL PCINT TEHPERATURE TO REFERENCE TE~PERATURE POIN 131c•••*.·****••••••••****.*******.******.********•••****.*******•••••*••• *POIN 132

IFI~U~TC.NE.OI RETURN POIN 133DO 500 N=I,NUHNP paiN 134

500 T(NI=TREF paiN 135RETURN paiN 13b

C paiN 1371000 FORHAT 1515,FI0.0) POIN 13B1002 FORHAT 1415,3FI0.0) POIN 1392000 FORHAT 1104HI I J NP TVPE R-ORDINATE l-OROINAPOIN 140

G-23

Page 148: Prepared by James G. Crose and Robert M. Jones

ITE R LOAD OR DISPLACEMENT Z LOAD Ck DISPLACEMENTI2001 FORMAT 1215,16,FI2.I,FI2.3,FI4.3,E26.7,E24.712002 FORMAT· 135H BAD INPUT - TOO MANY NODAL pelNTSI

END

G-24

POIN 141POIN 142POIN 143PIJIN 144

Page 149: Prepared by James G. Crose and Robert M. Jones

SUB~OUTINE PNTIN PNTN Ic•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PNTN 2C THIS SUB~UUTINE ENABLES THE USER TC INPlT NCOAL PCINT AND ELEMENT PNTN 3C DATA ~ITHOUT TMC-OIMENSIONAL MESH GENE~ATION. IT IS CONSISTENT PNTN 4C ~ITH THE ORIGINAL SAAS I PROGRAM BY E. L. ~ILSON AND R. M. JONES PNTN 5C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PNTN 6

COMMON/BASIC/NUMNP,NUMEL,NUMPC,NUMSC,ACELI,ANGVEL,TREf,VOL.lfREQ PNTN 7COMMON/NPOA TA/R C1000 I ,CUOE 11000 I ,XR C1000 I ,1l1000 I, Xl (l000 I, T(l000 I PNTN BCOMMCN/ELDATAlIXCI000,51,EP~IIOODI,ALPHACI0001,PSTI1000I PNTN 9

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• PNTN 10C REAC AND ~~ITE NOOAL PCINT DATA PNTN IIC••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• PNTN 12

100 L=O PNTN 13MPRINT=O PNTN 1'0

110 REA019,10021 N,COOEINI,RCNI,IINI,XRINI,XIINI,TTEMP,PfRES PNTN 15TIIU-HEMP PNTN 16PSTINI-PP~ES PNTN 17NL-L+I PNTN 18lfCL.EQ.OI GO TO 120 PNTN 19IX-N-L PNTN 20OR·I~INI-~ILIIIIX PNTN 21DI-IIINI-IILII/ZX PNTN 22DT-ITINI-TILII/ZX PNTN 23OP=IPSTCNI-PSTILII/ZX PNTN 24

120 L=L+I PNTN 25IfIN-Ll 170,140,130 PNTN 26

130 COOECLI=C. PNTN 27RCLI=~IL-ll+D~ PNTN 2BZILI=ZIL-II+DZ PNTN 29TILl=TIL-II+OT PNTN 30PSTILI=PSTIL-II.DP PNTN 31X~ IL1=0. PNTN 32XZlll=O. PNTN 33GO TO 120 PNTN 3'0

1'00 CO 160 K=NL,N PNTN 35IFC~PRINT.NE.OI bO TO 150 PNTN 36W~ITE16,20051 PNTN 37MPRI NT=4C PNTN 38

150 MPRINT=MPRINT-I PNTN 39IbC WRITE(6,2006J K,CuDE(K),RCKJ,Z(K),XH(KJ,XltK),T(K),PST(K) PNTN 40

IFINUMNP-NI 17C,200,110 PNTN 41170 WRITE16,20071 N PNTN 42

c•••••••••••••••••••••••••••••*****.******••• ** •••********************••PNTN 43C KEAC AND WRITE ELEMENT DATA PNT~ 44c.**•••••••••••**.**•••••• *****.****••****•••** •••••••**••••***** ••*****PNTN 45

200 N=C PNTN 46210 READCS,l0031 M,IIXIM,II.I=I,5I,ALPHAIMI PNTN 47220 N=N+l PNTN 48

IFIM.LE.NI GO TO 230 P~T~ 49IXIN,lI=IXIN-I,lI+1 PNTN 50IXIN,2J=IXIN-I,21+1 PNTN 51lXIN,31=IXCN-I,31'1 PNTN 52IXCN.41=IXIN-l,41+1 PNTN 53IXCN,5J=lXIN-I,5J PNTN 54ALPHAI~)=ALPHAIN-l1 PNTN 55IFIM.GT.Ni GO TO 220 PNTN 56

230 IFINUMEL.GT.N) GO TO 210 PNTN 57RETURN PNTN 58

C PNTN 591002 FORMAT 115,7FIO.01 PNTN 601003 FORMAT 1615,FI0.01 PNTN 612005 FORMAT 1120HINODAL PCI~T TYPE R-ORDINATE I-CROINATE R LOPNTN 62

lAO CR DISPLACEMENT Z LOAD OR DISPLACE~ENT TEMPERATURE PKESSUREPNTN 632 I PNTN 64

2006 fORMAT 1112,FI2.2.2FI2.3,2E24.7,2FI2.31 PNTN 652007 FORMAT 126HCNODAL POINT CARD ERROR N= 151 PNTN 66

END PNTN 67

G-25

Page 150: Prepared by James G. Crose and Robert M. Jones

SUBROUTINE FLOINIT,R,Z,NUMTC,NUMNP.IMESH,~U~ELI FLONC•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••FlONC THIS SUBROUTINE INPUTS TEMPER_TURE _NO PRESSURE FIELD DATA I~ THE FLONC FORM OF _N _RBITRARY SET OF POINT V_LUES. A TWO-DIMENSIONAL FLONC LINE_R INTERPOL_TION ROUTINE ISUBROUTI~E TEMPI TR_NSFERS FIELD FLONC VALUES TO THE NOO_L POI NT SET. FLONC•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••FlON

C210 TEMINI-ITIIII'TIJJI.TIKK).TILL)1/4.

END

123456189

10111213141516171819202122232425262128293031323334353e313839404142434445464148495051525354555651

FLONFLONFLONFLONFLONFLONFLONFLUNFLONFLONFLONFLONFLONFLONFLONFLONFLONFLONFLONFLONFLONFLONFLONFLONFLONFLONFLONFLONfLONfLONFLONfLONfLON"LONFLONFLONFLONFLONFLONFLONfLONfLONFLONFLONFLONFLONfLONfLONfLONFLON

COMMON/ELOATA/IXII000,51DOUBLE PRECISION X,y,rEMCOMMON/SOLVE/XII100l,YlI100l,TEMI1100l,IOUMI21DIMENSION RII000l,ZII000l,TlI0001

IFINUMTC.GT.OI RH019,10011 IXIII,YIII,TEIIC 1"I-l,NUHCIIFlhUMTC.EQ.-l1 CALL TEMIINUMTCIIFINUMTC.EQ.-21 C_LL TEM21NUMNP,TIIFlhUMTC.EQ.-21 GO TO 200MPRINT-ODO 110 1-I,NUMTCIFIIIPRINT.NE.OI GO TO 100IIRITE16,20011MPRI~T·40

100 MPRINT-MPRINT-l110 IIRITEI6,20021 XllI,Ylll,TEMIII

MPRINT-O00 130 N-l,~UMNP

IFI"PRI~T.NE.OI GO TO 120IIRITEI6,20031MPRI~T=40

120 MPRINT-IIPRINT-lCALL TEMPIRINI,ZIN),TIN),NUMTCI

130 IIRITEI6,20041 N,RINI,ZINI,TINI

DO 300 K=I,NUMEL300 TlKI=TEMIK)

RETURN

200 00 210 N=l,~UMEL

II-I Xl NollJJ-IXIN,21KK=!X1 N, 31LL=IXIN,41

CC TEM IS TEMPORARY STORAGE FOR ELEMENT TEMPERATURESC

C1001 FORMH 13FlO.OI1002 FORMAT 115,11'10.0)2001 FOR~AT IlHl,13X,lHR,14X,lHZ,14X,lHT)2002 FORMAT 13F15.312003 FORMAT 135Hl N R l T)2004 FORMAT II5,2FIO.4,FIO.012022 FORMAT 138Hl NUM8ER CORRESPONOING TO ALTITUDE IS .15)

C

C

CC TRA~SFER NODAL POINT VALUES TO ELEMENT CENTERS BY AVERAGINGC

G-z6

Page 151: Prepared by James G. Crose and Robert M. Jones

SuBRLUTINE TEMPIR,l,T,~UMTLI TEMP 1c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TEMP 2( THIS SuBROUTINE SOLVES FLR THE NOOAL PCINT TEMPERATURE BY LINEAR TEMP 3( TWO-DIMENSIONAL INTERPOLATION OF THE INPUT TEMPERATURE TEMP 4C DISTRIBUTION TEMP 5C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TEMP 6

DOUBLE PRECISION x,Y,TEM TEMP 7COM"LN/SCLVE/XI17001,Y(1700I,TEMI17001,[CUM(21 TEMP 8DIME~SICN SMALU201,ISMI201 TEMP 9

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TEMP 10C [NIT IALllE TEMP 1lC•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TEMP 12

Jz 1 TEMP 13JMAXz 16 TEMP 14IFI~UMTL.LT.JMAXI JMAX=NUMTC TEMP 15CO Ie 1= I,JMAX TEMP 16SMALL(II~O. TEMP 17

10 ISMIII~O TEMP 18c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TEMP 19C FINe ThE JMAX CLOSEST PGINTS TEMP 20c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TEHP 21

eo 50 1=1.~UMTC TEMP 22OSQ~IXIII-RI ••2+IYIII-II •• 2 TEMP 23[FICS'.GT •• IE-41 GC TC 20 TEMP 24TzTE~.1 [I TEMP 25RE TU~N TEMP 26

20 IFII.EQ.ll SMALLlII=OS' TEMP 27IFII.EO-l1 ISMIll=1 TEMP 28[FII.EQ.11 GG TO 50 TEMP 29[F(SMALLIJI.LE.OSQ.ANO.J.LT.J~AXIS~ALL(J+II=OSO TEMP 30[FISMALLIJI.LE.USO.AND.J.LT.JMAX) [S~IJ+ll=I TEMP 31IFIS~ALLIJI.LE.DSQI GO TO 40 TEMP 3200 30 K= I,J TEMP 33JB=J-K + I TE MP 34IF I JB. EO.OI GO TO 40 TEMP 35SMAllIJB+I/=SMALleJBI TEMP 36ISMIJB+ll=[SMIJBI TEMP 37SMALLIJBI=OSI TEMP 38ISM(JBI=I TEMP 39IFIJB.El.l1 GU TO 40 TEMP 40IFIS~ALLIJB-II.LE.OSQI GO TU 40 TEMP 41

30 CONTINUE TEMP 4240 IfIJ.LT.JMAXl J=J+l TEMP 4350 CONTINUE TEMP 44

c••••••••••••***•••••••**•••••••*******••••••••••• *** ••••••••••******••• TEMP 45C FINC ThE THIRD TEMPERATURt POINT BY ~REA TEST TEMP 46c•••••••••••••••••••••••••••••• ·-•••••••••••••••••••_.*.*** ••** •• ***.***TEMP 47

JCbK=JMAX-2 TEMP 48J=O TEMP 4~

11~ISMIlI TEMP 5012=[SMI21 TEMP 51

60 13=ISMIJ+31 TEMP 52AREA=.5.IYIIIl.XI13I-YlI31OXI[1l+YII3I.XII21-YIIZ1*XII31+ TEMP 53

1 YI121*Xllll-Yllll.XI[21l TEMP 5401=IXI[21-XI[III ••Z+IYI121-YIIIII*.2 TEMP 55

C IF 01 IS APPROXIMATELY O. IT IS ASSUMEC TeAT THERE EX[STS A TEMP 56C CUPLICATIGN OF [NPUT TEMP 57

IFIOI.GT •• lE-31 GO TO 7C TEMP 5812=13 TFMP 5~

J=J+l TEMP 60GC Te 60 TEMP ~1

70 IFIAREA"2.GT •• 1.01.S~.ALLI1l1 GO TG Be TEMP 62J=J+l TEMP ~3

IFIJ.LT.JCHKI GU TO 6e TEMP 64WR[TE16,200CI 1l,l2,I3,J TEMP 65T=TE~llll TEMP 66RETURN TEMP 67

c•••••••••••••••••••••••_•••••••••••••••••••••••••••*••**** ••**•••• *****TEMP 68C FINe TE~PERATUkE INTERCEPT TEMP 6gC••••••••••••••••••••••••*.*••••••••_**_.** •• *•••••*.*******************TEMP 70

G-27

Page 152: Prepared by James G. Crose and Robert M. Jones

80 GET~=YIIII*ITEMI131-TEMI1211+YI121*ITE~IIII-TEMI1311 TEMP 71I +Y1131*lTEMIl21-TEMlI1l1 TEMP 72CETB=XIIII*ITEMI121-TEMI1311+XI121*ITEMI131-TEMIII11 TEMP 13

I +XI131*ITEMIIII-TEMI1211 TEMP 14DETC=TEMllll*IXI121*YI131-XI131*YI1211+TEMI121*IXI131*YIIII-XIIII*TEMP 75

lYI1311+TEMI131*IXllll*YI121-XI121*YlllI1 TEMP 16T=leET~*R+DETB*l+DETeI/12.*AREA) TEMP 11

C TEMP 78RE TURN TEMP 7q

2000 FORMAT 128H ERROR IN TEMPERATURE INPUT.5~ 11=14,5H 12=14. TEMP 8015H 13=14,4~ J=141 TEMP 81

e TEMP 82ENe TEMP 83

G-28

Page 153: Prepared by James G. Crose and Robert M. Jones

SueRCUTl~E TEMllhU~TCI TEIII Ic•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TEMl 2C THIS SUBROUTINE IhPUTS A TEMPERATURE CR PRESSURE FIELC FROII AN TEIII 3C EXTERNAL STORAGE CHICE. TEIII ~

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• rEMl 5DOUBLE PRECISlUh X,V,TEM TEMI 6COIIMCh/SOLVE/XlllDOI,YI1700I,TEMII1001,IDU~121 TEMI 7DIMEhSION Rl5001 ,lI500) ,115001 TEMI BEQUIVALENCE IRlll,XIUOIJI,fllll,V(lZOll),(Tlll,TEIIClZOlll TEll I 9

C TEIII 10REACI9,IGOOI NCASE TEIII 1100 100 I=I,NCASE TEMI 12

100 REACI141 NUMTC,lRIJ),lIJI,TIJI,J=I,NU~TCl TEMI 13CO 200 K=I,hUMTC TEIII I~

XIKI.RIKI TEll I 15VIKl'lIKI TEll I 16

ZOO TEIIIKI=TIKI TEIII 17IoRITEI6,ZOOGI ~U~TC,NCASE TEIII 18RETURN TEMI 19

C TEMI 201000 FORIUT 115 J TEMI 212000 FORMAT 131HI NUMBER OF TEMPERATURE PClhTS=14,7H CASE ,131 TEIII 22

END TEMI 23

G-29

Page 154: Prepared by James G. Crose and Robert M. Jones

SUBRoUTlhE TEM2IhUMNP.T) TEM2 1C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TEM2 2C THIS SUBROUTINE ASSIG~S A SPECIFIED TEMPERATURE GR PRESSURE TO ALLTEM2 3C NODAL PGINTS. TEM2 "C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TEM2 5

DIMENSION TlhUMNPI TEM2 6C TEM2 1

REACI9.1DOOI TCONST TEM2 800 lCO h=l.NUMNP TEM2 9

100 11 NI=TCChST TEMl 10H TORN TEM2 11

C TEM2 121000 fURMAT (FlC.CJ TEM2 13

END TEM2 1"

G-30

Page 155: Prepared by James G. Crose and Robert M. Jones

SUBRCUTINE PRESIN(NUMPC.TILTI PRESC••••• •••• • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PRESC THIS SUBROUTINE READS PRESSURE (TILT-l.I, OR SHEAR (TILT=D.I PRESC BOUNDARY CONDITICNS IN ONE DIMENSICNAL lNUMTC.GT.OI CR TWO PRESC DIMENSIONAL lNUMTC.LT.OI FORM. A LINEAR INTERPOLATION IN THE PRESC I - J PLANE IS CARRIED UUT WHEN PRESSURES DIFfER AT THE ENOS Of PRESC THE IMPLIED LINE SEGMENT. PRESC••••• •••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PRES

~RITE16.20001

I\PRlhT=ONUMP =IABS(NUMPCI00 I~O L=l.NUMPIfINUMPC.GT.OIGO TU 130REAC(~.10001IPI,JPl.IP2.JP2.PRl.PR2

I=IPIJ=JPlP=PRIII NC = aJINC=OIF(IP2.NE.IPlIIINC=IIP2-IPll/IABSIIP2-IPllIflJP2.NE.JPll JINe=(JP2-JPll/IABSIJP2-JPllCI=ABSlfLDATIIPl-IPI))DJ=ABS(FLUAIIJP2-JPlllCIFF=AMAXI(CI.DJIITER=O IFFKAPFA=lIF(IP2.NE.IPI.AND.JP2.NE.JPIIKAPPA=2IFIKAPPA.EQ.2ICIFF=2.*DIFFPINC=IPR2-P_II / DIFF00 110 M=l.ITERIFIITER.EO.CIGO TO liDIFIKAPPA.EO.2IGO TO 10010LD=1JOLO=J1=1'IINeJ=J+JINCCAll PBNDRYtIOLU,JOl~tl,J,P,PINC,TIlT)

GC TC IIG100 lUlO = I

I=HIINCCAll PBNOKY( IOLU,JOLO,I,J,P,PINC,TILT)JCLC=JJ=J'JINCCALL PBNDRY(IOlO,JDLC,I,J.P,PINC.TIlTI

110 CONTINUEIF(KAPPA.EC.IIGO TO 120IOLe= I1=I+IINCCALL PBNCRYI IlJlC,JDLC, I,J,P.PINCd ILlI

120 CONT INUE130 IFINlJMPC.LT.OI GC TC 140

REAC19,l0011 IP.JP.PRCAll PB~ORY(O,O,lP,JP,PR,O.,TILT)

140 CONTINUERETURN

C1000 FORMAT 1415.2FIO.011001 FORMAT (215.FIO.OI2000 FORMAT (21H I J INTENSITY)

END

G-31

PRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRE SPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRESPRES

1234567Bq

101112131415161718l~

2021222324252627282q3031323334353637383q40H~2

~3

4~

454647484~

5051525354555657585q60

Page 156: Prepared by James G. Crose and Robert M. Jones

SUBROUTINE PBNDRYIIOLO,JOLD,II,JJ,P,PINC,TILTI PBND 1C•••** •••• *•••••*•••••••••••••••••••••••••••••••••••••••••••••••••••••••PBND 2C THiS SUBROUTIN< CONVERTS BOUNDARY PRESSURES AND SHEARS TO PBND 3C EQUIVALENT NODAL POINT FORCES AND STORES THE RESULT IN THE PBND 4C BOUNOARY CONDITION VECTORS. PBND 5C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••P8ND 6

COMMONfNPDATAfRII0001,COUEII0001,XRII0001,1110001,XIII000), PBNO 71 TlI0001 PBND BOOMMONfPLANEfNPP peND 9

c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PBND 10o TILT:l. MEANS PRESSURE peND 11C TI LT=O. MEANS SHEAR PBND 12c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••P~NO 13

IFlIOLD.EQ.OI GO TO 10 peND 14I=NODEIIOLD,JOLOI PBND 15J:NCDEIII,JJI PBND 16PP=IP+PINCf2.lf6. PBND 17P=P+PINC PBND IBGO TO 20 PBNO 19

10 1=11 PBND 20J=JJ PBND 21PP=Pf6. PBND 22

20 PR=PP*6. PBND 23.RITEI6,20Dll I ,J ,PR PBND 24RAD=57.29578 peND 25A=CDDElllfRAD PBND 266=CCDEIJlfRAD P6ND 27PP=Pf6. PBND 28DI=IIIII-IIJII*PP PBND 29DR=IRIJI-RIIII*PP PBND 30RX=2.*RIII+RIJI PBND 31lX=RIII+2.*RIJI PBNO 32IFINPP.NE.OI RX=3.0 PBND 33IFINPP.NE.OI lX=3.0 paND 34

C PBND 35C NODAL POINT FORCE AT POINT I paND 36C PBND 37

SINA=I.-TlLT PBND 38COSA=TILT PBND 39IFICOOEIII.GE.O.1 GO TO 30 PBNO 40SINA=TILT*SINIAI+II.-TILTI*COSIAI paND 41COSA=TILT*COSIAI+II.-TILTI*SINIAI paNO 42

30 IFICOOEIII.NE.I •• ANO.COOEIII.NE.3.1 XRIII=XRIII +RX*ICOSA*OI+SINA*PBNO 431 DRI PBND 44

IFICOOEIII.LT.O.1 GO TO 40 paND 45IFICOOEIII.NE.2•• AND.CODEII).NE.3.1 XIIII=XIIII -RX*ISINA*DI-COSA*PBNO 46

1 DRI paND 47C PBNO 48C NODAL POINT FORCE AT POINT J PBND 49C PBNO 50

40 SH,A=I.-TIlT PBND 51COSA=T IL T PBND 52IFICOOEIJI.GE.O.1 GO TO 50 paND 53SINA=TILT*SINIBI+II.-TILTI*COSla) PBND 54COSA=TILT*COSIBI+II.-TILTI*SINIBI PBNO 55

50 IFICCOEIJI.NE.I ••ANO.COOEIJI.NE.3.1 XRIJ)=XRIJI +IX*ICOSA*OI+SINA*PBNO 561 ORI PBND 57

IFICCOEIJI.LT.O.I GO TO 60 paND 58IFICCOEIJI.NE.2 ••ANO.COOEIJI.NE.3.1 XIIJI=XIIJI -IX*ISINA*OI-COSA*paNO 59

1 ORI PBNO 6060 CONTINUE paND 61

RE TURN paNO 62C PBND 63

2001 FORMAT 1215,FI0.11 paND 64C paND 65

END PBND 66

G-32

Page 157: Prepared by James G. Crose and Robert M. Jones

SUBRCUTINE ~AllP INUMMAT l MAll IC·.·····························...···· .•...•.•...••...•......•..•......MATL 2C ThE MATERIAL PROPERTIES ARE READ FRC~ FORTRAN UNIT 9 ANC WRITTEN UN MATl 3C ThE OUTPUT FilE MATl 4C••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••MATl 5

CO~~CN/MATP/ROlbl.AOFTSlbl. EI12.22.bl,EEIZII.POROTVI61 MAll bC MAll 7

DO ZOO M=I,HUMMAT MATl 8C MAll 9C REAO ANC WRITE BASIC INFORMATICN FUR A SINolE MATERIAL TYPE MATl 10C MAll 11

REAOl9,I000l MTYPE.NT.ROIMTYPEI,AOFTSIMTYPEI.POROTYIMTYPEI.ISO MATl IZWRITElb.ZOOOI MTYPE,NT,ROIMTYPEI.PORCTYIMTYPEI,ISO MATl 13

C MAll 14C THE MATERIAL PROPERTIES ARE KEAO AS TECHNICAL CONSTANTS IYUUNG'S MATL ISC MOOULI ANC POISSON'S RATIOSl AS A FUNCTION OF TEMPERATURE MATL 16C MAll 17

READl9dOOIl IIEII.J.MTYPEI.J=I.ZZ).I=I.NT) MATL 1800 100 I =I.NT MAll 19

C MAll ZOC IF ISO=O. ALL CONSTANTS MUST BE INPUT MATL 21C IF ISO=I. FIVE CONSTANTS MUST BE INPUT FOR A TRANSVERSELY ISOTROPIC MATL 22C MATER IAl MATl 23C IF ISO=2. TOO CONSTANTS MUST BE INPUT FCR A~ ISCTROPIC MATERIAL MATL 24

IFIISO.EQ.Ol GO TO SO MATl 2SIFIISO.EQ.lI GO TO 40 MAll 2bIFIISO.NE.21 GO T0 SO MATl 27EII.3.MTYPEI= EII.2.MTVPE) MAll Z8EII.4.MTVPE)= EII.2,MTYPEI MATl 29EII.b.MTYPEI= EII.5.MTYPE) MATL 30EII.7.MTYPEI= Ell.5.MTYPEI MATL 31EII.8.MTVPEl= EII,z.MTYPEI MAll 32tll.IO.MTYPEI= EII.9.MTYPEl MATl 33EII.II,MTYPEI= EII.9,MTYPEl MATl 34Ell.13.MTYPE)= EII.12.MTYPEI MATl 35EII,l4.MTYPEI= ElI,lZ,MTYPEI MATl 3bEII.15.MTYPE)= EII.9.MTYPEI MATl 37EII,l7.MTVPEl= EII,lb.MTYPEI MATl 38EII.18.MTYPEI= EII.lb.MTYPEI MATl 39ElI,20.MTYPEI= EIl,l9.MTVPEI MATl 40Ell,2I,MTYPEI= EII.19.MTYPEI MATl 41GO TC 50 MAll 42

40 EII.4.MTYPEI= Etl,2.MTYPEI MATl 43EII.5.MTVPEI= Ell,7.MTYPtl*Ell,2.MTYPEl/EII.3.MTYPEI MATl 44EII.8.MTYPEI= 4.*EII.8,MTYPEI/II.+EII,B,MTYPEI*III.-Z.*EII.5,MTYPEMATL 45

1II1EII.2.MTYPEI+I./EII.3,MTYPEIII MAll 4bIFIEII,l0.MTYPE).LT •• lE-5l GO TC 50 MATl 47EII.II.MTYPEl= EII.9,MTYPEl MATl 48EII.12.MTYPEI= EII.14,MTYPEl*EII.9.MTYPEI/EII.IO.MTYPEl MATl 49EII.IS.MTYPEI= 4.*EII,15,MTYPEI/II.+EII.15,MTYPE)*III.-Z.*EII.12.MMAT1 50

ITYPE)"EII.9.MTYPEI+I./EII,lO.MTYPEIII MAll 5150 IIRITEI6.20011 IEII,J.MTYPEI.J=I.81 MAll 52

WRITElb.20021 1EII,J.MTYPEI,J=9.15l MATl S3IFIAOFTSIMTYPEl.NE.l.1 WRITElb.2003) IEII.J.MTYPEI.J=16,Z21 MATl 54IFIAOFTSIMTYPEI.EQ.I.1 WRITElb.20041 IEII.J.MTYPEI.J=lb.2Zl MATl 55

100 CONT INUE MAll 56C MTl 57C FilL UP THE REMAINDER OF THE E ARRAY FOR ALL POSSIBLE TEMPERATURES MATL 58C MATl 59

DO 200 I=NT,12 HAll 6000 200 J=I.Z2 MATL 61

200 EII.J.MTYPEI=EINT,J.MTYPEI MATL 62RETURN MATL 63

C MATL 641000 FORMAT 12IS,3FID.0.ISI MATL 6S1001 FURHAT 18FIO.0/IOX.7FIO.0/IOX.7FIO.01 MATL 662000 FORMAT IIHI.IIH MATERIAL =.12,SX.SSHNO. OF TEMPERATURES AT WHICH PMATL 67

IROPERTIES ARE SPECIFIED =.IZI5X.14hMASS DENSITY =.EII.4.SX.IOHPOROMATL b82SITY =,EII.4/5X.22HANISCTROPY PARAMETER =,IS) HATL 69

2001 FORMAT 1/7H TEMP=.FS.0/20H TENSILE PROPERTIES.lbX.4HEMT=.FI0.0. MATL 70

G-33

Page 158: Prepared by James G. Crose and Robert M. Jones

C

IbH ENT=.FIO.O.bH ETT=.FIO.O.8H NUMNT=.F5.3.8H NUMTT=.F5.3.28H NUNTT=.F5.3.bH EPT=.FIO.OI

2002 FORM_T (2~H COMPRESSIVE PROPERTIES.lbX.~HEMC=.FlO.O.bH ENCa.IFIO.O.bH ETC=.FIO.0.8H NUMNC=.F5.3.8H NUMTC=.F5.3.8H NUNTCa.2F5.3.bH EPC=.FIO.OI

2003 FORM_T 130H THERMAL AND YIELO PROPERTIES.lbX.3HAM=.Ell.3.~H AN=.lEll.3.4H _T=.Ell.3.4H YM=.F8.0.4H YN=.F8.0.~H YT=.F8.0.bH PEMRa.2Fb.31

2004 FORMAT130H THERMAL AND YIELD PROPERTIES ,/bX.3HFM=. E1l.3.~H FNa,lEll.3.4H FT=.Ell.3.~H YM=,F8.0.4H YN=.F8.0.4H YT-.F8.0.bH PEMRa.2Fb.31

END

G-34

MATLMAllMAll"All"AllMAll"All"AllMAllMATL"AllMATLMATL

717273n757677787980818283

Page 159: Prepared by James G. Crose and Robert M. Jones

SGB.CUTINE STIFF STIF IC······ •• •••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••STlf 2C THIS SLBROUTINE Ell~INATES THE CENTER PCINT UNKNO.NS FROM THE STlf 3C CUACRILATERAL ELEMENT STifFNESS MATRIX. ACDS IT TO THE BODY STlff-STlf 4C NESS MATRIX. INCORPCRATES BCUNDARY CDNCITICNS ANU STCRES RESULTS STlf 5C ON AN EXTERNAL STDRA~E DEVICE. STlf 6C.·.·.· ••• • •••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••STIF 7

CC~MCN/BASIC/NUMNP.NUMEL.NUMPC.NUMSC.ACElI.ANGVEL.TREF.VOL.lfREQ STIF 8CC.~~CN/NPDA TA/R 11000 I .CDCE II 000 I. XR IIOCO I .Ill OC~I • Xl I 10001. HI000) STlF 9CC~MCN/ELDATA/IXII000.51.tPRII0001.AlP~AII0C01.PSTIICO01 STlf 10DUUBLE PRECISION CRI.Xl.KK.ll.S.RRR.lll STIF 11DOUBLE PRECISICN CC STIF 12COM~CN/ ARG/ RKR15 I • llll 5 I • KK 14 I • III 4 I • S I 10, 1CI • CRll4 • 4 I • XII 101 • STl F 13

1 PIICI.TT(41.HI60101.HHlt,lCI.ANGltI41.S1GIIOI.EPSllCI.N STIF 14lOUtLE PRECISION A.B STIF 15CUMMCN/SOLVE/RIIOU1.AIIOC.501.NUMBlK.MBANC STIF 16CCMMlN/PlANElNPP STIF 17OI~HSllN LMl41 STIF 18

c••••••••• •••• •••• ·*•••** •••••••••••••••••••••••••••••••••••••••••••••••STIF lqC INIT IAlIlAT ION STIF 20c··.···..······.···.···.··· ·· · STIF 21

RE.INC Z SllF 22NB=Z5 STIF 23NO=ZONB ST IF 24N02=ZONO STIF 25ISTCP=C STIF 2.NU~~lK=O STIF Z7

C STIF 28UG ICO N=I.NC2 STlf 29EINI=O. STIF 30CO lCO ~=I.NO STIF 31

100 AIN.~I=O. STlf 32c.~.*•• *•••••• **•••*•••*.**~**••*****.****•• *••• **.*****••••••••••••••••STIF 33C FCR~ STIFfNESS ~ATR[X IN blCCKS STIF 34c••••••••• ~ ••••*.*••*.*.*.*.*.***••**.***.******••••*•••**••**•••*••••••STIF 35

20U ~u~elK=NU~BlK+l STIF 36NH=NBOINUMBlK+11 STlf 31NM=NH-NB STIF 3BNL=~~-NB+l STIF 39KSHlfT=2.Nl-2 STIF 40

C STIF 4100 340 N=l.NUMcl STIF 42IfllXIN.51.lE.Ul co TO 34U STIF 4300 210 1-1.4 STIF 44IFllXIN.[I.LT.Nll GG TC 210 STIF 45IFIIXIN. [I.LE.NM) GO TC 220 STIF 46

210 CCNTlNUE STIF 47DC TC 340 STIF 48

C STIF 49220 LALl QUAD STIF 50

C STIF 51IFIVCl.GT.O.1 GC TC 230 STIF 52wR[TE(6.20001 N STIF 53(STCP=1 STIF 54

C STlf 55230 IFIIXIN,3I.E~.IXIN.411 GO TG 300 STIF 56

DC 240 [1=1,9 STIF 57CC=SIII,lOI/SllO,lCI STlf 58PlllI=PIII1-CcoPII01 STIF 59CO 240 JJ=1.9 STIF 60

240 SIII.JJl=SIII.JJI-CCOSI10.JJI STIF 61C STIF 62

00 2~0 11=1.8 STIF 63CC=SIII.91/S19.91 STIF 64PIII1=PIIlI-CCOP(91 STIF 6500 2~0 J.J=l.B STIF 66

250 SIII.JJ1=SIII.JJ1-CCOSI9.JJI STIF 61c·•••••••••••• ·.**•••• ** ••**••••••••••••** •••***.*********••• *••••••••••STlf 68C ADe ELEMENT STIFFNESS MATRIX TO BCDY STIFFNESS MATRIX STIF 69c•••••••*.·***.***********.*****.***.*****.***••***********••••*••••••••STIF 10

G-35

Page 160: Prepared by James G. Crose and Robert M. Jones

300 00 310 1=1,4 STiF 11310 LHIII=2*IXIN,II-2 STIF 72

00 330 1=1,4 STiF 7300 330 K=I,2 STIF 74IlzL~lll+K-KSHIFT STIF 75KK-2*1-2+1< ST IF 7681111-81111+PIKKl STIF 7700 330 J=I,4 STiF 7800 330 L=I.2 STIF 79JJ=L~IJI+L-ll+I-KSHIFT STIF 80LL-2*J-2+L ST IF 81IFIJJ.LE.OI GO TO 330 STIF 82IFINC.GE.JJl GO TO 320 STIF 83~RITE16,20011 N STIF 84(STeP=1 STiF 85"0 TO 340 ST IF 86

C STlF 87320 AIII,JJI'AIII,JJI+SIKK,LLI STIF 88330 CO"TlNUE STIF 89340 WNTINUE STIF 90

C••••••••••••••••• •• • •••••••••••••••••••••••••••••••••••••••••••••• **•••STlf 91C ADC CONOE"TRATEO FORCES STIF 92C • •••••••••••••••••••••••••••••••••••••••••••••••••••••• STIF 93

00 400 N=NL,NH STIF 94IFI".GT.NUHNPI GO TO 500 STIF 95K=2*N-KSHIFT ST IF 96811<1=8IKl+XIINI STIF 97

4008IK-ll=811<-11+XRI"1 STlF 98C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••STIF 99( AOO DISPLACEMENT 80UNDARY (ONDITICNS STIF 100C STIF 101

500 00 ~~O H=NL,"H STIF 102IFIM.GT."U~"PI GO TO 550 STIF 103U=XPIHI STIF 104N=2*~I-KSHIFT STIF 105IFICOOEIHII 540,550,510 STIF 106

510 IFICOOEIHI.EQ.l.1 GO TO 520 STIF 107IFICCDEIHI.EQ.2.1 GO TO 540 STIF 108IFICODEIHI.EQ.3.1 GO TO 530 STIF 109GO TO 540 STiF 110

C STIF 111520 CALL HODIFYIN02''',UI STIF 112

GO Te 550 STiF 113C STiF 114

530 CALL HODIFYIN02,N,Ul STIF 115540 U=XIIHI STIF 116

N·N+l STiF 117OALL HODIFYlND2,N,UI STIF 118

550 CONT INUE STlF 119C•••••••••••••••••••••••••••••••••••••••••••••••••••••**•••***••••••***.STIF 120C kRITE 8LOOK OF EQUATICNS ON FORTR~N UNIT ~NC SHIFT UP LOWER 8LOCK STIF 121C••••**••••••••••••••••*••••••••••••*••••••~•••*•••***••**•••••••••*****STIF 122

kRITE 121 18INI,IAIN,HI,M=I,H8ANDI,N=I,~CI STIF 123( STIF 124

DO tce N=I,ND ST IF 125K=N+NO STIF 12681NI=811<1 STIF 1278IKI=0. STlF 128CO 600 M=I,NO STIF 129AI~,Hl=AIK,HI STIF 130

600 AIK.MI=O. STIF 131c••••••••••••••••••••••••••••••••••••••••••••••••••••********.*********.ST1F 132C CHECK FCR LAST 8LOCK STIF 133c•••••••••••••••••••••••••••••••••••**••••••*•••************************STIF 134

IFINM.LT.NUHNPI GC TO 200 STIF 135IFIISTOP.NE.OI STOP STIF 136RETURN ST IF 137

C STlF 1382000 FORHAT 127H NEGATI~E AREA ELEMENT N(.,141 STIF 1392001 FORHAT 146H 8ANe WICTH EXCEEDS ALLOWAeLE FCP ELEMENT NO.,14) STIF 140

END STIF 141

G-36

Page 161: Prepared by James G. Crose and Robert M. Jones

SUBROUTINE QUAD QUAC IC•••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••*QUA~ lC THIS SUBROUTINE ASSEMBLES A QUADRILATERAL ELEMENT STIFFNESS MATRIXQUAC 3~ AND LOAD VECTOR BY SUPERFOSITION OF FOUR TRIANGULAR ELoMENTS. QUAD 4C••••••••••• • ••••••••••••••••••••••••••••••••••••••••••••••••••QUAD 5

CO"MCN/BASIC/NUMNP,NUMEL,NUMPC,NUMSC,ACEL1,ANGVEL,TREF,VUL,lFRoQ QUAD 6CCM"CN/NPDATA/RIIDOOI,COCECI000I,XRCIDOOI,111000I,X111OOCI,TlI0001QOAD 7CGMMGN/ELDATA/IXII00C,Sl,EPRlI000l,ALPHAliCCOI,PSTII0001 QUAC 8DOUBLE PRECISION CR1,XI,RR,1Z,S,RRR,111 QUAD 9COMMCN/ARG/RRRCSI,1Z1lSI,RRI41,lZl41,Sl10,1Cl,CRll4,41,XIlI0l, QUAD 10

I PII0I,TTI41,HI6,IOI,HHI6,10I,ANGLEI4I,SIGIIOI,EPSIICI.N QUAD 11CO"KC~/PLANE/NPP QUAD 12

C QUAD 13C INIT !ALl1E QUAD 14C QUAD IS

1-IXI~,l1 QUAD 16J=IXCN,21 QUAD 11K=IXIN,31 QUAD 18L=IXIN,41 QUAD 19

'MTYPE=IXIN,51 QUAD 20IXIN,51=-IXIN,51 QUAD 21

C QUAC 22CALL KPRep QUAU 23

C eUAC 24C·••••• •••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••QUAD 25C fCRK 'UACRILATERAl STifFNESS MATRIX QUAD 26C•••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••QUAO 27

RRRI51=IRIII+RIJI+RIKI+RIlII/4. QUAD 281l1151=11111+1IJI+1IKI+1ILlIl4. eUAD 29CO 110 M=I.4 QUAD 30MM=IXIN,MI QUAe 31IFINPP.NE.OlGO TO 100 QUAD 32IFIRIMMI.EQ.o ••A~C.CUDEIMMI.EU.O.) CGDEIMMI=I. QUAD 33

100 RRRIKI = RIMMI QUAC 34110 1l11KI=11MMI QUAD 35

C ~~ 36DO 130 11=1,10 QUAD 37PI Ill~O. QUAD 3800 120 JJ-l,6 QUAD 39

120 HHIJJ,1I1=0. QUAD 40DO 130 JJ=I,10 QUAD 41

130 SIII,JJl=O. QUAD 4200 140 11=1,4 QUAD 43JJ=IXIN,Ill QUAD 44

140 ANGLEIIII=CODEIJJI/S7.29578 QUAD 45C QUAD 46

VDL=O. QUAD 47IFIK.NE.LI GO TO 150 QUAD 4BCALL TRISTFI1,2,31 QUAD 49RRRI51=IRRRlll+RRRI21+RRRI311/3. QUAD 50111151=1111111+111121+1111311/3. QUAD 51RETURN QUAD 52

( QUAD 53150 (ALL TRISTFI4,I,5) QUAD 54

CALL TRISTFll,2,51 QUAD 55CALL TRISTFl2,3,Sl QUAD 56CALL TRISTFI3,4,51 QUAD 57

( QUAD 5BDO 160 11=1,6 QUAD 59DO 160 JJ=I010 QUAD 60

160 hHIII,JJI=HHIII,JJI/4. QUAD 61C QUAO 62

RETURN QUAD 63END QUAD 64

G-37

Page 162: Prepared by James G. Crose and Robert M. Jones

SUB~lUTINE MPROP PROP 1C••••• •••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••PROP ZC THIS SUBROUTINE FI~CS ThE STRESS-STRAI~ RELATIONSHIP IN BOOV COOR-PROP 3C CINATES. PROP ~

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PROP 5CGMMC~/BASIC/NUM~P.NUMEL.~UMPC.NUMSC.ACELZ.ANGVEL.TREF.VOL.lfRE' PROP 6COMMGN/MATP/ROlol.AGfTSI61.EIIZ.ZZ.61.EEIZll.PORCTVltl PROP 1COMMCN/NPDATA/RII0001.GODEII0001.XRII0001.Z110001.XZIIOOOI.TII000IPROP 8COMMON/ELDATA/IXII00C.51.EPRII0001.ALPHAII0001.PSTII0001 PROP ·9DOUBLE PRECISION lRZ.XI.RR,ZZ.S.RRR.ZZZ PROP 10COMMCN/ARG/RRRI51.ZlZ151.RRI41.ZZI41.S110.1CI.CRZI4.41.XIII01. PROP 11

1 PllOI.TTI41.Hlb.l01.HhI6,lOI.ANGLEI41.SIGI101.EPSllCI.~ PROP 12COMMCN/CONVRG/IPDuNE.ITCCON.NNLA.NTCA.NTITER.OLDSIGI41 PROP 13COMMON/PLANE/NPP PROP 1~

DOUBLE PRECISION SM~.SPC.GP~.CMN PROP 15DIMENSION CMNI4,41.CPQI4.41.SMNI4.41.SM~TI4.41.SMNCI4.41.SPQI4.4I.PROP 16

ISPCTI4.41.SPQCI4.41.[14.41.CUMMVI4.41 PROP 11EQUIVALENCE ICP~Il.ll.SP\llltlll PRGP 18EQUIVALENCE ISMNll.II.CMNll.111 PROP 19

C••••••• •• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• PROP 20C INITIALIZE PROP 21C••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• PROP 22

MTVPE-IABSIIXIN.511 PROP 23c.·..··· · ···· PROP 2~

C INTERPOLATE MATERIAL PROPERTIES PROP 25c.· ·· ··· PROP 26DO 100 MM=Z.IZ PROP 21M-MM PROP 28IfIEIM.l.MTVPEI.GE.TINII GC TU 110 PROP 29

100 CONTINUE PROP 30110 RATlC=O. P"OP 31

CEN~EIM.I.MTVPEI-EIM-l.1.MTVPEI P~OP 32IfIDEN.NE.O.IRATIO=ITINI-EIM-I.I.MTVPEII/CEN PROP 33DO IZO KK=l. ZI PROP H

lZ0 EEIKKI=EIM-I.KK+I.MTYPEI+~ATIO*IEIM.KK+I.MTVPEI-EIM-l.KK+l.MTVPEIIPROP35C PROP 36[ MODlfV ALL TENSILE MODULI BV MULTIPLVI~G BV ELASTIC/PLASTIC RATIO PROP 31C AS fART [f NCNLI~EAR APPROXIMATIONS PROP 38C PROP 39C PROP 40C SINCE T~E NONLINEAR THEORY CANNOT BE USEO AT THE SAME TIME AS THE PROP 41C MULTIMCDULUS THEORY. USE THE TENSILE PRCPERTIES IN THE NONLINEAR PROP ~2

C APPROACh PROP ~3

C PROP ~~DO 130 M=I.3 PROP 45

130 EEIMI=EEIMI*EPRINI PROP 46DO 140 M=4.6 PROP 41

140 EEIMI=.5-1.5-EEIMII*EPR{NI PROP 4BEE{71=EEI71*EPRINI PROP ~9

IfINTITER.GT.ll GO TO ZOO PROP 50c•••¥$~·••••*••••***••*.*••*•••••**.*.**•••••••••••••*••••••••••••••••••PROP 51C fORM STRESS-STRAIN ~ELATICNSHIP IN M-N-T SYSTEM PROP 52(. -:$.?f.,'::") •••** ••••*********************.*."""**** ••******* * PROP 53C PROP 5~

INITIALIZE STRESS-STRAIN RELATIONS .ITH TENSILE PROPERTIES PROP 55C PROP 56C fORM STRAIN-STRESS ICUMPLIANCEI MATRIX IN PRINCIPAL MATERIAL PROP 51C COORDINATES IM-N-T SYSTHJ PROP 5BC PROP 59

SMNll.ll=I./EElll PROP 60SMNll.21=-EEI41/EElll PROP 61SMNll.31=-EEI51/EE{11 PROP 62SMNll.41=0. PROP 63SMNI2.11=SMNll.Z1 PROP 64SMNI2.21=1./EEIZI PROP 65SMNI2.31=-EEI61/EEIZI PROP 66SMNI2.41=0. PROP 61SMNI3.II=SMNll.31 PROP 6BSMNI3.21=SMN{2.31 PROP 69SMNI3.31=I./EEI31 PROP 10

G-38

Page 163: Prepared by James G. Crose and Robert M. Jones

SMhI3,41=0. PROP 11SMNI4,ll=0. PROP lZSMNI4,Zl=0. PROP 13SMNI4,31=0. PROP 14SMhI4,41=4./EElll-II./EE111.1./EEIZI-12.*EEI4lI/EE~111 PROP 15

C PRCP 16C PROP 11

CALL SYMIN~ISMN,41 PROP 18C PROP 19

GO TC 500 PROP 80c••••••••• •••••••••••••••••**••••••••••••••••••••••••••••••••••••••••••• PROP 81C FOR~ STRESS-STRAIN RELATICNS IN PRINCIPAL MATERIAL OIRECTIONS PROP 8ZC IM-N-T SYSTEMl PROP 83c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PROP 84C PROP 85C OEFINE CCMPLIANCE MATRIX, SMNT. FOR TENSILE PROPERTIES IN PROP 86C PRlhCIPAL MATERIAL COORDINATES PROP 81C PROP 88

ZOO SMNTlI,lI=I./EEIII PROP 89SMNTll,ZI=-EEI4I/EECll PROP 90SMNTCI,31=-EEC5I/EEI I) PROP 91SMNTll,41=0. PROP 9ZSMNTlZ,II=S~NT(1,2l PROP 93SMNTCZ,ZI=I./EECZ) PROP 94SMNTCZ,31=-EEI6I1EECZI PROP 95SMNTlZ ,41 =0. PROP 96SMNTI3,II=SMNTII,31 PROP 91SMNTI3,21=S~NTIZ,31 PROP 98SMNTI3,31=1./EEI31 PROP 99SMNT13,41=0. PROP 100SMNTl4,lI=0. PROP 101SMNTI4,ZI=O. PROP 10ZSMNTC4,31=0. PROP 103SMNTI4,41=4./EElll-II./EElll+I./EEI2l-IZ.*EEI4lI/EEl11I PROP 104

C PROP 105C OEFINE COMPLIANCE MATRIX, SMNC, FOR COMPRESSIVE PROPERTIES IN PRCP 106C PRINCIPAL MATERIAL CCORDINATES PROP 101C PROP 108

SMNCl1,11=1./EEI81 PROP 109SMNC11,ZI=-EEII11/EEC81 PRCP lieSMNC11,31=-EE1IZI/EEI8) PROP IIISMNCl1,41=O. PROP liZSMNCI2,ll-SMNCl1,ZI PROP 113SMNCIz,ZI-1./EEI91 PROP 114SMNCIZ,31=-EEI131/EEI91 PROP 115SMNC1Z,41-0. PROP 116SMNCI3,II=SMNCl1,31 PROP IIISMNCI3,ZI=SMNCIZ,31 PROP 118SMNCl3,31=1./EEl101 PROP 119SMNCl3,41=0. PROP IZOSMNCl4,11=0. PROP IZISMNC 14,ZI=0. PROP 12ZSMNCI4,31=0. PROP 1Z3SMNCI4,4l=4./EElI41-11./EEI81.1./EEI91-1Z.*EElllII/EEI811 PROP lZ4

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• PRGP 125C FORM STRESS-STRAIN RElAT1CNS IN PRINCIPAL STRESS DIRECTIONS PROP lZ6C lP-~-T SYSTEMI PROP IZlc•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PROP 128C PROP lZ9

READ 131 OMEGA,SIGP,SIGQ,SIGT,IOlOSIG111,1=I,41 PROP 130C PROP 131C THE OLOSIGIII ARE REAO BECAUSE THEY CCCUR BETWEEN SETS OF CMEGA, PROP 132C SIGP, ETC. AND BECAUSE THEY ARE REQUIRED l~ STRESS lTHEY ARE PRCP 133C PASSEO THROUGH CCMMONI PROP 134C PROP 135

8ETA=OMEGA-AlPHAINI PROP 136C PROP 131C NE~ DIJ MATRIX FOR ROTATION FROM MN TO PQ PROP 138C PRCP 139

CALL ROTATEIO, 8ETAI PROP 140

G-39

Page 164: Prepared by James G. Crose and Robert M. Jones

C PRGP 1~1

C ROTATE S~NT TO SP"T PROP H2C PROP 1~3

DO 3CO IIEI,4 PROP 1~4

DO 300 JJEI,4 PROP 1~5

OUMMVIII,JJI=O. PROP 1~6

DO 300 KK=I,4 PROP 1~1

300 DU~MVIII,JJIEOUMMVIII,JJI+SMNTlll,KKI*CIJJ,KKI PRCP 1~6

C PROP 1~9

CO 310 JJ=I,4 PROP 150DO 310 11-1,4 PROP lSISP"TIII,JJI=O. PROP 152DO 310 KK=l,4 PROP 153

310 SPOTIII,JJI=SPUIIII,JJI+OIII,KKloDUMMV1KK,JJI PROP 154C PRCP 155C ROTATE S~NC TO sp~c PROP 156C PROP 151

DO 320 11=1,4 PROP 156DC 320 JJ=l,4 PROP 159DUMMVIII,JJI=O. PROP 160DO 320 KK=I,4 PROP 161

320 DUMMYlll.JJI=DUMMVIII,JJI+SMNCIII.KKloOIJJ,KKI PRep 162C ~OP 163

DO 330 11=1,4 PROP 16'0DO 330 JJ-I,4 PROP 165SPOClll,JJI=O. PROP 166DO 330 KK=I,4 PROP 161

330 SPOClll,JJI=SPOCIII,JJI+CIII,KKloDUMMVIKK,JJI PROP 166C PROP 169c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PROP 110C CHOOSE SPO BASEC ON SIGNS AND VALUES Cf P~I~CIPAL STRESSES PROP 171c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PROP 172C PROP 173C DEFINE "EIGHTING FA(.TURS PROP 174C PROP 175

PPO=ABSISIGPI/IABSISIGPI+ABSISIGOII PROP 176OPO=ABSISIGOI/IABSISIGPI+ABSISIG"11 PROP 171PPT=ABSISIGPI/IABSISIGPI+ABSISIGTll PROP 178TPT=ABSISIGTI/IABSISIGPI+ABSISIGTII PROP 179OOT=ABSISIGOI/IABSISIGOI+ABSISIGTII PROP 160TOT=ABSISIGTI/IABSISIG"I+ABSISIGTII PROP 181

C PROP 182SPOll,llESPOCll,l1 PROP 183lFISlGP.GT.O.1 SPOII,II=SPOTll,11 PROP 184

C PRCP 165SPOI2,21=SPOCIZ,ZI PROP IB6IFISIGO.GT.O.I SPOIZ.ZI=SPOTIZ.ZI PROP 187

C PROP 188SPOI3.31=SPOCI3,31 PROP 189IfISIGT.GT.O.I SPOI3,31=SPOTI3.31 PROP 190

C PROP 19lSPOll,ZI=SPOCII,21 PROP 192lF1SIGP.GT.0 •• ANO.SIGO.GT.0.1 SPOII,ZI=SP"TII,ZI PROP 193IFISIGP.GT.O •• ANC.SIGO.LE.O.1 SPOII,ZI=PPO*SPOTII,21+0PO*SPOCII,ZIPROP 194IfISIGP.lE.O •• ANO.SIGO.GT.O.1 SPOIl.ZI=PPO*SPOCII.ZI+OPO*SPOTII,ZIPROP 195

C ~~I%

SPOII,31=SPOCII.31 PROP 197IFISlGP.GT.O•• ANO.SIGT.GT.O.1 SPOIl,31=SPOTII,31 PROP 198IFISIGP.GT.O •• AND.SIGT.LE.O.I SPOII,31=PPl*SPOTII,31+TPT*SPOCII.3IPROP 199lFISIGP.lE.O •• AND.SIGT.GT.O.1 SPOII,31=PPT*SPOCII,31+TPT*SPOTII,3IPROP zoo

(. PROP ZDISPOI2,31=SPOCIZ.3I PROP ZOZIfISlGo.GT.O ••ANO.SIGT.GT.O.1 SPOIZ,31=SPOTIZ,31 PROP Z03IFISIGO.GT.O •• ANO.SIGT.LE.O.1 SPOIZ.31="T*SPOTI2,31+TOT*SPOCIZ,3IPROP Z04lFISIGO.lE.O •• AND.SIGT.GT.O.1 SPO(Z.31="OT*SPOCI2.31+TOT*SPOTI2,3IPROP Z05

C PROP 206SPOII.41=SPOCII,41 PROP Z07IFISIGP.GT.O.I SPOII.41=SPOTII.41 PROP ZOB

C. PROP 209SPOI2,41=SPOCIZ.41 PROP 210

G-40

Page 165: Prepared by James G. Crose and Robert M. Jones

IFISIGQ.GT.O.1 SPQI2.41=SPQT(2.41 PROP 211C PROP 212

SPQ(3.41=SPQCI3.41 PROP 213IFISIGT.GT.O.I SPQI3.41=SPQT(3.41 PROP 214

C PRCP 215SPQ(4.41=SPQC(4.41 PROP 216IFISIGP.GT.O •• ANC.SIGC.GT.O.1 SPQI4.41=SPCTI4.4) PROP 217IFISIGP.GT.O•• ANC.SIGC.L~.O.I SPQI4.41=PPC*SPQTI4.41+CPQ*SPQC(4.4IPROP 218IFISIGP.LE.O •• ANC.SIGC.GT.G.) SPQ(4.41=PPC*SPQCI4.41+QPQ*SPQTI4.4IPROP 21q

C PROP 220C ENFURCE SYMMETRY OF THE COMPLIANCE MATRIX PROP 221C PRCP 222

SPQ(2.11=SPCll.21 PROP 223SPC(3.11=SPCll.31 PROP 224SPQI3.21=SPCI2.31 PROP 225SPCI4.II=SPQll.41 PROP 226SPQI4.21=SPCI2.41 PROP 227SPCI4.31=SP'(3.41 PROP 228

C PRCP 22qCALL SYMIN~ISPQ.41 PROP 230

C PROP 231C.·.········ •••••••••·••••••••••••••••••••••••••.•.••••.••••..•••••••.••PROP 232C ROTA1E STR~SS-STRAIN RELATIONS FROM PRINCIPAL STRESS DIRECTIONS PROP 233C IP-Q-T SYSTEM 1 TO PRINCIPAL MAT~RIAL DIRECTIONS IM-N-T SYS1EMI PROP 234C··.·········.•.·••••·••··•••••••.•••••••••..•••..•••••••••••••••••.••••PRGP 235C PRCP 236C THIS STEP IS REQOIRED IN ORDER TO PICK UP T~~ THERMAL TERMS THAT PROP 237CARE CEFINED ONLY IN THE PRINCIPAL MATERIAL DIRECTIONS PROP 238C PROP 23qC ROTATE CPC TO CMN PROP 240C PROP 241

CALL ROTAT~IC, BElA) PROP 242C PRCP 243

DO 400 1[=1.4 PROP 244CO 400 JJ=I.4 PROP 245OUMMYIII.JJI=O. PROP 24600400 KK=I.4 PROP 247

400 DDMMllll.JJI=OUMMY[ 1I,JJI+CPQI [[,KKI*OIKKdJI PROP 248C PROP 24q

GO 410 11=1,4 PROP 25000 410 JJ=I,4 PROP 251CMNIII,JJI=O. PROP 25200 410 KK=I.4 PROP 253

410 CMNIII.JJI=CMNIII,JJI+DIKK,III*OUMMYIKK,JJI PROP 254c••••••••••••••••••••••••••••••••••••••••••••••••••••*•••• ***••••••••••• PROP 255C ROT AlE STRESS-STRAIN RELATIONS FROM PRINCIPAL MATERIAL DIRECTIONS PROP 256C (M-N-T SYSTEMI TO BODY DIRECTIONS IR-l-l SYSTEMI PROP 257c••••••• ••••••••••••••••••••••••• *****••** ••••••••** ••*****.**••••****••PROP 258C PROP25qC PROP 260

500 OALPHA:ALPHAINI PROP 261CALL ROTA1EID.OALPHAI PROP 262

C PROP 263C PRep 264C R01AH CMN 10 CRl PROP 265C PROP 266

00 510 11=1,4 PROP 26700 510 JJ=I,4 PROP 268OUMMYI II.JJ 1=0. PRCP 269DO 510 KK=I,4 PROP 270

510 DUMMYlll.JJI=OUMMYIII,JJ1+CMNIII,KKI*0IKK,JJ) PROP 271C PROP 272

00 530 [1=1.4 PROP 273DO 520 JJ=I,4 PRUP 274CRl( 11 dJ 1=0. PRCP 275EO 520 KK=I,4 PRCP 276

520 CRlIII,JJI=CRZlII,JJI+DIKK.III*CUMMYIKK.JJ) PROP 277111111=0. PRCP 278DO 530 M=I.4 PROP 2JqPIMl=IT1NI-1KEF)*ICMNIM,II*EEII51+CMNIM.21*EEI161+CMNIM,31*tEI171IPROP 280

G-41

Page 166: Prepared by James G. Crose and Robert M. Jones

IFlACfTSlMTVpcl.E~.I./P(~I=CMN(M,II.EEI15/'CMNlM,21.EE1161

I+CM~IM,31·EEI171

530 TTIIII=TTlIIl+OIM,III.PIMIIfl~PP.NE.2IRETURN

CC THE PLANE STRESS MATEklAL PROPERTIES ARE fCUNO FPOM IbE GENERALC STRESS-STRAIN RELATICNSHlb BV SETTING SIGMAZ C AND ELIMINATINGC EPSZ FROM TbE E_CATleNS.C

CRZII,I)=CRZII,II-CRZII,3) ••2/CRlI3,31CR1Il,2)=Ck1ll,2/-CRlI2,3).CR1( 1,31/Chll3,31CR1Il,4/=CR1(I,4/-CR1ll,3)·CRlI3,41/CRlI3,31CklI2,ZI=CR1lZ,ZI-CRZI2,31 ••2/CklI3,3/CRlI2,41=CklI2,41-CRlI2,31·CRlI3,41/CRZI3,31CRlI4,41=CRZI4,41-CklI3,41··2/CRlI3,31TT(II=TTlll-CR11I,31·TT(31/C~113,31

lTI21=11121-CkLI2,31+11131/CklI3,31TTI41=TTI41-CklI4,31+1TI31/CklI3,31cu tce 11=2,4CO 6eo JJ=loIl

600 CR1lll,JJI=CR1IJJ,111C

RETURNEND

G-4Z

PROP 281PRCP 282PROP 283PROP 284PRCP 285PROP 286PRCP 287PRCP 288PROP 289PROP 2gePRCP 291PRCP 292PROP 293PROP 294PROP 295PROP 296Pllep 291PRCP 298PRCP 299PROP 300PRCP 301PROP 302PROP 303PROP 304

Page 167: Prepared by James G. Crose and Robert M. Jones

S~8RCUTI~E KCTATEI(,T~ETAI RTAT 1L•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••RlAT 2C THE TKA~SFOR~ATIC~ MATRIX 0 I~ CALCULATE( 'CP A KOTATIGN 'THETA' RTAT 3C WHIC. MUST tE EXPRESSED IN RADIA~S RTAT 4C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••RTAT 5

(I~E~SIC~ 014,41 RTAT 6C RUT 7

S2= SI~ITHETAI•• 2 RTAT 8C2= CGSITHETAI •• < RTAT 9SC= Slhl THETAI. CCSlTHETAl RTAT 10

C RTAT 11O(l,II=C2 RTAT 12(ll,21=S2 RTAT 13(ll,3I=C. RUT 14Dll,41=SC RTAT 15(1',1I=S2 RTAT 16C12,21=C2 RTAT 17(12,31=0. RTAT 18012,41=-SC RUT 19(13011=0. RTAT 20(13,21=C. RUT 21(13,31=1. RTAT 22C13,41=C. RTAT 23DI4011=-2 •• SC RTAT 24CI4,21=2 •• SC RTAT 25014,31=C. RTAT 26CI4,41=Cl-S;> RTAT 27

C RUT 28PETlJPh RTAT 29ENe RTAT 30

G-43

Page 168: Prepared by James G. Crose and Robert M. Jones

SUBRCvTINE TRISTFIII.JJ.KKI TRIS 1C··••• ••••••••••••••••••••*••••••••••••••• ••••••••••••••••••••••••••••••TRIS 2C THIS SUBROUTINE GENERATES A TRIANGULAR ELE~£NT STIFF~ESS MATRIX TRIS 3C ANC U.AC VECTOR. TklS 4C·•••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TRIS 5

LOMMC~/BASIC/NUMNP.NUMEL.NU~PC.NUMSC.ACELI.ANGVEL.TREf.VoL.IFREQ TRIS 6CO~~C~/MATP/ROI61.AOFTSI61.EI1Z.ZZ.61.EEIZll.PURGTYIEI TRIS 7CGM~CN/NPDATA/RIIOOOI.CoOEII0001.XRII0001.111000l.XII10001.TII000lTPIS 8Co~M(N/ELDATA/IXI1000.51.EPRI10001.ALPHAllCCOI.PSTIICC01 TRIS 9DOUBLE PRECISION f.CCMM.D TlUS 10DOUBLE PRECISION CRI.Xl.RR.II.S.RRR.111 TRlS 11CoMMLN/ARG/RRRI51.lll151.RRI41.ll141.SI10.101.CRlI4.4).XIII01. TRIS lZ

1 PI101.TTI41.HI6.1DI.HHI6.1CI.ANGLEI41.SICII01.EPSIICI.N TRIS 13COM~oN/PLANE/NPP TRIS 14OIME~SION 0Io.61,LMI31.0013.31.FI6.101.TPI61 TRIS 15

C.·••••••••••• ••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••• TRIS 16C INiTlALllE TRIS 17C··••••••• •••• ••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••• TRIS 18

LMlll=ll TRIS 19LMlZI=JJ TRIS ZOLM I3I=KK TRI S 21ITR=2 TR I S 22IFIKK.EQ.31 ITR=3 TRIS 23

C TRIS 24RRlll=RRRllll TRIS 25RRlZI=RRRlJJI TRIS 26RRI31=RRRIKKI TRIS Z7lllll=llll III TRIS 28lllZI=llllJJl TRIS Z9ll131=llllKKI TRIS 30

C TRIS 31DO 110 1=1.6 TRIS 3Z00 ICO J=1.10 TRIS 33FII.J)=O. TRIS 34

100 H I.JI=O. TRIS 35DO 110 J=1.6 TRIS 36

110 OII.JI=C. TRIS 37C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••*TRIS 38C FORM INTEGRAL lGIT*ICRZI*IGI TRIS 39C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••*.*••••••rRIS 40

CALL I~TER TRIS 41C TRIS 4Z

VCL=VCL+Xlll) TRIS 43IFl~PP.EQ.OIGO TO ZOO TRIS 44

C TRIS 45C FOR PLANE PROBLEMS TRIS 46C TRIS 41

OIZ.ZI=Xllll*CRlll.l) TRIS 480IZ.31=Xllll*CRlll.41 TRIS 490IZ.~I=OIZ.3) TRIS 50CIZ.6)=XIIII*CRlll.ZI TRIS 51013.3)=XII1l*CR1l4.41 TRIS 5Z013.51=013.3) TRIS 53013.E)=XIIII*CRlIZ.41 TRIS 54015.51=013.31 TRIS 55015.61=013.61 TRIS 56016.61=Xllll*CRllZ.Zl TRIS 57GO TC 210 TRIS 58

C TRIS 59C FOR AXISYMMETRIC PROeLEMS TRIS 60C TRIS 61

ZOO (1101) = XI131 * CRll3.31 TRIS 6Z011.21=XIIZl*ICRlll.31+CRlI3.31) TRIS 63011.3)=XI151*CRlI3.31+XIIZI*CRlI3.4) TRIS 64OII.51=XIIZI*CRZI3.41 TRIS 650II.EI=XIIZ)*CRlIZ.31 TRIS 660IZ.2)=XIIII*ICRlII.11+Z.*CRlll.31+CRI13.31) TRIS 670IZ.31=XI141*ICRlll.31+CRlI3.311+XI111*ICRlll.4)+CRlI3.411 TRIS 68CIZ.5)=XIIII*ICRlI1.41+CRlI3.41 I TRIS 690IZ.61=Xllll*ICRll I.Zl+CR1l2.31) TRIS 70

G-44

Page 169: Prepared by James G. Crose and Robert M. Jones

CI3.31=Xllbl.CKZI3.31+XIIII.CRll~.41'2 ••XI141.CKlI3.41 TRIS 71013.51=XIIII.CKll~.~I+XI141.CRZC3.41 TRIS 72013.bl-XI141.CRllZ.31+XIIII.CRlIZ.~1 TRIS 73015,51=XI1II.CRll~,~1 TRIS 74015,61=XICII.CRllZ.~1 Tns 15CC6,bl=XIIII.CRlIZ.ZI TRIS 7b

C HIS 77210 00 Z20 1=I.b TRIS 78

[0 22C J=I.b HIS 7~

22001J,II=Otl.JI TRIS 80C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• TRIS 81C fOR~ COEffICIENT-DISPLAC~MENT TRANSfCR~ATIC~ MATRIX TRIS 8ZC•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TRIS 83

CUMM=RRIZI.lllI31-lZ1111+RRlll.IZZI21-ZZ1311+RRI31.111CII-ZZlZ) I TRIS 84C01I.II-IRR1ZI·ZZI31-RRI31.ZZIZII/COMM TRIS 8500(I,21=IRRI31.IZCI)-RR1II.ZZI311/CC~M TRIS 8b00(1.31=IRRIII.ZZCZI-RR(ZI.ZZ(II)/CC~M TRIS 87CDI2,II=CZZlZI-ZZI311/CUMM TRIS 88DDI2.Z)=IZZI31-ZZ1111/COMM TRIS 8~

COI2.31=IZZIII-ZZllII/CUMM TRIS 90OOI3.11=IRRI31-RR1ZII/COMM TRIS 91COI3.ll=CRRIII-KRI311/COMM TRIS 92COI3.31=IRRI21-RRIIII/COMM TRIS 93

C TRIS 94Du 300 1=1.3 TRIS 95J-2.LMIII-I TRIS 9bHll.JI=DDlltil TRIS 97HIZ,J)=ODll.11 TRIS 98HI3.J)=DOI3.11 TRIS 99~14,J+1I=Oull.11 TRIS 100HI5.J+II=00IZ.11 TRIS 101

300 HI6.J+II=0013.11 TRIS 10Zc••••••••••••••••••••••••••••••••••••••••••••• $ •••••••••••••••••••••••••T~IS 103C ROTATE UNKNC.NS If REQUIRED TRIS 104C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TRIS l05

CC 410 J=I.ITR TRIS lObI=L~IJI TRIS 101If(A~GCEIII.Dt.O.1 DC TO 41v TRIS 108;INA=,INIANDLEIIII TRIS 109COSA=COSIANGLUIII TRIS 110IJ=l·1 TRIS IIIGO 4DC K=I.e TRIS liZTE~.=f(K.IJ-II IRIS 113t-IK ..J-II=TEM.CGSA+H(K,IJI·~INA HIS 114

400 HIK.IJI=-Tl~.SINA+HIK,IJI*CCSA TRIS 115410 CO~T1NOE TRIS lib

C**••••** ••*** •• *••***.****************.********************************TRIS 117C FOK~ ELEMENT STifFNESS MATRIX IHI1.101*IHI TRIS 118C•••••••••••••••••_.***.*••• *••••_*.**** •••• __ ••• **********.******••••••TRIS 119

DO 510 J:ldO TRIS IZOCO SID K~I.o TRIS 121IFlhIK.JI.EI;.O.1 vG TU >10 TRIS 12lCO 500 1=1.0 IRIS 123

500 FII,JI=FII.JI+OIl.KI*tllK.JI IRIS Il4510 CCNTINUE IRIS Il5

00 530 1=lde IRIS IlbDU 530 K=I.6 IRIS 127IfIHK.II.l<;.O.1 DC Tr. 53(' HIS 128OU 5lC J=I.IO TRIS 12~

5Z0 SII.J)=SII.JI+HIK,!I*FIK.JI TRIS 130530 CO~TINUE TRIS 131

c••••••••*••**.**••••*.*** •••***.*********.********~******•••***********THIS 132C FOR~ ecuy FCRCE MATRIX TRIS 133c••••••••••••••** ••••********************************************•••• ***TRIS 134

~TYPE=IABSIIXIN.511 TRIS 135IF(~PP.~£.CI GC TO bOU IRIS 13b

C TRIS 137C FUR AXISYMMETRIC PRGeLL~S TRIS 138C TRIS 13~

CU~~=RCIMTYPEI*ANGVEL*'2 TRIS 140

G-45

Page 170: Prepared by James G. Crose and Robert M. Jones

TPlllzCCMM*XI171 + X1121*TT131 - XI121*PSTlhl TRIS 1~1

TPI2IzCO~M*XI191 + Xllll*ITTlll+TTI311 - Xllll*Z.*PSTINI TRIS 1~2

TPI31-CCMM*XIII01+ XII~I*TTI31 + Xllll*Tll41 - XI141+PSTINI TRIS 1~3

CO~Mz-ROIMTYPEI*ACELl TRIS 1~~

TPI41-COMM*Xllll TRIS 1~5

TPI51-COMM*XI171+Xllll*TTI41 TRIS l~b

TPlbl zCOMM*XI181 + Xllll*TTIZI - Xllll*PSTlhl TRIS 147GO TC blO TRI S 148

C TRIS 149C FOR PLAhE PROBLEMS TRIS 150C TRIS 151

bOO ACELR z ANGYEL TRIS 152COMM z -ROIMTYHI * ACELR TRIS 153TPIII - COM~ • XlIII TRIS 154TPI21 - CUMM * XII71 + XliII. HIli - XlIII * PSTlNI TRIS 155TPI31 z COMM. XI181 + XlIII. HI41 TRIS 15bCOMM - -ROIMTYPEI • ACEll TRIS 157TPI41 = COMM • XliII TRIS 158TPI51 = COMM • XI171 + Xliii. TTI41 TRIS 159IPlbl = COMM • Xl181 + XlIII. III21 - XlIII + PSTlh) IRIS IbO

610 00 620 I = 1,10 TRIS IblDO 620 K=l,b TRIS Ib2

620 PITlzPIII+HIK,II*TPIKI TRIS Ib3C TRIS 164C FORM STRAIN TRANSFORMATION MATRIX TRIS Ib5C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••TRIS 166

DO 7CD 1-1,6 TRIS Ib700 100 J=I,IO TRIS Ib8

100 HHII,JI=HHII,JI+HII,JI TRIS Ib9C TRIS 170

RETURN TR lSI 7IEND HIS 112

G-46

Page 171: Prepared by James G. Crose and Robert M. Jones

SUBROUTIhE IhTE~ IhTE 1C.· ••••••••••••••••• • ••••••• •••••••••••••••••••••••••••••••••••••••••••• [NTE 2~ THIS S~BROUTINt PERfCRMS A ~UMERICAL I~TEGRATION OF NECESSARY INTE 3C FU~CTIGhS THROUGH THE VOLUME OF THE TRIANGULAR ELEMEhT INTE 4C.····.······ · ·.·...•...........................•........... 1NTE 5

COUBLE PRE~ISION XM,R.AREA.Z,XX INTE 0COUBLE PRE~ISION ~RZ.XI.RR.ZZ.S.RRR.ZZZ INTE 1COMM(N/ARG/RRRI51.ZZZI51.RR(41.ZZ141.SIIO.IGI.~RZI4.41.XIIIOI. INTE B

I PIIOI.TT(41.Hlb.IOI.HH(0.ICI.ANGLEI41.SIGI101.EPSllCI.N INTE 9COM~CN/PLANElNPP INTE ICDIMEhSION XN/ll.RI71.Z171.XXI91 INTE 11DATA XX/3*.125,j91805448.3*.1323941521B84 •• 22500000CCOOO. INTE 12l.b90140418028.-.4104.01~2314/ INTE 13

C IhTE 14Rlll=(RRlll+RRI21+RRI311/3. INTE I~

1111-IZ111l+ZZ121+ZZ13II/3. INTE 10AREA=.5*(RRIII*IZZI21-ZZ1311+RRI21*IZZI31-ZZIIII+RR(31*IZZIII-ZZI2INTE II

1111 INTE 18C INTE 19

IFI~PP.NE.OIGO T~ 600 INTE 20C INTE 21

DO ICO 1=1.3 INTE 22J=I+3 INTE 23RIII=XXI81*RRIII+II.-XXI811*PI11 INTE 24PIJI=XXI91*RRIII+II.-XXI911*PI11 INTE 25Z(II=XXI81*ZZIII+II.-XX(811*Zll) INTt 20

100 ZlJI=XX(91*ZlIll+Il.-XXI911*ZI11 INTE 21C INH 28

DO <00 1=1.1 INTE 29200 XMIII=XXIII*RIII I~TE 3C

C INTE 31DC 300 1=1,10 IhTE 32

300 XI III=C. INTE 33~ INTE 34

CO 4CC 1=1.1 INTE 35XIIll=XIIll+XMIII INTE 30XII21=XIl21+XMIIIIRIII INTE 31XII31=XIl31+XMIII/IRIII**ZI INTE 38XI141=XIl41+XMIII*ZIII/RIIl INTE 3,XI151=XIl51+XMIII*ZIIIlIR(II**ZI INTE 40XI161=XIl61+XMIII*IZIII**21IlRIlI**21 INTE 41XII1I=XIIlI+XMIII*RIlI INTE 42XI181=XI181+XMIII*ZIII INTE 43XI(SI=XIl9l+XMIII*IRII)**21 INTE 44

400 XIIlCI=XIIlO)+XMIII*RII)*ZIII INTE 45C INH 46

DO 500 1=1.10 INTE 41500 XIIl'=Xlll'*AREA INTE 48

~ INTC 49C INTE 50

RETURN INTE 51600 XlIII AREA INTE 52

XI111 = ~111 * AREA INH 53XI181 = Zlll * AREA INTE 54RETURN INT. 55END INTE 50

G-47

Page 172: Prepared by James G. Crose and Robert M. Jones

SUB~CUTlhE MODIFYlhEQ,h,UI MODI 1, •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••"001 2C THIS SUB~OUTINE INCORPORATES DISPLACEMENT BOUNDARY CONDITIONS BY MODI 3C SYMMET~ICAL MODIFICATION OF THE BODY STIFFNESS MATRIX AND LOAD MODI 4C VECTOR. MODI 5C MODI 6

DOUBLE PRECISION A,B MODI 7CDMMCN/SOlVE/BIIOOI,A1I00,501,NUMBLK,MBAND IIODI B

C 11001 9DO 10 II-Z,MBAND 11001 10K-I\-II+1 11001 11IF1K.LE.01 GO TO 5 MODI 12B1KI-BIKI-AIK,III*U MODI 13

,AI K.II)=O. 11001 145 K-"+"-I MODI 15

IF1NEQ.LT.KI GO TO 10 11001 16BIKI-BIKI-AIN,III*U MODI 17AIN,III"O. 11001 IB

10 CONTINUE 11001 19C 11001 20

AIN,lI=I. 11001 2181"'-U MODI 22

C 11001 23RETURN MODI 24END MODI 25

G-48

Page 173: Prepared by James G. Crose and Robert M. Jones

S~BRC~TINE SYMINvIA,NMAXI SYMI Ic ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5y"[ 2C THIS S~BROUTINE INVERTS A SYMMETRIC ~ATRIX (F CRoER ~~AX SYMI 3c ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Sy"1 4

COUBLE PRECISION A,O SY'Ol 5DIMEhSICh AINMAX,NMAXI SYMI c

C SYI'I 1DO 3CO N:I,NMAX SYMI 8

C SYMI 9D=AIN,NI SYMI 10DO lOa J=I,hMAX SYMI 11

100 AIN,JI=-AIN,JI/D SYMI 12C SYMI 13

CO 210 Isl,NMAX SYMI 14IFlh.EQ.II GG TO 210 SYMI 15CO 200 JsI,NMAX SYMI 16IFIN.NE.J' AII,JI=AII.JI+AII,NloAIN.JI SYMI 11

200 CONTINUE SYMI 18210 AI I,NI=Al I,NI/O SYMI 19

C SYMI 20300 AlN,~I:l./O SYMI 21

C SYMI 22RET~RN SYMI 23END SYMI 24

G-49

Page 174: Prepared by James G. Crose and Robert M. Jones

SUBR(UTI~E SOLV SOLV 1C••••••••••••***•••••••***.**••••••****.**•••••***••**••••••••••••••••••SOLV 2C THIS SUBROUTINE SCLVES A SET OF BANDEC LihEAR SIMULTANEOUS SOlV 3C EQUATIONS ~y GAUSS ELIMINATION. SOL V ~

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••SOlV 5COMMCN/BASIC/NU~~P.NU~EL.NU~PC.hUMSC.ACELZ.ANGVEL.1RBF.VOl.IFREQ SOlV 6COUBLE PRECISION A.B.C SOL V 7COM~CNISCLVE/BIIOOI.AII00.501.NUMBLK.MBAhD SOlV B

C SOlV 9MM=I'BAND SOL V 10NN=50 SOLV 11hL=Nh+ 1 SOL V 12hH=M+hN SOL V 13RE~ INO 1 SOlV HRE~aD 2 SOLV 15NB=O SOLV 16GO TC 120 SOLV iT

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• SOlV 18C REDUCE EQUATIONS ~y BLCCKS SOlV 19C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••SOLV 20C SOlV 21C 1. SHIFT ~LCCK OF EQlATIONS SOlV 22C SClV 23

100 NB=~B+l SOL V 2~

CO 110 h=I. h~ SOLV 25NM=~h+h SOL V 26BI~I=BlhMI SOLV 218INMI=0. SOlV 2800 110 ~=I.~M SOLV 29AI~.~I=A(NM.MI SOLV 30

110 AINM.MI=C. SOL V 31C SOlV 32C 2. READ NEXT BLOCK OF EQlATIONS INTC CCRE SOLV 33C SOLV 3~

IflhUMBLK.U;.NBI GU TO 130 SOLV 35120 REACIZI IBINI,(AIN.,41.M=I.MMI.N=NL.NHI SOLV 36

IFINB.EQ.OI GO TO 100 SOLV 37C SOL V 38C 3. REDUCE BLOCK OF EQUATIONS SOLV 39C SOLV 40

130 00 160 N=I.NN SOLV 41IfIAIN.l'.EQ.O.1 GO TO 160 SOLV 42Blhl=BINI/AIN.11 SOLV 4300 150 L=2.MM SCLV 44IFIAIN.LI.EQ.O.I GO TO 150 SULV 45C=AIN.LI/AIN.11 SOLV 46I=N+L-l SOLV 47J=O SOL V 48DO 140 K=l.I'M SUL V 49J=J+l SOL V 50

140 AII.JI=AII.JI-C*AIN.KI SOLV 51BIII=Bll'-AIN.LI.BINI SOLV 52AIN.L)=C SCLV 53

150 COhTINlJE SOLV 54160 CChTiNUE SOLV 55

C SOLV 56C 4. ~RITE BLCCK OF HECUCEC EQUATIONS CN FORTRAN UNIT 1 SOLV 57C SGLV 58

Ifl~UMBLK.EQ.NBI GO TO 200 SOLV 59WRITE III IBINI.IAIN.MI.M=2.MMI.N=I.Nhl SCLV 60GO TC lOG SOLV d

C•••••••••••••••••••••••••••••••••••••••••••••••••****•••••************.SOlV 62C BACK-SUeSliTUTION SOLV 63C••••••••••••••••••••••••••••••••••**•••••••••••• ***••**** •••*•••***••**SOlV 64

200 DO 22G M=I.NN SOLV 1>5N=hN+I-M SOLV 66DO 210 K=2.MM SOLV 67L=N+K-l SOLV 68

210 BINI=BINI-AIN.KI*BILI SOL V 69N~=N+NN SUL V 70

G-50

Page 175: Prepared by James G. Crose and Robert M. Jones

BI~M)=BI~) SOlY 11220 ftINM,~BI=B(~1 SOlY 72

~B=~B-l SOlY 73IFINB.EQ.OI GU TO 30e SOlY 7"BftCKSPACE I SOlY 75READ III (B(N),(ftIN,M),M=Z,MMI,N=I,~~1 SOlY 7bBACKSPACE I SOlY 77GO TG 200 SOlY 7B

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••SOlV 19t CRCEP FtRMER UNKNl.~S IN B ftRRAy SOlY 80C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••SOlV 81

300 K=C SOlY 8200 310 NB= I, NUMBlK SGl Y 8300 310 N=l,~~ SOlY B"NM=N+NN SOlY 85K=HI SOlY 8b

310 8IK/=AINM,N6) SOlY 87C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••SOlV 88C ~RITE SOlUTlCN SOlY 8~

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••SOlV 90MPRINT=O SOlY ~l

00 410 N=I,NUMNP SOlY ~2

IFIMPRINT.NE.O) GO TC 400 SOlY ~3

~RITE Ib,2000) SOlY ~4

MPRINT=40 SOlY 95"00 MPRINT=MPRINT-I SOlV 9b410 NRITE Ib,20011 N,BIZ*N-ll,BI2*NI SOlY 91

RE TURN SOL V ~8

C SOlY 992000 FORMAT 113Hl NODAL PCI~T,lBX,2HlR,IBX,2hlZ) SOlV 1002001 FORMftT 1113,2E20.7) SOlY 101

ENC SOlV 102

G-51

Page 176: Prepared by James G. Crose and Robert M. Jones

SUBRGUTI~E STRESS STRE IC•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••STRE 2C THIS SLBROUTINE SeLVES FCR ELEMENT STRESSES ANO STRAINS ANQ STRE 3C WTPUTS THESE RESULTS STI<E 4c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••STRE 5

COHMeN/eASIC/NUMNP.~UHEL.NUHPC.~UHSC.ACELl.ANGVEL.TREF.VOL.IFREQ STRE 6COHHeN/HATP/ROI61.AGFTSI61.EI12.22.61.EEI211.POROTYI61 STRE 7COHHCN/NPDATAIRI100DI.CGeEIIOOOI.XRII0001.111DDOI.XlI1OOOI.TIIOOOISTRE BCOMMON/ELOATA/IXIIOOO.51.EPRI10001.ALPHAIIOCOI.PSTIICO01 STRE 9DOUBLE PRECISION A.B SIRE 10DOUBLE PRECISION CRl.XI.RR.ll.S.RRR,lll STRE IIDOUBLE PRECISION RO.XI.X2.X3.YI.Y2.Y3.Y4.SUH.UI.VI.SI~A.CGSA.U.V. STRE 12

I RI.ll.C STRE 13COMMCN/ARG/RRRI51.11l151.RRI41.1l141.SII0.IOI.CRlI4.41.XIIIOI. STRE 14

I PIIOI.TTI41.HI6.IOI.HHI6.IOI.ANGLEI41.SIGII0I,EPSIICI.N sTRE 15COMMCN/SOLVE/BIIOOI.AIIOC.501.NUHBLK.HBANO STRE 16COHHCN/CONVRG/IPQONE.ITCOC~.NNLA.NT(A.NTITEP.OLOSIGI41 sTRE 17COMHCN/PLANE/NPP STRE 18OIHENSICN TPl61 sTRE 19

c STRE 20C INIT IALilE STRE 21c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• STRE 22

XPE=C. STRE 23XKE=C. STRE 24HPRINT=Q SIRE 25ERRCR=.005 STRE 26IPoeNE=1 STRE 27HcceN=1 STRE 28REklNO 3 STRE 29CALL RESTII) STRE 30

c••••••••••••••••••••••••••••••••••••_••••••••••••••••••••••••••••••••••STRE 31C CALCULATE ELEMENT STRESSES STRE 32c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••***•••• STRE 33

CO 2CO N=l.NU~El STRE 3~

C STRE 35IXl~.51=IABS(IX(N.511 STRE 36

C STRE 37If.IIFREQ.EQ.OI CAll ~PROP STRE 38IFlIFREQ.EQ.1) CALL QUAD SIRE 39

C STRE 40MTYPE=IABSIIXIN.511 STRE 41IXIN.51=IABSIIX1N,511 STRE 42IfIIFREQ.EQ.II GC TO 30 sTRE 43

C STRE 441=IXlN.1) STRE 45J=IXI~.21 STRE ~6

K=IXIN.31 sTRE 47L=IX1N.41 STRE 48RRRllI = R( II STRE 49RRRI21 RIJI STRE 50RRR(3) RIKI STRE 51RRR(4) = RIll STRE 52111111 = lill STRE 53111121 IIJI STRE 54111131 = llKI STRE 55111(4) = llli STRE 56RRRI51 IRRRl11 + RRRl21 + RRRl31 + RRR(4)1 I 4. sTRE 57lZZISI = IZZllll + ZZll21 + lZZDI + ZZl(411 14. STRE 58

C STRE 59RO = O. STRE 60Xl = O. STRE 61X2 = O. SIRE 62X3 = O. STRE 63Yl = O. STRE 64Y2 = O. STRE 65Y3 = O. sTRE 66Y~ = D. sTRE 67SUM = O. STRE 68

C SIRE 6900 2e 1=1.4 STRE 70

G-52

Page 177: Prepared by James G. Crose and Robert M. Jones

CALCULATE ENERGY TERMS FOR FREQUENCY APPROXIMATION

CO 50 1=1.2RRIIl=PlI*BIDG 50 K=I.8

50 RRlIl=RRII)-SII+8,KI*PIKI

RRIlI=HIZIRRlZI=TPI61RRI31=ITPIII+TPIZI*RRRI51*TPI31*ZZZI511/RRRI51RRI41=TPI31+TPI51

30 00 40 1=1.4II=Z'IJJ=Z*I XI N.llPIII-II=BIJJ-II

40 Pllll=BIJJI

STRE 71STRE 12STRE 13STRE 14STRE 15STRE 16STRE 11STRE 18STRE 79STRE 80STRE 81STRE 8ZSTRE 83SIRE 84STRE B5SIRE 86SIRE 81STRE 88STRE 89STRE 90STRE 91STRE 92STRE 93STRE 94STRE 95SIRE 96STRE 97STRE 9BSTRE 99STRE 100SIRE 101SIRE 10ZSTRE 103STRE 10ltSTRE lOSSTRE 106STRE 107STRE 108STRE 109STRE 110STRE IUSTRE I1ZSIRE U3STRE U4STRE USSTRE U6STRE U1STRE UBSTRE 119SIRE lZOSTRE lZISTRE 122STRE 123STRE 124STRE 125STRE 126STRE 121STRE 128STRE 129STRE 130STRE 131STRE 132STRE 133STRE 134STRE 135STRE 136STRE 131STRE 138STRE 139STRE 140

* RRIZl*CRZIZ,31 * RR141*o.

= -IRRlll*CRZII,31I CRZl3,3)

IFlhPP.NE.ZI GO TO 110CI3=CRZII,31CZ 3=CRZl Z,31

D = Xl * x3 - X2*.2RR I 11 = (X3 • Yl - X2 • Y21 I URR(.21 = IXI • Y3 - X2 • Y41 I 0RRl31 = SUM I RURRI41 = IXI • Y, • X3 • Y4 - X2 • IVl * nil I 0GO TC 100

11 = IXI~oIl

UI=BIZ*II-I IVI=BIZ*IIIIFICCOEI III.GE.O.l GO TO 10SlhA=SlhICGDEIIII/,7.2957HICOSA=CCSICODEIIII/57.2957HIO=UI*CGSA-VI*SINAV=VI*COSA*UI*SINAUI:l::UVI=V

10RO=RC'RIIIISUM = SUM * UIRI = RRRll1 - RRRl51ZI = ZZZIII - ZZZI;1Xl=Xl+RI··2XZ=XZ*RI'ZIX3=X3* Z1**2YI=Yl*RI*UIYZ=YZ*ZI*Uln-Y3*z I*V I

ZO Y4=Y4+RI*VI

COMM=SI9,91*SIIO,101-SI9,101*SIIO,91IFICOMM.EQ.O.IGO TO 60PI91=ISIIO,101*RRIII-SI9,101*RRIZII/CC~M

PIIOI=I-SIIG,91*RRI11*SI9,91*RRIZJI/CC~~

60 00 70 1=1,6TPIII=O.DO 70 K=I,IO

10 TPIII=TPIII*HHII,KI*PIKI

DO 90 1=1,10COMM~O.

00 BO K=I,lO80 COMM=COMM+SII,Kl*PIKI90 XPE=XPE*COMM*Plll

XKE=XKE*VOL*ROIMTYPEl*IPI91**Z*PI101**21

100 IfINFP.EQ.II RRI31IFINPP.EQ.ZI RRI31

1 CRZ13.41 - TT(31)

C

C

C

C

C

CCC

C

G-53

Page 178: Prepared by James G. Crose and Robert M. Jones

CCC

CCCCC

CCC

CCC

CCC

C43=CR1I4,31C33=CR1I3,31

110 00 130 1=1,4SIGI II=-TTI IIIFINPP.EQ.2.ANO.I.EQ.31 SIGlll=O.IFINPP.EQ.2.ANO.I.EQ.3) GO TO 130DO 120 K=I,4IFINPP.EQ.2.ANU.K.EQ.31 CRZII,KI=O.CRZIK,II=CRZII,KI

120 SIGlll=SIGII)+CRlll,KI*RRIKI130 CONTINUE

IFINPP.EQ.II CRlI3,31=1.

CALCULATE P~INCIPAL STRESSES

CC=ISIGlll+SIGI211/2.66=ISIGlll-SIGI211/2.CR=SQRTI88**2+S1GI41**21SIGI51=CC+C~

SIGI61=CC-CRSIGI11=2B.64789*ATAN21SIGI4I,B81IFIA6S1S1GI411.LE •• IE-61 SlGI11=0.CALCULATE PRINCIPAL STRESSES AT ANGLE C~EGA TO SIGP

ITH1S STEP IS REUU1REO BECAUSE C~EGA IS NCT NECESSARILY THEANGLE TO SIG(5)1

CMEGA=SIGI71/51.29578SIGP=CC+B8*COSI2.*OMEGAI+SIGI41*SINI2.*C~EGAI

SIGQ=CC-8B*COSI2.*C~EGAl-SIGI41*SINI2.*C~EGAI

SIGT=SIGI31

CALCULATE STKESSES I~ M-N SYSTEM

SIGI81=SIGlll*COSlALPHAlNll**2+SIGI21*SINIALPHAINII**21+2.*SIGI41*SINlALPHAlNII*COSlALPHAINII

SIGI91=SIGlll*SINlALPHAINll**2+SIGI21*(CSIALPHAINII**21-2.*SIGI41*SINIALPHAINII*COSIALPHAINII

SIGI 101=ISIGI21-SIGllll*SINIALPHAINII*(OSIALPHAINI I1+SIGI41*ICOSIALPHAINII**2-SINIALPHAINII**21

TEST fCR CONVERGENCE OF TENSION - COMPRESSION APPROXIMATIONS

IFINTCA.LE.ll GO TO 160IFINTITER.LE.11 ITCOON=OIFINTITER.LE.11 GO TC 16000 150 1=1,4SIGKK=O.00 140 J=l,4

140 SIGKK=SIGKK+ABSISIGIJIIIflABSISIGIII/SIGkKI.GT •• lE-3.ANO.ABSIISIGIII-OLOSIGIIIi/ISIGIII+

I(LOSIGIIIII.GT •• IE-ll ITCOON=O150 CONTINUE

CALCULATE PLASTIC MODULUS RATIO

160 IfINNLA.LE.l1 GO TO 110IFIEEI181*EEI191*EEI201.EQ.0.I GO TO 110ANG-ISIGI11/51.295181-ALPHAINIS2-SINIANGI**2C2-CCSIANGI**2Rl=SIGI51/IEEI181*C2+EEI191*S21R2=SIGI61/IEEI181*S2+EEI191*C21R3-SIGI31/EEI201ESIG=SQRTI(IRI-R21**2+IRI-R31**2+IR2-R31**2)/2.1CLOEFR=EPRINISTRAIN-ESIG/EPRINIEPRINI=I.IfISTRAIN.GT.l.1 EPRINl=11.+EEI211*ISTRAI~-1.11/STRAIN

CCNVER=EPRINI/OLOEPR

G-54

STRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESIRESTRESTRESTRESTRESTRESTRESTRESTRESIRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRESTRE

14114214314"H51"61"114814915015115215315"15515615115815916016116216316"165166161168169110111112113111011511617111817918018118218318418518618118818919019119219319419519619719819920020120220320420~

206207208209210

Page 179: Prepared by James G. Crose and Robert M. Jones

IFIABSICGNVER-I.I.~T.ERRL~1 IPOCNE-C STRE 211C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• STRE 212C ~RITE STR"SSES STRE 213C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• STRE 214

170 IFI~PRINT.NE.O) Gu TO lac STRE 215.RITE 16.2000) STRE 216~PRINT-40 SHE 217

180 ~PRINT-~PRINT-I STRE .218.RITEI6.20011 N.R~RI51.ZZZI51.ISIGlll.I.I.101 STRE 219.RlTEIIOI RRRI51.lZl151.1SIGIII .1-1.101 .C~EGA.SIGP.SH;.l.SIGT STRE 220

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• STRE 221C CALCuLATE ~ECHANICAL STkAINS STRE 222c•••••••••••••••••••••••••••••••••••••••••••• 9 ••••••••••••••••••••••••••STRE 223

CALL SY~INVICRl.41 STRE 224C STRE 225C CALC~LATE STRAINS IN R-Z SYSTEM STRE 226C STRE 227

DO I~O 1'1.4 STRE 228EPSIIl~O. STRE 229DO I~O K=I.4 STRE 230

190 EPSlll=EPSlll+CRZII.KI*SIGIKI STRE 231IFINPP.EQ.21 EPSI31--ICI3*EPSlll+C23*EPSI21+C43*EPS(4)I/C33 STRE 232

C STRE 233C CALCULATE PRINCIPAL STRAINS STRE 234C STRE 235

EPS~2~EPS(4)/2. STRE 236CC~IEPSI1I+EPSI211/2. STRE 237BB~IEPSll1-EPSI2)1/2. STRE 23BCR~SQRTl BB"2+EPS42**2 I STRE 239EPSI51-CC+CR STRE 240EPSI61=CC-CR STRE 241EPSI71=2B.647B9*ATAN2IEPS42.BBI STRE 242IFIABSIEPS421.LE •• IE-61 EPSI71=0. STRE 243

C STRE 244C CALCULATE STRAI~S IN N-S SYSTEM STRE 245C STRE 246

EPSI81-EPSII1*COSIALPHAINII**2+EPSI21*SINIALPHAINlloo2 STRE 247I+EPSI4IoSINIALPHAINII*COSIALPHAINII STRE 248EPSl~)=EPSll)*SINIALPHAIN11*02+EPSI210CCSIALPHAINIIO*2 STRE 249

l-EPSI41*SINIALPHAINII*COSIALPHAINII STRE 25CEPSII01=2.*IEPSI21-EPSIIII*SINIALPHAINI1*COSIALPHAINII STRE 251

I+EPSI4IoICOSlALPHAINII002-SINIALPHAINII*021 STRE 252200 .RITEII01 IEPSlll.I=I.101 STRE 253

c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••*.**STRE 254C .RITE STRAINS IN PERCENTAGE FOR~ STRE 255c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• *STRE 256

RE.INC 3 STRE 257CALL RESTl41 STRE 258~PRI~T=O STRE 259DO 320 N-l.NUMEL STRE 260IFl~PRINT.NE.OI GO Te 300 STRE 261.RITEI6.20021 STRE 262MPRI~T=4C STRE 263

300 ~PRI~T-MPRINT-l STRE 264REAOll01 RRRI5).ZII151.ISIGI11.1=1.101.C~EGA.SIGP.SIGQ.SIGT STRE 265REACIIOI IEPSIII.I=I.I01 STRE 26600 310 J-l.l0 STRE 267IFIJ.~E.71 EPSIJI-l00.*EPSIJI STRE 268

310 CONT INUE STRE 269.RITEI31 OMEGA.SIGP.SIGQ.SIGT.ISIGIII.I=I.41 STRE 270

320 .RITEI6.20031 N.IEPSIII.I=I.IOI.TINI STRE 271RE.no 3 STRE 272

c•••••••••••••••••••••••*••••••••••*••••••••• *•••••••••*•••*••••********STRE 273C CALCLLATE A~O .RITE APPROXI~ATE FU~OAME~TAL FRE'UE~CY STRE 274c•••••••••••••••••••••••••••••••••••••••••••••••••••*.*••••**.*.*.******STRE 215

IfIIFREQ.EQ.OI RETURN STRE 270.=S'RTIXPE/XKEI STRE 277~RITEI6.20041 • STRE 278RETURN STRe 279

C SIRE 28C

G-55

Page 180: Prepared by James G. Crose and Robert M. Jones

2000 FCR~AT IlC9hl tL " I SI(MAR SIGMAI SIGHAT SIGHSTRE 181IARZ SIGMA~AX SIGMAMIN ANGLE SIGMAM SIGMAN SIGMAMNI STRE 282

2001 FORMAT Ilb,lX,lF7.2,t'9.0,F7.2,3F9.01 STRE 2832002 FORMAT (98HI tL EPSR EPSI EPST EPSRI EPSHAX EPSMIN STRE 28~

I ANGLE tPSM EPSN EPSMN TEMPERATUREl STRE 2852003 feRMAT IIS,bF8.3,Fd.2,3FB.3,FI3.01 STRE 286200~ FOR~AT 136HCAPPRJXIMATt FUNDAMENTAL fREQUENCY =EI2.Sl STRE 287

ENe STRE 288

G-56

Page 181: Prepared by James G. Crose and Robert M. Jones

SUBROUTI~E PlTMIITYPEI PlTM IC•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••**••PlTM 2C THIS SUBROUTINE PlCTS ThE FINITE ElEME~T MES~ PllM 3C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PlTM 4

COMMCN/BASIC/NUMNP.NUMEl.NUMPC.NUMSC.ACEll.A~GVEl.TREF.VOl.lfREQ PlTM 5CO~MON/NPDATA/RIIDOOI.CODEI10001.XRII000l.ZII0001.XZIIOOOI.TIIOOCIPLTM 6COMMCN/ElOATA/IXIIOOO.51.EPRI10001.ALPHAI10001.PSTI1CO01 PLTM 7COMMCN/PTT/IPlOT.TITlEI201.RMIN.ININ.CElP.TllT.FACT.ICEF PlTM 8CIME~SION XI51.YI51.0UMI51.0UMI151 PLTM q

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PlTM IeC PLOT AEROSPACE HEADING AND TITLE PlTM IIc•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PlTM 12

DATA DUM/2 ••4 •• 6 •• 8 •• 10.I.DUNl/5.0.1 PLTM 13IFIITYPE.EQ.21 GO TO 50 PLTM 14CAll PLTfl,15,O.,2.,CUM,O.,1,O.,2.,8,O,CUMl,O,O,O.o.O,OJ PlYM 15CALL PlTI2.0.11 PlTM 16CAll PlTI3.5C.200 •• 175.80.TITlEI PLIM 17CAll PlTI4.500.500.3.1 PlTM 18CAll PlTI5.10.PlOTIMI PlTM Iq

, ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• PlTM 20C OBTAIN MAXIMUM AND MINIMUM RAND Z PlTM 21c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PlTM 22

50 IFtDElP.E~.O.1 GO TO 100 PlTM 23ZMAX=ZMI~ Pl TM 24RMAX=~MIN PllM 25GO TO 110 Pl TM 26

100 lMlh=ZIlI PUM 27ZMAX=ZMlh PLTM 28RMIN=~(l1 PlTM 2qRMAX=RMIN PLTM 30

C PUM 31110 DO 120 I=I.NUMNP PlTM 32

IFIZIII.lT.ZMINI ZMIN=ZIII PlTM 33Ifll~AX.ll.lI111 ZMAX=lI11 PUM 34IFIRIIi.LT.RMINI RMIN=Rlll PlTM 35IFIRMAX.ll.Rllll RMAX=Rlll PUM 36

120 CONTINUE PLT M 37C PUM 38

RA=UMAX-RMINlIllMAX-ZMINI PLTM 3qIFIiPLOT.EIl.ll RA=I./RA PlTM 40IFIRA.lT.I.1 GO TO 150 PlTM 41TIlT=I. PUM 42

c ~ •••••••••••••• PlTM ~3

C I-AXIS VERTICAL ANO R-AXIS HCRIIC~TAl PlTM 44c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PLTM 45

IFICElP.E~.O.IDElP=IZMAX-lMINl/IO. PlTM 46CAll PlTII.15.RMIN.OElP.X.0 •• I.ZMIN.OElP.0.I.Y.12.12~ElEMENTPlOT.PlTM 47

16.6hR-AXIS.6.6Hl-AXISI PlTM 48DO 140 N-I.NUMEl PlTM 4900 130 M=I.5 Pl TM 50I=IXIN.MI PlTM 51IFIM.EQ.51 1=IXI",Il PlTM 52XIMI=RIIl PlTM 53

130 YIMI-lIll PUM 54140 CAll PlTIZ.5.11 PlTM 55

GO TO 180 PUM 56c•••••••••••••••••••••••••••••••••••••••••••••••••••*•••••••••••••••••••PLTM 57C R-AXIS VERTICAL ANO Z-AXIS HORIZONTAL PlTM 58c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••PlTM 59

150 IFIOElP.EQ.O.1 OElP=IRNAX-RMINI/IO. PlTM 60TlLT-O. Pl TM 61CAll 'lTII.15.ZNIN.OElP.X.0 •• I.RMIN.OElP.0.I.Y. 12.12htlEMENT PlOT.PlTM 62

16.6HZ-AXlS.6.6HR-AXISI PlTM 63C PlTM 64

00 170 N= I. NUMEl PLTM 65DO 160 M=I.5 Pl TM b6I-IXIN.MI PLTM 67IFIM.EIl.51 1=IXI",I1 PlTM 68XIMI=ZIII PLTM 6q

160 YIMI=Rlll PLTM 70

G-57

Page 182: Prepared by James G. Crose and Robert M. Jones

170 CAll PLT12,5,l1 PlTM 11C PUM 12

180 CAll PlTC5.30,PLLTI~) PUM 13C PLTM 14

RETWRN PLTM 15END PUM 16

G-58

Page 183: Prepared by James G. Crose and Robert M. Jones

S~HRCUTINE CUNTRIIST.RTI CONT Ic·········.··.......•....•...........•.....••.....•.••..•.•••••....•...•CONT 2C THIS S~8ROUTINE SETS UP THE DATA FOR ORA"I~C CONTOUR PlCTS OF CO NT 3C FUNCTION VALUES. CaNT 4c······· · CONT 5

CO~~CN/8ASIC/NU~NP.NUMEL.NU~PC.NUMSC.ACELl.ANGVEL.TREF.VOL.IFREQ CONT 6CO~~CN/NPOATA/RII0001.CODEIIOOOI.XRI10001.lI10001.XtI1OOOI.TIIOOOICUNT 7COMMON/ELOATA/IXIIOOO.SI,EPRII0001.ALPHAIICCOI,PSTIICO01 CO~T 8CUM~ON/PTT/IPLOT.TITLEI201.RMIN.IMIN.DELP.TllT.FACT.ICEF CaNT 9CO~MON/IU/IMINIIOOI.IMAXIICOI,JMINI2SI.JMAXI2SI.MAXI.MAXJ.NMTL.N8CCONI 10DOu8LE PRECISION CRl.XI.RR.lI.S.RRR.llZ CaNT IICO~MCN/ARG/RRRI51.ZIZISI.RRI41.IZ141.SIIO,ICI.CRZI4.41,XIIIOI. CONT 12

1 PIIDI.TTl4I,HI6.101.HHI6.1CI.ANGLEI4I,SIGII0I,EPSII0I,N CONI 13OOU8LE PRECISION .NS CaNT 14COMMGN/SOLVE/ANSI20001."12S.1001 CaNT 15OIME~SIGN XTI201.VTI201.CISOI.A813I,CI12SCI.COI2S01 CaNT 16CIMENSIGN HE.OIS.221.TlISI.T215I,T3ISI.T4151.TSISI.T6ISI.T7151. CO NT 17

IT8ISI.T9151.110ISI.Tl1ISI,TI2ISI.T13ISI.TI4ISI.T15151.T16151. CaNT 182TI71SI,T181SI.TI9ISI.T20ISI.T21151.T22151 CONT 19DIME~510N XIZS.IOOI,VIZS.I00I,DUMI50001 CaNT 20EQUIVALENCE IIXll.ll.DUMllll.IOUMlll.Xll.11I,IDUMI2S011.Vll.111 CaNT 21EQUIVALENCE IHEADll.11.TlI11I,IHEADll.21.T21111.IHEACll.31.T31111.CaNT Z2

IIHEADll.4I,I41111.IHEADll.51.TSllll,IHEADll.61.T61111.IHEAOll.71. CO NT 232T71111.IHEAOll,8I,T81111.IHEADll.91.T91111.IHEAOll.ICI.TIOllll. CaNT 2431HEADll.111.TllI111.IHEAOll.1ZI.TlZllll.IHEAOll.131.T131111, CaNT 254IHEADll.141.T141111.IHEAOll.151.T151111.IHEAOll.161.T101111. CONT 20SIHEAOll.171.TI71111.IHEAOll.181.TI8111I,IHEADll,191.T191111.IHEADICONT 2161.201.TZOllll.IHEADll.Z11.T211111.IHEADll.2ZI.T221111 CDNT 28

GATA XT.YTl40 04H I CaNT 29DATA Tl 14HSIGM.4HA R .4H .4H .41- I CONT 30DATA T2 14HSIGM.4HA I .4H .4H .4H I CONT 31DATA 13 14HSIGM.4HA T .4H .4H .41- I CaNT 32DATA 14 14HSIGM.4HA RZ.4H .4H .4H I CaNT 33DATA Ts 14HSIGM.4HA ~A,4HX .4H .4H I CaNT 34DATA T6 14HSIGM.4HA ~1.4HN ,4H .4H I CaNT 35DATA 11 14HANGL.4H£ TO.4HSIGH,4HA ~A.41'1~ I COtH 36DATA T8 14HSIG~,4HA N .4H ,4H .41- I CaNT 37DATA T9 14HSIGM.4HA S .4H .4H ,41'1 I DO NT 38DATA TI0/4HSIGM,4HA NS.4H .4H .4H I CaNT 39DATA T11/4HEPSI.4HlON ,4HR .4H .4H I CaNT 40DATA T12/4HEPSI.4HlON .4HZ .4H ,41'1 I CONT 41DAT. TI3/4HEPSI.4HLON .4HT .4H ,4H I CONT 42DATA TI4/4H£PS1,4HLON ,4HRZ ,4H .4H I CONT 43DATA TI5/4HEPSI.4HLON ,4HMAX .4H .4H I CaNT 44DATA T16/4HEPSI.4HLON ,4HMIN .4H .41'1 I CONI 45DATA T17/4HANGl.4HE lG.4HEPSI.4HLON ,4H~AX I CaNT 46DATA TI8/4hEPSI.4HLON ,4HN .4H ,41'1 I CaNT 47DATA TI9/4HEPSI.4HlON .4HS .4H .41- I CONT 48GATA T20/4I'1EPSI,4HLON ,4HNS ,4H ,41'1 I CONT 49DATA T21/4HTEMP.4HERAT.4HURE .4H .4H I CONT 50DATA TZ2/4HPORE.4H PRE,4HSSUR.4HE .4H I CaNT 51IFIISTART.EQ.21 CALL RESTI21 CDNT 52IFIISTART.NE.21 CALl RESTl41 CaNT 53

c••••••••••••••**••••••••••••••••••••••••••••••••••*•••••••••••••••** •••CONT 54C PLOT THE DEFOR~ED MESH CONT 55C4~••• $ ••••••••*** ••*••**.**.*•••••••••••••••••••••*••*••••••*••••••••••CO~T 56

IFIIDEF.NE.11 GO TO 200 CONT 57K=D CONT 5800 100 1=I.NUMNP CONT 59K=K+l COH 60RIII=RIII+ANSIKIOFACT CaNT 61K=K+ 1 CONI 62

100 ZIII=ZlI I+ANSIK'*FACT CONT 63CALL PLTMIZI CONI 64c···· · *••••••••••••CCNT 65

C READ CONTROL INfORMATION AND TRANSFER STRESSES AND STRAINS FRG~ CONT 66C FORTRAN UNIT 10 TC FCRTRAN UNIT 1 CONT 67c··.··..·..· CONT 68

200 READI9.1COOI N~~Pl CaNT 69IFIN~~PL.EQ.OI RETUR~ CONT 70

G-59

Page 184: Prepared by James G. Crose and Robert M. Jones

Kt~I~O I CONT 11CC 210 N<I,~UMEL CUNT 72RtACllOI RKKI5),lllIS),(SIGIII,I<I,101 CUNT 73RUOllO) IHSIII,I<I,JO) CONT 74IF! J[cF.t.c.1) ~c Te 210 CONT 75~1<IXI~.lJ CONT 76N2<IXIN,21 CONT 77~3<1XIN. Jl CUNT 78f\4=IX(f\,4} CGNT 19~RR(:)=(H(Nl)+k(~L}+k(~3)+~(~4)J/4. CO~T 80lllISI"llU'.[)+lINd+llNjJ+[IN411/4. CONT BI

210 .. KilL« 1) t<,kQ(5l ,LlL(S), ISiGlll d=l,lC) ,(l::P~{I) ,l=l,lC) CCt\T 82c••••••••••·****.·.·*•• * ••••••••••••••••••••••••••••••••••••••••••••••••CUNT 83C BEGIN OL LOCP Te PLUT FUNCTIUNS CONT 84( •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••CGNT 85

00 BCO LLL<I,'U~fL CUNT 86KtolNC I CONT 87

C••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••CONT 8~

C REAC CONTROL INFORMATIUN FCR A FU~CTlC~ CCNT 89C••••••••••• •••••••••• • •••••••••••••••••••••••••••••••••••••••••• *••*•••CUNT 9C

REJCI9dOOOIICNT,fCM,ICIII,I<I,ICMI CO NT 91.RllE 16,z00CI ICNT CONT 92

c••••••••••••••••••*••*•••••*••••••••••••••••• ~ ••••••••••••••* ••••••••••CUNT 93C LABEL CUNT00RS IF ICNT IS ~EGATIVE CONT 94C·••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••CONT 95

1'< 1 CCNT 96IFIICNT.LT.Gl M<O CONT 97IFIICNT.LT.01ICNT=-llNT CONT 98

c••••••••••••••• * ••••••••••••••••••• *•••••••••••••••••••••••••••••••••••CONT 99C CRCEP CCNTCURS CUNT ICCc••••••••••••••••••••••••••••••••• *••** •••••••••••••••••••••••••••••••••CONT 101

DO 3CO l<l,llM CONT 102au 3CO J<I, ICM CONT 103IFICIJI.GE.Cllll GU TC 300 CONT 104TE~FRY=ClI) CONT IDSCII1<CIJI CONT 106CIJI<TtMPRY CONT 107

300 CONT (NUE CONT 108C CONT IC9c •••••••••••••••••••••••••••••**•••*•••* •••*** •••••*•••••••••**•••••••••CONT 110C PuT FUNCTION VALUES IN • ARRAY CONT IIIc••••••••••••~.***.*••**••••••***••••••••••*•••*••***.*•••••****•••••••*Cu~T 112

NU~J= MAXJ-I CONT 113NUI'I< MAXI-I CUNT 114N<I CONT 115DO 400 J=I,NUMJ CONT 116IST~RT= MAXOIIMINIJI,IMINIJ+111 CONT 117ISTOP< I'INOIIMAXIJ1,lMHIJ+1)J -1 CONT 11800 400 I<!START,ISTOP CONT 119READfl1 RRk(51,ZZZI51,ISIGIKI,K=I,10),IEPSIKI,K<I,101 CONT 120XII.JI= TILT*RRRI51 + 1l.-TILTI*Z11151 CONT 121YII.JI= TILT*ZZl(~1 + 11.-TILTI*RRRI51 CCNT 122IFIlCNT.GE.I.ANO.ICNT.LE.I01 .11,JI< SIGIICNTI CONT 123IFIICNT.GC.1l.ANO.ICNT.LE.201 WII,JI< EPSIICNT-IOI CONT 124IFIIC~T.EC.211 WII,JI< TlNI CONT 125IFIICNT.EQ.22J WII,JI= PSTlNI CONT 126

400 N= N+I CONT 127DO 510 J~I,NUMJ CONT 128IST~RT~ M~XOIIMINIJI,IMINIJ+111 CONT 129IFI1START.LE.II GC TO 510 CONT 130IMI< ISURT-I CONT 131DO 500 1<I,1Ml CONT 132XfI,JI~ XIISTART.J) CONT 133YII,JI< YIISTART,JI CONT 134

500 .II,JI= WIISTART,JI CONT 135510 CONTINUE CONT 136

00 530 J<I,NUMJ CONT 137ISTOP< MINOIIMAXIJI,lMAXIJ+111 CONT 138IFIISTGP.GE.MAXII GC TO 530 CONT 13900 520 1<ISTUP,NUMI CaNT 140

G-60

Page 185: Prepared by James G. Crose and Robert M. Jones

XII,JI= XIISTOP-l,JI CuNT 141Yll.JI= yIISTOP-I,Jl CONT 142

520 .II,JI= .IISTOP-l,Jl CONT 143530 CONT INUE ceNT 144

C CONT 145XMIN=TIlToKMIN.ll.-TllTlolMIN CaNT 14~

YMIN=TIlTolMIN'II.-TllTIOK~IN CaNT 147c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••CONT 148C lABH FUNe TION PlUTS CaNT 149c·••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••CUNT 150

CAll PlTll,NIT.XMIN,OElP.CI.0.1,YMIN.DElP.C.1,CO,2D,~tAOI1.leNTlCUNT 1511.BO.XT,ec,YTI CUNT 152

c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••CONT 153C CRA" CONTOURS CCNT 154c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••CONT 155

CAll DRA.IX.y,25,C.ICM.CI,CO.N~MI,NUMJ,~,~MIN,OElP.Y~IN,UElP,WI CUNT 15~

11X=50 CaNT 157IIY=1025 CaNT 15HCAll PlTI3,11X,1IY,.12~,16,16HCCNTC~KSPlCTTEOI CUNT 159co ~OO 1=1. ICM CONT 1601IY=llY-25 CGNT 161CAll BOFICIII,Ael CaNT 162

6UO CAll PlTI3,IIX,IIY,.125,12,Abl ceNT 1~3

l=O CONT 164c· ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••tONT 165CORA. BCUNOARY CONT 166c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••CONT 167

JM=MAXJ CC~T 1beDC 100 K=1.25 CONT 1~9

100 JM=~INOIJMI~(KI,JM) CO~T 1101=1~1~IJMI CONT 111J=J~ CONT 112

710 l=l'l CONT 113lFll.GT.2501 WRITE16.20021 CUNT 174Ifll.GT.2501 GO HJ 15G ceNT 115NP'NCCE II, J I CONT 176COIll=TIlToZINPI.11.-TllTIORINPI CONT 171CIIll=TIlToRINPI'11.-TILTloZINPI CaNT 118!FIJ.NE.JMI GO TO 120 CUNT 119Ifll.EQ.IMINIJMI.AND.l.GT.11 GO TO 150 CO NT 180

720 IACC=O CONT 1B1JAOC'O CUNT IB2IfIJ.EQ.JMINIII.ANO.I.NE.1MAXIJII IAOC='l CONT 183IFIJ.EQ.JMAXIII.ANO.I.NE.IMINIJII IAOO=-l ceNT 1B4IFII.EQ.1MINIJI.ANO.J.NE.JMINIIIJ JACC=-l CUNT 185IFII.EQ.IMAXIJI.ANO.J.NE.JMAXIIII JAOO='l CaNT 1B6IFIIAOO.NE.O.OR.JAO~.NE.OI GO TO 130 CUNT 1B1IFII.EQ.IMAXIJ-lIl IADO=9! CUNT 1B8IFll.EQ.1MINIJ.111 lAOO=-1 CUNT 189!FIJ.EQ.JMAXll'1I1 JACC=.l CONT 1~0

jfIJ.EQ.JMINII-lll JAOO=-l CUNT 191730 IFlIADO.EQ.O.AND.JADO.Et.OI .RITEI6,2001l I,J CONT 192

I=I+IAOO CGNT 193J=J'JAOO C<JNT 194GO TC 110 CCNT 195

750 CAll PlTI2,L,ll CUNT 196800 CAll PLTI5,Il,Pll~1 CONT 191

C ceNT 19BRETURN CUNT 199

C CCNT 2001000 FORMAT 1216,10F6.01 CUNT 2012000 FORMAT 124H BEGIN PlCT GF FUNCTION 131 CONT 2022001 FORMAT 121H PERIMETER PLGT ERROR AT 1=.15,3H,J=,15J CONT 2032002 FORMAT 154H PERIMETER CONTAINS MORE THAN 250 POINTS, PLOT STOPPEOICUNT 204

END ceNT 205

G-6!

Page 186: Prepared by James G. Crose and Robert M. Jones

SUB~(UTIN£ CRAw (X,Y,~l,C,NP,CI,CC,~,N,Nle,xs,XIt¥St~I,IJ DRAW 1C••*.*.···.**··.·*~*.*•••·*••••******.*••••*•••••••••••••••••••*••••*••• CRA~ 2C DRA. IS A STAN0ARC AEROSPACE CLFPCRATIC~ SLepOUTINE DRAW 3C HlP CCf\tTCLJf' 1"( L T LI-lA ..... ING CRAW 4C••*.*··*~·**·*··***·*··*****•• • •••••***•••••••••••••••••••••••••••••••• ORAW 5

CI~E~SIC~ .1~1.ll.ll~I.II.Clll.CIII).CCII'.TI151.TII~I.TI151. ORA. 6leCCI71.Z1~I,ll ORAW 7

(AlA C£l/1 .. Cf:-6/ DRAW 8C••••• ·.****·••***.*.·.·•• ••••• • •••••••••••••••••••••••••••• ~ •• * ••• o.*~*CRAW 9C TEST CRUER cr cc"e",c, ORA. 10( ••••••••••••••••••• * ••••••••••• * ••••••••••••••••• *•••o.*••••• *•••••••••D~AW 11

~P~I=NP-l DRAW 12DC lCO K=l,~PMl DRAM 13kPI=k+l CRAW 14IFIClkPU·LF.enll .RIIEI<,,10001 KP,I.k DRAW 15

100 CCNT I~UE DRAW 16KS~~P+1 ORA~ 11ICh= -I DRAW 18N'H=~-I DRAW 19~~I=~-I DRAW 20IFIMB.U•• I.CR.~P.H.. lI GC TC JOG DRAW 2110IF=L(2)-CIII DRAW 22IFI~P.Ew.21 GLJ TO 210 DRAW 23

c**••••• ••• * •••****· •• o•••••••••••••••• **o •• o•• *••••• *•••••••*••••••••••DRAW 24C IF SUCCESSIVe CONTOUR VALUES DIFFER AI A CL~STANT. T~E PLeT IS ORA. 25C ANNGTATEO '1 TH THE INCKE~E~I. TeIS IS A~ LPTION DRAW 26C•••• ••••••••••••••••••••••••• *•••••• ** •••••••• **.* ••• **.*.*~.*•• ·.*.*•• DRAW 27

IDfF=-l.CEJe DRAW 2800 2CO 1=3.~P DRAW 29ZOCf=l.-IDIF/IC( II-Cll-ill DRAW 30IFIABSIIOOFl.GT.lUEFI ZOEF=ZUCF ORA. Jl

200 CG~T lNUE ORA. 3lIFIABSIlDEFI.~T.DELI GC TU 300 ORb 33

210 CALL BDFIZCIF.8CCI1'l OKA. 34CAll PLT (3 .. 50,6C,O.l,12 .. I.:H..L;(l)) i)RA~ 35

C•••*••••• *•• *.**••**.***.** ••••••***••• ~ ••••• *••••*.**••••••**.*•••**.*DRA~ 36C PARA'EIER 1 LETERMINES ThE C1RtCTILN CF TRAVEL LF THE PLCTTER PE~ CRAW 37C PARAMETER IS ALTERNATES THE ENC POI~TSCF ITS TRAVEL DNA. 38C I.E. FeN SUBSCRIPT J = AN COJ INTEGER. INAVEL IS 8ET.EEN 1 A~D M-1DRAW 39C FOR SUBSCRIFI J = A~ EVE~ INTE~ER TRAVEL IS BET.Et~ M ANO 2 DRAW 40t ••••••••••••••*·.** ••••• *•••••• *••••••••••••••• ***.** •• *••••*.* •• *•• *•• D~AW 41C LGOP Te INLREME~T I DRAW 42C••••••••••••••• - ••***••••••••••••• *•••• *••••••••••••• • *.******.***.**••ORA~ ~3

300 CO 390 J=l.NMl DRAW 44IFI~CDIJ.<I.E~.OI GO TU 310 ORA. 45IS=1 DRAW 46I ST=C ORA. 47GC H 320 DRAW 48

310 IS=-I DRAW 49IST=" DRAW 50

C•••••• • •••••*****·.********.********•• ** ••******************.*********.DRAw 51C LOCP TO INCREME~T I OPA. 52C*•••••••• ·.***·**.*••••••**·*********.**.*** •• **.********.********.**.*DRA~ 53

320 co 3l?O IN=l,"'''ll CRAW 541=1~*IS+1ST DRA. 55TZIll=III.JI DRAW ~6

TZC2I=III+l.JI OPAW 57TZ(3)=III+!.J+ll DRAW 5BTl(4)=III.J+1I DRAW 5STlI51=TIIII DRAW 60

C DRAW 61C BA = ~AxIMU~ FUNCTICN VALUE IN THIS GRIO DRAW 62C AA MINIMU~ FU~CTIO' VALUE I~ IHIS GRIC DRAW 63C ORA. 64

eA=AMI~[(Tllll.TlI21.rI131.TI141) DRAW 65AhA~AX11TlI1l.TlI2l.TI131.TI14}' DRAW 66IFICIII.GT.AA.UN.CINPI.LT.BAI ~O Te 3&C DRAW 67TXlll=l( I,J) DRAW 68TXI21=XII+l.JI ORA>. 69TI(3)=III+l.J+ll DRAW 70

G-62

Page 187: Prepared by James G. Crose and Robert M. Jones

TXI41=XlI,J+II DRAW 71TXI51=TXlII DRAW 72TYlll=Yll,JI DRAW 73TYI21=Yll+I,JI DRAW 74TY13I=Yll+l,J+ll DRAW 75TYI41=Yll,J+1I DRAW 76TYI51=TYlll DRAW 77ISTCf-O DRAW 78

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••ORAW 19C FlhC ALL CChTOUR LlhES IN A GRIC ELEME~T DRAW 80C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ORAW 81

00 31C ~-I, hP DRAW 82IFlCl~I.GT.AA.OR.Cl~I.LT.~AI GO TO 36C DRAW 83IFL=G DRAW 84JMffLG=O DRAW 85

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••ORAW 86C JMPfLG = 1 CAUSES THE NEXT SIDE IN TrE SEARC~ING SE~LENCE TO 8E DRAW 81C S~IPPED. THIS OCCURS WHEN A CONTOUR PASSES THRUUGH IrE CORhER DRAW 88C COMMCN TO THE PRESENT SIDE AND THE NEXT SICE 1U BE EXAMINEC DRAW 89C • •••••••••••••••••••••••••••••••••••••••••••••••• OkAW 90C CHEC~ ALL fCUR SIDES UF EAC~ GRIC DRAW 91C•••••••••••••••••••••••••••••••• ••••••••••••••••••• ~·•••••••••••••••••• ORAM 92

CO 3~C L=I,4 DRAW 93IF I J~fFLG. NE .11 GG TC 330 DRAW 94J"PFlG=O DRAW 95GO TC 350 DRAW 96

330 WHERE=TIIL+ll-CI~1 DRAW 97IFIWHERE.EQ.O.1 JMPFLG=1 DRAW ~8

WHERE=WHERE*IC(KI-TIILII DRAW 99IFIWrERE.lT.O.1 GU TG 350 DRAW 100IFl=IFL+I DRAw 101QzICI~I-TIILII/ITIIL+II-TIILII DRAW 102CIIIFLI=TXlll+O*ITXIL+II-TXlLII DRAW 103CDIIFLI=TYILI+,*ITYll+II-TYlLII DRAW 104IFIIFL.NE.21 GO TC 350 DRAW 105IflICH.EC.l.UR.NL8.E'.11 GO To 340 ORA. 106IFl~.NE.I.ANO.K.NE.NPI GU TO 3~0 DRAW 107

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••OKAW 108C LABEL SMALLEST AND LARGEST VALUED CCNTCURS IF ANNOTATICh CPTION DP.AW 109C USED I.E. NL8 NOT EQUAL TO I. DRAW 110c••••••••••••••••••••••••••••••••••••••••••••••••••••••*••**••*••••••••*O~AW 111

IFl~s.EQ.KI GO TG 340 ORA. 112KS=~ DRAW 113ICH=ICH+I DRAW 114IX=ICIIIFll-XSI*IOO./XI-5. DRAW 115IY=(CO(IFLI-YSI*100./YI+45. DRAW 116CAll BOF lCIKl,BCOlllI DRAW 11?CALL PIT 13,IX,IY,O.I,l2,8COI1l1 ORA. 118

3~0 CONTINUE DRAW 119CAll Pl1 12,2,11 DRAW 120ISTCP=I ORA. 121GO TC 370 DRA. 122

350 CONT INUE DRAW 123360 IFlISTOP.EQ.lI GC TO 380 DRAW 124370 CGhTINUE ORA. 125380 CONTINUE ORA. IZl>390 CONT INUE DRAW 127

RETURN DRAW 128C DRAW 129

1000 FORMAT 15H THE 12,28HTH CCNTOUR IS LESS THAN THE 12,10HT~ CCNTUJRIORAW 130ENG DRA. 131

G-63

Page 188: Prepared by James G. Crose and Robert M. Jones

SUER[UTINE t"Flo,ABI 8UFI

C*··***·**~··***~#****·**********************~.********.*.~.**********.*BuflC BUf IS A SfANCARC AEkGSPALl CURPGKATICN I"~ ,6lll~V1I ,UeRLLflNE bUFIC hJR LeNTCUk PLGf ANNLTATIU, eUF!t··****···········**···********·.·.*****.** •••• ******* ••••• ***** ••• *.***BGFt

[

LI~E""SILr.. Ae(3J,do(31,l£kC(3J,lL.JIl>(lC),Jt:(61CAlA IGIGIlCLFCCOOU,lOCFIOOOO,ZUOF2C00C,lCCF300CC,lCCf4000C,lLOGf5uCCCtZLOFbOCCC,lOC~7CCCC,lGCr8DCCttZCCF900~CI

DATA edlluOCC4dCC,luOU000vU,IC~UOOOOC/

CAl A Idl,...K,I'lIt>lU,S,ll:RL/Zl,C4JuCCG,I.UC6CCC,,1.,4 ..... ...;. ,4h ,4H I

( = /J.1i~(eJ

IFIC .E~. C.I UL TL 4CLlOP = aK = a

10 IFI( .LT. I.IG[ TL ICu20 IFIC .GE. IG.IU[, Tu 2UU30 I = [

t< = K + 1IBIKI = ILIUII+l)IfIK.EC.6IGC T[ 300(= I (- FLCAT I I ) I *1 a•GO T( 30

100 lEn = lOP - I( = ( * 10.UC 1 ( 10

200 IEXP = IEXP + I(=(/IU.GG T( 20

300 IFllEXP.LT.CIABI JI Cl<lecI31.MINLJSIIFIIEXP.CE.llIAbI31 URlbdI31.1eLNKIlOP = IABSIIEXPII=IEXP/IOJ = Iu IGI I+ll 1 256.A8(3) ::: CPfAl:H3),J)I = IDP - 10 * IJ = IOIGII+1l 1 65536AS!31 = CRIAeI3l.JIIFlE.LT. 0.11 = ~INUS * 256IFIE.GT. 0.1 I = 18L~K * 2S6ABIII = I1RIBB!!),!)ABlll = [RIAEIII.IBIIII1 = WI21 1 65536A8111 = URIABII).III = IBDl * 256ABUI = GRIBBI21,I1ABI21 = GRIASI21,IBI411I = lel51 1 256Ael21 = LRIABI21.1)J = WI61 1 65536ABI21 = [RIABI21,! IRE TURN

400 OG 4:0 r = 1,3450 AB (j' = zoe III

RE TLRNENe

G-64

BeFleUF IBCFIeOFIeeFI88 f 1t:H;F 1BOfl8L'r 180HtWF 1ilCFlBLFIeOFlfiNIeUf!ECFIBOFIBUFIBLFl"Df IBOFIeUfleOFIBOFlBOFIbCflBuF IBOFI80F!BOFIBOFIeOfleOflSOFI8eFIBOFISDFIBUfIBOFIBeF IBOflBeH80FlBOFIBOFI8eF!BOHBeFI80FIBDF I

I2J4

567,1

10II121314I')161718I"2u21a232425262728293031323334353637383S4041424344454641484950515253545'>56

Page 189: Prepared by James G. Crose and Robert M. Jones

G.4 UNIVAC 1108 FORTRAN IV COMPUTER PROGRAM LISTING

Certain program modifications must be made in order to run the SAAS

III program On the UNIVAC 1108. These modifications affect Subroutines

MAIN, REST, INTER, PLTM, CONTR, DRAW, and BDF. Since most of the

changes are related to element and stress and strain contour plotting, the

program can be converted quite easily if plotting is suppressed. Then, only

the change in INTER is required. (Even this change is somewhat anomalous

since the data statement should have worked on a UNIVAC 1108. Evidently, the

change is necessary only on the machine at Southern Methodist University.)

The plotting features are actuated by performing the remaining (significant)

changes that are compatible with standard CALCOMP plotting instructions

as given in Ref. 26.

1. MAIN Changes

a. Change TIT LE(20) to TIT LE(l4) and add XAXLEN to

COMMON!PTT! ...

b. Add after MAIN 20

DIMENSION IBUF(lOOO)

DATA ISW!O!, NLOC!lOOO!

c. Replace statement 400 by

400 IF(IPLOT.NE.l.AND.IPLOT.NE.2) GO TO 500

C IF ISW = 0, INITIALIZE PLOT TAPE

IF(ISW. EQ. 0) CALL PLOTS(IBUF, NLOC, 4)

IF(ISW. EQ. 0) CALL PLOT(O., 0., -3)

ISW = 1

CALL PLTM(l)

G-65

Page 190: Prepared by James G. Crose and Robert M. Jones

d. Replace CALL PLT(6) by

C PUT END OF FILE MARK ON PLOT TAPE

CALL PLOT (0., 0.,999)

e. Change 20A4 in FORMA TS 1000 and 2000 to 13A 6, A2

2. REST Change

Change F(27) to F(22) in COMMON/PTT/ ...

3. INTER CHANGE

Change the data statement to nine explicit assignments, e. g.,

XX(I) = .1259391805448, etc.

4. PLTM Changes

See the subroutine listing on the following pages.

5. CONTR Changes

a. Change TITLE(20) to TITLE(14) and add XAXLEN to

COMMON /PTT / ...

b. Change the dimension 5 of HEAD and T1 through T21 to 3

c. Change the data statement for T1 through T21 to 18H formats

such as 18HANGLE TO EPS MAX

d. Replace CALL PLT( 1 - - (now CONT 151 and 152) by

CALL SYMBOL(O., 10. 5, .21, HEAD(l, ICNT). 0.,18)

IF(TILT.EO.1.) CALL AXIS(O. , 0., 6HZ-AXIS, 6, 10.,

90., ZMIN, DELP)

IF(TILT. EO. 1. ) CALL AXIS(O., 0., 6HR-AXIS, -6,

XAXLEN, 0., RMIN, DELP)

G-66

Page 191: Prepared by James G. Crose and Robert M. Jones

IF(TILT. EQ. 0.) CALL AXIS(O., 0., 6HR-AXIS, 6,

10. , 90. , RMIN, DELP)

IF(TILT. EQ. 0.) CALL AXIS(O., 0., 6HZ-AXIS, -6,

XAXLEN, 0., ZMIN, DELP)

e. Change IIX=50 and IIY=1025 in CONT 157 and 158 to XDIST=. 5

and YDIST=l 0.25 respectively

f. Change CALL PLT(3 .•• ), now CONT 159 to

CALL SYMBOL(XDIST, YDIST, .14, 19H

CONTOURS REQUESTED, O. , 19)

g. Change IIY = IIY-25 in CONT 161 to YDIST=YDIST-.25

h. Change statement 600 in CONT 163 to

600 CALL SYMBOL (XDIST, YDIST,. 14, AB, 0.,12)

i. Replace statement 750 in CONT 196 by

750 CI(Ltl) = XMIN

CI(Lt2) = DELP

CD(Ltl) = YMIN

CD(Lt2) = DELP

CALL LINE (CI, CD, L, I, 0, 0)

XDIST = XAXLEN + 3.

j. Change statement 800 in CONT 197 to

800 CALL PLOT (XDIST, 0., -3)

6. DRAW Changes

a. Change CALL PLT(3, ••• ) in DRAW 35 to

CALL SYMBOL (.5,.6,.07, BCD(l), 0.,12)

G-67

Page 192: Prepared by James G. Crose and Robert M. Jones

b. Change IX= and IY= in DRAW 115 and 116 to

XPAGE = (CI(IFL)-XS)/XI-. 05

YPAGE = (CD(IFL)-YS)/YI-. 45

c. Replace CALL PLT(3... ) in DRAW 118 by

CALL SYMBOL (XPAGE, YPAGE,. 07. BCD(l), 0.,12)

d. Replace DRAW 119 and 120 by

340 CI(3 ) = XS

CI(4) = XI

CD(3) = YS

CD(4) = YI

CALL LINE (CI,CD,2,l,O,O)

7. BDF Change

See the subroutine listing on the following pages.

G-68

Page 193: Prepared by James G. Crose and Robert M. Jones

SUBROUTINE PLTMIITYPEI PLTM 1c* ••••••••• * •••••••• * •• * • * ••••• * * ••• *PlTM 2C STA~DARD CALCoMP 'BASIC SOFTWARE' PLOTTI~G INSTKUCTICNS ARE USED PlTM 3C TO PLOT FINITE ELEMENT MESH PLTM 4'* ••••.••....•.....••.•.....•..•...•.PlTM 5

CoMMCN/BASIC/NUMNP,NUMEl,NUMPC,NUMSC,ACELZ,ANuVEl,TREf,VGL,IFRE~ PLTM 6CoM~CN/NPDATA/RIIOOOI,CooEIIOOOI,XRllOOOI,ZllOOOI,XlllOOOl,TIIOOOIPlTM 7CoM~CN/EloATA/IXIIOGO,5I,EPKIIOOOI,AlPHAIICCC' PlTM 8CoM~ON/PTT/IPLoT,TITlEI14I,RMIN,Z~I~,DElP,TILT,FACT,ICEF,XAXLEN PlTM 9DIME~SION XI71,Yl71 PlTM 10

c* •••••••••••••••••••••••••••••••••••PlY" 11C lABEL BEGINNING CF GAIA CASE wITH TITLE PlTM 12c* •••••••••••••••••••••••••••••••••• • PlT~ 13

IFIITYPE.EQ.ZIGo TO 50 PLTM 14CALL SYMBolI9.B,6.0,.28,BHSAAS 111,0.,81 PLTM 15CALL SYM8oLI7.7,5.0,.21,30hFINITE ELEME~T STR~SS ANAlYSIS,O.,3DI PLTM 16CAll SYMBLlI7.5,4.5,.21,32hof AXISYM~ETRIC ANC PlA~t SUlIDS,O.,321PlTM 17CALL SYM8oLI7.0,4.0,.21,37HbY JAMES G. CRCSE AND ROHERT M. JCNES, PlTM 18

10,371 PLTM 19CALL SYMBolI8.8,3.0,.21,19HPLLTS FOR DATA CASE,O.,IS' PlTM 20CAll SYMBUlI2.0,l.5,.21,TIILE,O.,80' PlTM 21CAll PLCTI24.,O.,-31 PLTM 22

c* •••••••••• * • •••• * ••••••••••••••••• *PLTM 23C LABel ElEMHT PlCT PUM 24c* •• • • • •••• • • • * • * ••• * •••••••••• * • * * • *PlTM 25

50 IFIITYPE.EQ.IICALL SY~8CLI0.,lO.5,.21,12hElEMtNTPlCT,O.,121 PlTM 26IFIITYPE.E~.21 CAll SYMbULIO.,10.5,.21,21HDEFOKMEO EIE~E~T PLeT, PlTM 27

10.,211 PUM 26C* ••••••••••• • •••••••••• * •• * ••••••• • *PLTM 29C OBTAIN MAXIMLM ANO MINIMU~ R ANC I PLTM 30c* •• • • •••• • ••• • • * • * ••••••• * * * •• * ••• ••PLTM 31

IfICElP.EQ.C.1 GC TO 100 PLTM 32I~AX:lMI~ PUM 33RMAX:R~I~ PLTM 34GO TC lle PUM 3~

100 llUNzllll PlTM 36lMUzlMI ~ PUM 37RMINzR III PUM 3BRMU-RMI h PC TM 39

C PlTM 40110 00 120 I:l,NUMNP PLTM 41

IFllIII.lT.ZMINI lMIN=ZIII PLTM 42IFllMAX.lT.lIIII lMAX=1111 PLTM 43IFIRIII.lT.RMINI RMIN=RIII PLTM 44IFIR~AX.LT.Rllll RMAX=RIII PLTM 45

120 CONTI NUE PUM 46C PUM 47

RA-IRMAX-RMINI/IIMAX-ZMINI PLTM 48IFIIPlDT.EQ.11 RA=l./RA PlTM 49IFIRA.lT.l.l GO TO 150 PLTM 50

co •• • • * * ••• * ••• * * * * * •• * •• * • * * * * * * • * * *PLTM 51C Z-AXIS VERTICAL AND R-AXIS HORIZONTAL PLTM 52c* •• • • • ••••• * • * • * * * •• * * * * * • * * * • * * •• • *PLTH 53

TlLT:l. PUM 54CAll SCAlEIZ,lO.,NUMNP,ll PLTM 55

C PUM 56C CALCULATE PARAMeTERS TG SCALE THE X-AXIS THE 5AME AS THE Y-AXIS PLTM 57C PL TM 58

IFIDElP.NE.0 •• ANG.ITYPE.NE.21 G0 TO 125 PLTM 59lHIN=11 NUMNP+ll PUM 60DElP:IINUMNP+21 PLTM 61NDUM:RHIN/oElP PlTH 62DUM=NDUM PL TM 63RM IIl=DUMOoElP Pl TM 64

125 NDUH=RMAX/DELP PlTM 65DUM:NDUM PL TM 66RlASTV=IDUM+l.I*DclP PLTM 67XAXlEN=IRlASTV-RMINI/DElP PLTM 68

C PLTM 69C DRA~ AND LABEl AXES PL TM 70

G-69

Page 194: Prepared by James G. Crose and Robert M. Jones

C PlTM 71CAll AXlSI0.,O.,6HZ-AXIS,6,10.,90.,ZMI~,CELPI PlTM 72CALL AXISIC.,O.,6HR-AXIS,-6,XAXlEN,O,RMIN,OELPI PlTM 73

C PUM 74C DETERMINE ANC PLOT CCORDINATES OF EACH ELEMENT PLTM 75C PUM 76

XI61=RMI~ PUM 77XI7I=OELP PUM 78VI61=ZMI~ PUM 79VI7I=DElP PUM 80DU 140 N=I,NUMEL PLTM 81DC 130 M=l,5 PL TM 821=IXIN,MI PUM a3IFIM.E~.51 1=IXIN,l1 PUM 84XIMI=RIII PLTM 85

130 VIMI=1111 PUM 86140 CALL LlNEIX,V,5,l,O,CI PUM 87

GO TC 18C Pl TM 88c* •••• * •••••••••••••••••• * •••••••• * • *PLTM 89C R-AXIS VERTICAL AND Z-AXIS HORIZONTAL PlTM 90c* •••••••••••••••••••••••••••••••••• *PLTM ql

150 CALL SCALEIR,lO.,NUMNP,l1 PUM qzTIU=O. PL TM 93

C PUM <;4C CALC,LATE PARAMETERS TC SCALE THE X-AXIS THE SAME AS THE V-AXIS PLTM 95C PUM 96

IFICELP.NE.0 •• AND.ITVPE.NE.21 GO TC 155 PLTM 97RMI~=RINUMNP+ll PLTM 98CELP=RINUMNP+21 PlTM 99NOUM=ZMIN/DELP PlTM ICCCUM=NOUM PLTM 101ZMIN=OUM*OELP PlTM 102

155 ~OUM=ZMAX/DELP PLTM 103CUM=NCUM Pl TM 104ZLASTV=IDUM+l.I*DELP PlTM 105XAXLEN=llLASTV-ZMINIIOELP PUM 106

C PLTMl~C ORAl< AND lABeL AXES PUM 108C PLIM 109

CALL AXISI0.,O.,6HR-AXIS,6,10.,90.,RMIN,DELPI PLTM 110CALL AXISIO.,O.,6HI-AXIS,-6,XAXLEN,O,ZMIN,OELPI PlTM III

C PlTM112C DETERMINE ANC PLOT CCORDINATES OF EACH ELEMENT PlTM 113C Pl TM 11'0

XI61=ZMIN PUM 115XI7I=DELP PlTM 116Vl61 z RMH PlTM 117VI11=OELP PlTM 118DO 170 N=I,NUMEL PLTM 11900 160 M=I,5 PUM 120I=IXIN,MI PLTM 121IFIM.EO.51 1=IXIN,l1 PlTM 122Xl MI=HII PUM 123

160 VIMI=RIII PUM 124170 CAll LINElX,Y,5,1,O,GI PlTM 125

C PlTM 126C INITIALIZE PLOTTER PEN FUR NEXT PLCT PLTM 127C Pl TM 128

180 XOIST=XAXLEN+3. PLTM 129CALL PlOTIXDIST,O.,-31 PlTH 130RETUPN PLTH 131END PlIM 132

G-70

Page 195: Prepared by James G. Crose and Robert M. Jones

2. Change the dimension on F in COMMON / PTT / from 27 to 15

where it occurs in REST

3. Change the number 12 to 20 in CONT 163

4. Change 20A4 to SA10 in FORMA T statements 1000 and 2000 in MAIN

5. Change the dimension 5 of HEAD and Tl through T22 to 2, and

change the DATA declarations for T 1 through T22 accordingly

6. Use the CDC 6600 version of BDF listed on the following page.

G-73

Page 196: Prepared by James G. Crose and Robert M. Jones

SUBROUTINE BDFIFlT,BCDl ~DF2 IC•••••••••••••••••••••••••••••••••••••••••••••••••••••••••*•••••••••*•••~~F2 2C BDf IS A STANDARD AEROSPACE CORPORATION cec 6600 SUBPCuTINE BlF2 3C fOR CONTCUR PLOT ANNOTATION BlF2 4C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••80F2 5

OI~E~SICN BOOI2I,RE4~AT(21 ~DF2 6C 301-2 7

ENCOOE(20,l,RE4~ATI fL T 8DF2 BI fOR~ATIE20.BI BDF2 ~

CECCOE(20,2,RE4~ATI BCDlII,BCDlll BUF2 Ie2 fOR~AT(2Al01 BDF2 11

C IlDF2 12RETURN BDF 2 13END BDF2 14

G-74

Page 197: Prepared by James G. Crose and Robert M. Jones

G.6 PLT360, IBM 1627 PLOTTING ROUTINE

The PLT360 subroutines are called from SAAS III for the purpose of

preparing element and contour plots. The following writeup of this plotting

feature has been excerpted from The Aerospace Corporation Mathematics

and Computation Center Programmer's Handbook. It is presented here as

an aid to potential program users in establishing their own plotting capability

and for use in understanding the calls to PLT.

G-75

Page 198: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 1 of 32Rev. 3 April 1967

lentification

LT360, IBM 1627 Plotting RoutineS/360 - Assemblerl. Clarke, February 6, 1967erospace Corporation, San Bernardino Operations

ontents of Write-Up

Gene ral De sc ription

Tape or On-Line Plotter Output

Storage Requirements (bytes)

Calling Sequence Usage

A. Setup EntranceB. Data EntranceC. Annotation EntranceD. Aerospace EntranceE. Cleanup EntranceF. Terminate Entrance

Extended Precision Plotting

EBCDIC Codes for Symbols and Special Annotation

Overlay Requirements

Errors

Notes on Title/Annotation Input

Multiple Report Plotting

A. Calling Sequences for Multiple Report PlottingB. Example for Multiple Report Plotting

Appendix A - Assembly Language Usage

Appendix B - Parameter and Work Storage Tables

Appendix C - Non-Standard Usage

Appendix D - Output Record Size Changes

Page 2

3

3

4

51011141516

17

18

19

19

19

20

2022

24

26

30

32

cknowledgment

PLT360 is the OS/360 Assembler language version of the 7040-7094 DCS

mtines PLT (AMOlB), PLTI (AMlOA) and PLTW (AMllA), which were major

,visions of RW CCP and RW CCP2, written by K. G. Tomikawa and J. R. Black­

.er, respectively, in August of 1962, Space Technology Laboratories, Redondo

each, California.

G-76

Page 199: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 2 of 32Rev. 3 April 1967

General Description

This subroutine is called from FORTRAN programs to generate plots. User's

information is assembled and control is passed to PLTl, which generates plotter

commands. One plotter command is generated for each 1/1 Oath inch pen move­

ment in vertical, horizontal or diagonal direction. One command is also gener­

ated for each pen up or down movement. The plot records are output by PLTW /

360, onto a file named PLOTPLOT. All plot output generated in one computer

run is one file, and will be output to the same tape Or on-line plotter.

A maximum of seven dependent variables are permitted as functions of one

independent variable. All data must be in floating hexadecimal form in either

single precision (4 bytes) or extended precision (8 bytes). Data for any variable

must be stored consecutively in core. User's information controls scaling of

data and printing of scales and titles. Special annotation and the Aerospace

symbol may be written anywhere on the plot to the right of the plot origin at the

left hand side of the plot.

Floating point data are scaled to pen deflections as determined by parameters

specified in the CALL statements.

A Y data word in which bits 1-4 are all ones (approximately 1656

) is treated

as a missing point, and a small M is printed at the vertical level of the previous

point. Thi feature might be used to indicate telemetry dropout, etc.

c\ Y data word which falls off the scale (either above or below) is unconnected

to any other data point. If the point is more than a small fraction of an inch off

scale, a small W (for wild point) is printed at the margin in line with the wild

point. A W is only printed for the first of a series of off-scale points.

The independent variable must be in tabular form in core, stored in consecu­

tive cells. The dependent variables must be stored in a like manner; however,

a block of the independent variables and blocks of the dependent variables need not

be adjacent storage locations.

G-77

Page 200: Prepared by James G. Crose and Robert M. Jones

S{360 LIBRARYPLT360Page 3 of 32Rev 15 September 1967

ape or On-Line Plotter Output

The number 1 entry to PLT will cause the file to be opened and the tape to

rewound. (OS{360 rewinds the tape when an OPEN command is given. )

The DDNAME of the plot file is PLOTPLOT • The user should refer to cur­

mt operating procedures for specifying on-line or off-line plotting.

The plot output tape file is written in EBCDIC in 864 character records.

arger or smaller tape records may be written by changing two cards in PLT

~ck and reassembling PLT. See Appendix D.

:orage Requirements (bytes) .'.','

PLT

PLTl

PLTW

Total

E2416

142416

114 16

232C 16

362010

5156 10

276 10

(including 1728 bytes for buffers)

G-78

Page 201: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 4 of 32Rev 3 April 1967

Calling Sequence Usage

All fixed point numbers used by the plot routine must be four-byte integers.

Six calling sequences are available in PLT. They are:

1. Setup Entrance (required for every plot) which initializes tables within

PLT, sets up general information about scales, titles and symbols, and

outputs the title and left hand dependent variable scales if required;

2. Data Entrance (optional, but normally used) which scales user's data to

his specifications and outputs plot of date;

3. Annotation Entrance (optional) which is called to add special annotation

to the plot anywhere to the right of the dependent variable coordinate

scales;

4. Aerospace Symbol Entrance (optional) which will add the Aerospace

symbol anywhere on the plot to the right of the dependent variable coor­

dinate scales;

5. Cleanup Entrance (required for every plot) which :is called at the end of

every individual plot to write the independent variable scales, additional

dependent variable scales to the right of the plot, and position the plotter

pen at the origin point for the next plot; and

6. Terminate Entrance (required) which is called at the end of all plots

output in one computer run, to write a message to the operator on the

plot file and write an end-of-file.

G-79

Page 202: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 5 of 32Rev 15 September 1967

lling Sequence Usage (cont)

Setup Entrance

CALL PLT( 1, N, XO, DX, X, DDX, NF, YOI, DYI, lSI, ISFI, YI, •.... ,

NT, TITLE, NTX, XTITLE, NTY 1, Y 1TITLE, .•.. )

Where;

1

N

Indicates a setup entrance.

Controls the output of plotter information. When N < 0,

any partially filled buffers are output before PLT returns

control to the calling program. When N ~ 0, any partially

filled buffers are retained in PLT until the next entrance

to PLT and filled with subsequent plotter commands. At the

end of each plot (cleanup entrance) all information is output.

,'.','

XO Starting value of X scale in the same units as data (floating

point).

DX Delta X per inch of plot, given in the same units as data

(floating point).

X FOR TRAN name of first value of independent variable (all

data are floating point) when DDX = 0, each data entrance

will plot data beginning at this point of the array and continued

forward in the array for the number of points specified. When

DDX F 0, the independent variable values are generated. X

will be the first value of the independent variable for a data

entrance and the value will be incremented by DDX for each

subsequent point in this data entrance. The values plotted

will be (X, X+DDX, X+2':'DDX, X+3':'DDX.••.•. X+(NP-I)':'DDX

(where NP = Number of points specified in data entrance).

X must contain the correct value of the independent variable

for the first point of each data entrance at the time the data

entrance is given.

G-80

Page 203: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 6 of 32Rev. 3 April 1967

Calling Sequence Usage (cont. )

A. Setup Entrance (cont. )

DDX = 0 when all independent variable values are stored in an array;

= the increment between each value of the independent variable

when they are to be generated by the routine (floating point).

NF Number of dependent variables. Extended precision values

may be plotted by adding flags to NF. See "Extended Precision

Plotting" for exact specification of flags. When single preci­

sion data is to be plotted, NF = only the number of dependent

variables (integer).

YO 1 Starting value of scale for first dependent variable (floating

point).

DY 1 Delta per inch of plot for first dependent variable (floating

point).

lSI Symbol code for first dependent variable (integer).

= 0, no symbol

= 1, triangle ~

= 2, inverted triangle V= 3, hour glass[

= 4, star ~:~

= 5, spool II

= 6, += 7, X

ISF 1 = symbol frequency for first dependent variable. Symbol is

drawn at first point and every ISF 1th point thereafter (integer).

A connecting line is drawn between points.

= 0; point plot. Data points are not connected and a symbol

is drawn at every point.

G-81

Page 204: Prepared by James G. Crose and Robert M. Jones

5/360 LIBRARYPLT360Page 7 of 32Rev. 3 April 1967

'!ling Sequence Usage (cant. )

Setup Entrance (cont. )

FOR TRAN name of first data point of first dependent variable

(floating point)

}Repeat :ast 5 parameters for each additional dependent

variable after first one.

NT

TITLE

NTX

Number of EBCDIC characters used for plot title (integer).

Plot title - may be specified by literal data with number of

characters equal to NT or specified as an array and input by

means of a READ statement or a DATA statement. See

"Notes on Title/Annotation Input."

Number of EBCDIC characters used for independent axis

title. If NTX = 0, printing of X axis scale and title is sup­

pressed (integer).

XTITLE X-axis title - may be specified in the same manner as TITLE.

When NTX = 0, the contents of XTITLE are ignored.

NTY 1 Number (integer) of EBCDIC characters used for title of first

dependent variable. If NTYI = 0, printing of Yl axis scale

and title is suppressed.

Y 1TITLE Yl axis title - may be specified in the same manner as TITLE.

When NTY1=0, the contents of Y1TITLE are ignored.

}

Repeat last 2 parameters for each additional dependent

variable after first one.

G-82

Page 205: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 8 of 32Rev. 3 April 1967

Calling Sequence Usage (cant. )

A. Setup Entrance (cant. )

e. g. , CALL PLT( 1,0, XO, DX, X, DDX, 3, YOl, DY I, lSI, ISFl, Yl, Y02,

DY2, 152, ISF2, Y2, Y03, DY3, IS3, 15F3, Y3, 10, 'PLOT

TITLE', 24, XTITLE, 24, Y 1TITLE, 12, 'Y -AXIS TITLE',

0,0)

In the above example, 3 single precision dependent variables are speci­

fied. The plot title is specified in the calling sequence and will read PLOT

TITLE. XTITLE was input by means of a READ statement from a card as

follows:

DIMENSION XTITLE(6)READ(5, 100)(XTITLE(I), 1=1, 6)

100 FORMAT(6A4)

Y 1TITLE was specified by means of a Data Statement as fOllows:

DIMENSION YlTITLE(6)DATA YITITLE/'FIRST DEPENDENT VARIABLE'/

The title of the second dependent variable will read: Y -AXIS TITLE.

The title and scale of the third dependent variable will not be printed.

The plot file at the return from this setup entrance will result in the

partial plot illustrated on page 9: (YOl=O., DYl=l., ISl=l, Y02=10.,

DY2=-1., IS2=2, Y03=2000., DY3=10., IS3=3).

G-83

Page 206: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 9 of 32Rev. 3 April 1967

!ling Sequence Usage (cont. )

Setup Entrance (cont. )

Example of plot appearance at end of setup entrance:

PLOT TITLE

10. o.9. 1.

<l)~ 8. 2..0ro.~ 7. 3.....ro> 6. 4.~

'" 5. 5.<l)

"0 4. <l) 6.'" ~

<l) ~.~

0.. 3. f-< 7.<l)

C1 <1J2. .~ 8 .

~ ~<1J

~.... 1. 9..~

,~ ~

O. 10.

"':::J ~

The left dependent variable axis line is not drawn if no dependent

variable scales are printed on plot.

G-84

Page 207: Prepared by James G. Crose and Robert M. Jones

SUBROUTINE BeFIA,BI BOF3 1c* •••••••••••••••••••••••••••••••••• *eOF3 2( THE FURPCSE OF THIS SUeROUTINE IS Te CeNVERT THE NUMBER A INTO A BOF3 3( HOllERITH ARRAY THAT (AN BE USED AS A PlCT ANNOTATION INSTRUCTION BOF3 4C* •••••••••• * • • • * • • • • • • • • • • • • • • ••••• *eOF3 5

DIMENSION BIll BOF3 bCAll ENCOOtlBI BOF3 1WRITEI3l,11 A BOF3 8

1 FORMATIEl2.5) BOF3 9RETURN BOF 3 10END BOF3 11

G-71

Page 208: Prepared by James G. Crose and Robert M. Jones

G.5 CDC 6600 FOR TRAN IV COMPUTER PROGRAM LISTING

In order to run the SAAS III program on the CDC 6600, certain

program modifications must be made. The modifications are related to the

elimination of all double precision arithmetic and changes in array lengths

to accommodate plotting. The changes affect the Subroutines MAIN, REST,

POINTS, TEMl, TEMP, STIFF, QUAD, TRIS, INTER, MODIFY, SOLVE,

STRESS, SYMINV, CONTR, FLDIN, and MPROP.

In order to eliminate double precision arithmetic, delete the following

cards:

MAIN 12, 15

POIN 6

FLDN 9

TEMP 7

TEMI 6

STIFF 11,12,15

QUAD 9

PROP la, 15

TRIS la, II

INTE 6,7

MODI 7

SYMI 5

SOLV 7

STRE 10,11,12,13

CONT II, 14

In addition, change the dimension on E in REST 7 from 447 to 303.

In order to plot correctly, a number of changes must be made to

accommodate the CDC 6600 la-bit word length as opposed to the IBM 360

4-bit word length. These changes consist of:

I. Change the dimension on TITLE from 20 to 8 in COMMON/PTT/

where it occurs in MAIN, PLTM, and CONTR

G-72

Page 209: Prepared by James G. Crose and Robert M. Jones

5/360 LIBRARYPLT360Page 10 of 32Rev. 3 April 1967

Calling Sequence Usage (cont. )

B. Data Entrance

CALL PLT(2, NP, K)

Where:

2 Indicates a data entrance.

NP = Number (integer) of points to plot at this time. NP points will be

plotted for each dependent variable versus one dependent variable.

At each data entrance the first point is assumed to be at X, Yl,

Y2.•• Ym as specified in setup entrance. Points 2 through NP are

plotted from locations directly following the first.

K = 0 if curve of this data is to be connected to data previously plotted

on this plot.

= 1 if curve of data from this entrance is not to be connected to curve

of data from a previous data entrance.

G-85

Page 210: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 11 of 32Rev. 3 April 1967

llling Sequence Usage (cant. )

Annotation Entrance

CALL PLT{3, IX, IY, S, NA, ANNOT)

Where:

3 Indicates an Annotation Entrance

IX Distance in 1/100 inches from left boundary of plotting area to

lower left corner of first character (integer).

IY Distance in 1/100 inches from bottom of paper (30/100 inch be­

low plotting area) to lower left corner of first character (integer).

S Character height in inches. If size is negative, the print line

will be rotated counte r clockwise about the XY refe renee point

by 90 degrees (floating point).

NA Number of Hollerith characters used for annotation.

ANNOT Characters of annotation to be written on plot. May be speci­

fied by literal data or specified as an array and input by means

of a READ statement or a DATA statement. See "Notes on

Title / Annotation Input. "

The EBCDIC information is printed on the plot as specified. Distance

between character centers is the same as character height. Several non­

Hollerith characters can be printed with the hexadecimal codes shown below.

fl 4F Plot Symbols 5F Suitable for drawing

V 50an axis.

X 4C6D Used to extend tail of

arrow..', 6F'" 7B+---D 5A

7C--+ 6A

X 6eG-86

Page 211: Prepared by James G. Crose and Robert M. Jones

5/360 LIBRARYPLT360Page 12 of 32Rev. 3 April 1967

Calling Sequence Usage (cont. )

C. Annotation Entrance (cont. )

Example of Horizontal Annotation for

CALL PLT(3, 300, 150,.5,3, 'ABC')

PLOT TITLE

'--_ __.------'ABC"

10.

9.

8.

7.

6.

5.

4.

riI 3.....4 2.f-<H

f-< l. ,>< •

O.

\300/100 inches \150/100 inches

(l/2 inch below plotting area,one inch in plotting area)

G-87

Page 212: Prepared by James G. Crose and Robert M. Jones

:alling Sequence Usage (cant. )

Annotation Entrance (c onto )

Example of Vertical Annotation for

CALL PLT(3, 300, 0, -.5,3, 'ABC')

PLOT TITLE

10.

9.

8.

7.

6.

5.

4.

3.

2.

O.u

3~0/ 10~ inche~ 0/100 inches

G-88

5/360 LIBR,ARYPLT360Page 13 of 32Rev. 3 April 1967

Page 213: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 14 of 32Rev. 3 April 1967

Calling Sequence Usage (cont. )

D. Aerospace Symbol Entrance

CALL PLT{4,MX,MY,51)

Where:

4 Indicates Aerospace symbol entrance.

MX Distance in 1/100 inches from left boundary of plotter area to

lower left corner of Aerospace symbol (integer).

MY Distance in 1/100 inches from bottom of paper (SO/lOa inches

below plotting area) to lower left corner of Aerospace symbol

(integer).

51 Is size in inche s (floating point).

G-89

Page 214: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 15 of 32Rev. 3 April 1967

,dUng Sequence Usage (cant. )

Cleanup Entrance

CALL PLT(5, IRSC, PLOTIM)

Where:

5

IRSC

PLOTIM

Indicates a cleanup entrance.

Test value for right hand scale option (integer). IRSC is

compared to the actual number of inches of plot. When the

number of inches of plot is greater than IRSC right hand

scales are also drawn.

The routine reports the IBM 1627 plotting time in minutes

through this location. This parameter should be printed off­

line as a guide to estimated plot time (floating point).

If the plot occupies more than IRSC inches of paper, the independent

scales and titles will be printed at the right-hand edge. The independent

variable scale and title are printed in the bottom margin. The pen is moved

to the home position of the next plot. The plot address is increased by one.

G-90

Page 215: Prepared by James G. Crose and Robert M. Jones

5/360 LffiRARYPLT360Page 16 of 32Rev. 3 April 1967

Calling Sequence Usage (cont. )

E. Cleanup Entrance (cont. )

Example of plot appearance at end of cleanup entrance.

Cleanup Entrance(if plot is largerthan IRSC inches)

Pen location atend of CleanupEntrance

•o.

DataEntrance

9.

8.

7.

6.5.

4.

3.

2.

1.

o.

~ PLOT TITLE( ( 1-0-.-,---=--==-=---=..::..::....:=:=.--------1-0-.-,-----

9.8.

7.

6.

5.

4.

ril 3...:1t-< 2.Ht-< 1.><

o. 1. 2. 3. 4. 5. . 7. 8. 9.XTITLE

Cleanup' Entrance

F. Terminate Entrance

CALL PLT(6)

Where:

6 Indicates a terminate entrance.

This entrance writes a message to the plotter operator on the plot file,

writes an end of file and closes the plot file. This must be the last entrance

to PLT for one computer run.

G-9l

Page 216: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRAR YPLT360Page 17 of 32Rev. 3 April 1967

xtended Precision Plotting

Extended precision data may be plotted by adding flags to NF (setup entrance).

11 the variables may be in extended precision, Or Some may be extended and

)me single precision. The following values must be added to NF to specify

,tended precision.

Independent variable (X).

First dependent variable (Y 1).

Second dependent variable (Y2).

Add 2 3 = 8

Add 2 3+ 1 = 16

Add 2 3+2 = 32

Seventh dependent variable (Y7). Add 2 3+7 = 1024

Examples

Number ofDependentVariablesto Be Plotted

3

3

7

7

1

SinglePrecisionVariables

None

X,Yl,Y2

Yl, Y2, Y3, Y4, Y5

All

None

G-92

ExtendedPrecisionVariables

X, Yl, Y2, Y3

Y3

X, Y6, Y7

None

All

NF

3+ 2':":' 3+ 2':":'4+2 ':":' 5+2 ':":' 6

7+ 2':":' 3+ 2':":'9+ 2':"n 0

7

Page 217: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 18 of 32Rev. 3 April 1967

EBCDIC Codes for Symbols and Special Annotation

EBCDIC codes for all letters and numbers are normal EBCDIC codes;

i.e., A ClB C2

etc.

1 Fl2 F2

etc.

Special Symbols

blank

x(

+tJ.

Vn$

w

/

+

x

M

40 or CO (either is acceptable)

4B period ~:~

4C plot symbol ~

4D left parenthesis ~

4E plus sign

4F plot symbol =

50 plot symbol ®5A plot s ymb 01

5B dollar sign

5C asterisk

5D right parenthesis

5E wild point

5F axis line

60 minus sign

61 slash

6A plot symbol

6B comma

6C plot symbol

6D arrow tail extension

6E mis sing data flag

G-93

6F plot symbol

7B arrow

7C arrow

7D prime (apostrophe)

7E equal sign

7F Aerospace symbol

Page 218: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 19 of 32Rev. 3 April 1967

Jverlay Requirements

Overlay is possible between completed plots for PLT and PLTJ. PLTW

oust be included with the main link because of the method by which OS/360 defines

>DNAMES and OPEN files.

:rrors

The following errors are recognized by PLT:

1. Illegal call codes (any number other than 1, 2, 3, 4, 5, 6);

2. Error in sequence of calls (setup entrance 1 must be given before any

other entrance); and

3. Number of functions less than 1 or greater than 7.

ate s on Title / Annotation Input

Titles in setup entrance and all annotation may be input in several ways.

lley may be included in the calling sequence as;

e. ,

.... , NA, 'XX .• XXX'

•... , la, 'ANNOTATION' , whe re the title is ANNOTA TION .'.','

Titles may be input by means of READ statements or DATA statements.

mr EBCDIC characters will fill one full word .

. • . . , NA, TITLE...•

e., DIMENSION TITLEl(3) TITLE2(3)

DATA TITLE2/'ANNOTATION2' /

READ(5,I)TITLEI

1 FORMAT(3A4)

CALL PLT (----, la, TITLE 1, ---)

CALL PLT (----, 12, TITLE2, ---)

G-94

Page 219: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 20 of 32Rev. 3 April 1967

Multiple Report Plotting

Multiple report plotting enables a user to generate several plots simultane­

0usly. The resultant plots will be identical to normal sequential plots. One

useful application of these routines would be where large amounts of data are

generated (either read from tape or computed) and several separate plots are

needed of data generated simultaneously. In this case a setup entrance must

be given for each of the desired plots, then, as small amounts of data are

gene rated, data entrances may be given for each separate plot. When all data

and special annotations are complete, a cleanup entrance is given for each plot.

One terminate entrance should be given at the completion of all plots. Any

number of plots may be written concurrently. However, each multiple report

code causes a complete pass by the output processor of the operating system

over all plots written by one program. Therefore, plotting time may increase

when a large numbe r of multiple report codes are used. Codes may be re -used

for subsequent plots after the cleanup entrance is given. Any combination of

plot entrances may be given. However, a multiple report code must be reserved

for one plot until the cleanup entrance for that plot is finished.

The first parameter in the calling sequences to PLT must be negative for

multiple reports, and two additional parameters are needed.

A. Calling Sequences for Multiple Report Plotting

1. Setup Entrance

CALL PLT{ -1, A, B, n, XO, DX, DXl, DDX, nf, YOl, DYl, IS 1, ISFl,

Yl, .••• YOm, DYm, ISm, ISFm, YM, NT, TITLE, NTX,

XTITLE, NTYl, Yl TITLE, •••• )

G-95

Page 220: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRAR YPLT360Page 21 of 32Rev. 3 April 1967

lultiple Report Plotting (cont. )

Calling Sequence for Multiple Report Plotting (cont. )

-1 Indicates a multiple report setup.

A = location which contains multiple report characters. The first

character must be a comma. The second and third characters

designate the plot and distinguish it from other multiple report plots.

A fourth character is not used.

B = name of an array which is used by PLT to save plot information.

This information must not be changed by the user between setup

and cleanup entrances. B must be dimensioned as:

15+8';'NF words (4 bytes per word)

[For one dependent variable B is dimensioned B(23); for two, B(31);

for seven, B(71); etc.]

The remaining parameters remain the same as in normal usage.

2. Data Entrance

CALL PLT(-2,A,B,NP,K)

-2 Indicates a data entrance

A Same as setup entrance for multiple report plot.

B Same as setup entrance for multiple report plot.

~p) Remain the same as for non-multiple report plot.

3. Annotation Entrance

CALL PLT(-3,A,B,IX,IY,S,NA,ANNOT)

4. Aerospace Symbol Entrance

CALL PLT(-4,A,B,MX,MY,SI)

G-96

,'.','

Page 221: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 22 of 32Rev. 3 April 1967

Multiple Report Plotting (cant. )

A. Calling Sequence for Multiple Report Plotting (cant. )

5. Cleanup Entrance

CALL PLT{ -5, A, B, IRSC, PLOTIM)

6. Terminate Entrance

CALL PLT{ -6, A, B)

or

CALL PLT(6)

Multiple report designation is not necessary for the terminate entrance.

B. Example for Multiple Report Plotting

Example: Read 20000 data points from cards

Plot Y vs X, Z and Q vs X

DIMENSION B{ 23), D( 31), X( 100), Y{1 00), Z( 100), Q{1 00)

DATAA,C/',AA',',BB'/ .:'

CALL PLT{-l,A, B, 15, 0.,1., X, 0,1,0.,1.,1,1, Y, 5, 'TITLE', 6, .:''X-AXIS', 6, 'Y-AXIS') .:'

CALL PLT{-l, C, D, 15, 0.,1., X, 0, 2, 0.,1., I, I, Z, 0.,1.,2, I, Q, 5 .:''TITLE', 6, 'X-AXIS', 6, 'Z-AXIS', 6, 'Q-AXIS') .:'

J=O

2 DO 11=1, 100

1 READ{5, 100)X{I), Y(I), Z(I), Q{I)

100 FORMAT(4FlO. 5)

CALL PLT{-2,A, B, 100,0)

CALL PLT(-2,C,D,lOO,O)

J=J+lOO

IF (J • LT. 20000) GO TO 2

G-97

Page 222: Prepared by James G. Crose and Robert M. Jones

V1ultiple Report Plotting (cant. )

3. Example for Multiple Report Plotting (cant. )

CALL PLT(-5, A, B, 10, PLOTLVl)

CALL PLT(-5, C, D, 10, PLOTIM)

CALL PLT(6}

STOP

END

G-98

5/360 LIBRARYPLT360Page 23 of 32Rev. 3 April 1967

Page 223: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 24 of 32Rev. 3 April 1967

Appendix A - Assembly Language Usage

PLT may be called from Assembler language programs with CALL PLT( ••• )

as in FORTRAN. Alternatively, PLT may be bypassed and PLTW and PLTI

may be called directly from an Assembler language program. However, direct

calls to PLTI and PLTW require:

1. Setting up a parameter table, PLTTBL, as described in Appendix B ':'

before the setup entrance to PLTl;

2. Setting up work storage table as described in Appendix B; and

3. Calling in sequence -

At beginning of all plots

PLTWSET(SETUP IO)

For each plot

PLT l(SETUP)

Any combination of data, change table, and annotation entrances

to PLT 1

PLT l(CLEANUP)

At end of all plots

PLT l(TERM1NATE)

PLTWTERM(CLOSE IO)

4. 10 Call Requirements ­

PLTWSET

L 15, =V(PLTWSET)

BALR 14,15

PLTWTERM

L 15, =V(PLTWTERM)

BALR 14, 15

G-99

Page 224: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 25 of 32Rev. 23 May \967

_ppendix A - Assembly Language Usage (cont)

5. PLT 1 Call Requirements -

Register 13 contains the address of work storage table.

Register 1 contains the calling code;

1 = SETUP2 = DATA3 = ANNOTATION5 = CLEANUP6 = TERMINATE7 = CHANGE TABLE

Example - Setup Entrance

TABLE2

PLOTID

LLHLABALR

DSDCDCDSDCDCDCDCDSDCDCDCDCDCDCDCDSDS

DC

15, =V(PLTl)1, HIll13, =A(TABLE2)14, 15

18FA(PLTTBL)CL4'",1IFH ' 1'H'O'F'O'A(PLOTID)4FD'Q',D'Q',D'Q'Dla', DID', DIO'DIal, Dla', Dla'D'O'H'864'H'D'A(TABLE2+408)26DCLl728

CL20'IPLOT NUMBER'

G-100

+72+76+80+84+86+88+92+96+ 112+136+160+184+192 BUFF CT+194+196 BUFF LOC+200+408 BUFFERS

Page 225: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT%OPage 26 of 32Rev. 3 April 1967

Appendix B - Parameter and Work Storage Tables

Parameter Table - Setup on full word boundary:

Addre s s of plot title

Number of characters in plot title

=0 No grid= 1 1" grid drawn over plotting area

=X'OO' Floating point data=X' FO' All data is pre scaled to plotter

increments with origin at lowerleft corner of plotting area.

=1 Means 4 bytes between addresses ofsuccessive independent variable datapoints

=2 Means 8 bytes between addresses=3 Means 12 bytes, etc.

Number of dependent variables

Location of XO (floating)

Location of DX (floating)

Location of DDX (floating)

Location of first data point in independentvariable array

Location of X title

Number of characters - X title

PLTTBL tot4

t6

t7

t8

tlO

t12

t16

t20

t24

t28

t32

t34

A

H

e

e

H

H

A

A

A

A

A

H

e =X'OO'=X'OF'

Do not print X scalePrint X scale

.'.."

t35

t60

t64

t68

t72

t74

eL2S

A

A

A

H

e

Set to zero before setup entrance to PLTI

Location of YO (floating)

Location of DY 1 (floating)

Location of first data point of first depen­dent variable

Symbol frequency (integer)

Symbol code - Hex code for symbol offirst dependent variable

G-lOl

Page 226: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRAR YPLT360Page 27 of 32Rev. 3 April 1967

\ppendix B - Parameter and Work Storage Tables (cant. )

+76 A

+80 H

+82 H

+84 CL8

+92to

+123

to PLTI

+75 C Off scale treatment and Yl

scale 'X X 'I 2First HEX character (XIL-0 Wild point= I Mirror image of off scale data is

plotted=2 Off scale data is plotted mod 10 inches

Second HEX character-0 Do not print scale=F Print Y 1 scale

Location of Y 1 TITLE

Number of characters - Y 1 TITLE

Delta Storage - Y 1

Set to zero before setup entrance

Repeat data in PLTTBL+60 toPLTTBL+91 for second dependentvariable

-',','

Repeat for last dependent variable+60+( 32':'(NF -1))to +60+( 32':'NF)-1

Maximum size - 284 bytes (71 full words)

G-I02

Page 227: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRAR YPLT360Page 28 of 32Rev. 23 May 1967

Appendix B - Parameter and Work Storage Tables (cont)

Call parameters and Work Storage Table - 408 bytes + BUFFER

Double word boundary.

TABLE2 +0

+72

+76

+80

+84

+86

+88

l8F

A

CL4

H

CL2

F

Used by PLTl to store register contents

Location of PLTTBL

Multiple report characters-normally", b­however, the second and third position m<lYbe another report designator (e. g., XXb)

Unused

Number of this plot - Used in PLOT IDrecord

Initially contain zero

Count of words output stored by routine ­Should be ze ro initially

PLT 1 Setup Parameter

+92 A Location of PLOT ID (20 characters)

PLT 1 Data Parameters

+92

+96

F

H

Base address of data (added to address ofall data locations)

Number of points this entrance.

PLT 1 Change Table Parameter

+100 F New table address (used to suppress curveconnection between data entrances)

PLT 1 Annotation Entrance

+92

+96

+100

+102

+104

A

E

H

H

H

Location of characters

Size (floating)

Number of characters

IX

IY

G-103

Page 228: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRAR YPLT360Page 29 of 32Rev. 23 May 1967

.ppendix B - Parameter and Work Storage Tables (cont)

PLT 1 Cleanup Entrance

+92

+96

+112

+192

+196

+408

H

A

H

A

IRSC

Location of PLOTIM

General storage used by PLTI (TABLE+112to TABLE+204 must be set to zero beforethe setup entrance with the followingtwo exceptions. )

Size of single buffer

Location of first byte of double buffer(Table+408)

Buffer (ln8 characters)

G-I04

Page 229: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 30 of 32Rev. 3 April 1967

Appendix C - Non-Standard Usage

Any usage of PLT other than that specified in the calling sequence must be

implemented by changing the parameter table in PLT. (See Appendix B). An

entry is available in PLT for this purpose (PLTTBL). However, with the excep- ,;,

tion of "8." these changes must be made after the setup entrance by means of

an assembler language subroutine. Some of the non-standard usages which may

be desired are:

1.

2.

3.

Grid (A one inch grid is drawn on the plot when the cleanup entrance is made.

This grid covers the complete plotting area from the left-hand to the right­

hand dependent variable scales. This may be added anytime before the clean­

up entrance. See PLTTBL+6. )

Prescaled data (Data is given to PLT already scaled in 100th inches refer­

enced to the lower left corner of the data field, which is 1/2 inch above the

bottom of the paper and to the right of the left-hand dependent variable

scales. This may be specified before any data entrance. See

PLTTBL+7. )

Storage of data (Data is stored in non-consecutive bytes, but at a constant

increment. See PLTTBL+8. ) .'­-,'

4. Location of data arrays.

5.

6.

Symbol frequency (PLTTBL+72)

Symbol (The symbol code itself must be added, not the number of the sym­

bol. PLTTBL+74.)

"­",

7. Titles (However, left-hand dependent variable titles and plot title are out­

put by the setup entrance, so changes will have no effect. )

G-105

8. XO, DX, YO, DY may be changed in mid-plot merely by changing the num­

ber stored in these locations. Any subsequent data scaling and scale values

printed will reflect the new values. No assembler language subroutine is

required for these changes.

Page 230: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRARYPLT360Page 31 of 32Rev. 3 April 1967

~ppendix C - Non-Standard Usage (cont. )

A change to storage of data, location of data arrays, symbols and symbol

requency must be made for each variable desired before the affected data en­

ranee is made. Changes to grid and titles may be made at any time before the

leanup entrance.

The following example changes the locations of the independent variable and

le first dependent variable arrays.

FORTDIMENSION Xl{lOO), Yl( 100), X2{l00), Y2{l00)REWIND9READ(9)(Xl(I), Yl(I), X2(I), Y2(I), 1=1,100)READ(5, 100)XO,DX, YO,DYCALL PLT(I, O,XO,DX,Xl, 0.,1, YO,DY, 1, 1, Yl,5, 'TITLE', 1, 'X',

1, 'Y')CALL PLT(2, 100, 1)CALL CHANGE(X2, Y2)CALL PLT(2, 100, 1)CALL PLT(5, 10,PLOTIM)CALL PLT(6)

100 FORMAT(4FI0. 0)STOPEND

,',','

\SMENTRY CHANGEUSING ", 15

iANGE STM 2,3, TEMPS TOR Store contents of registers to used.L 2, =V(PLTTBL) Address of plot table. ,'.

','

L 3, O{l) Address of independent variablearray.

ST 3,24(2) Store PLTTBL+24 ,',','

L 3, 4{l) Address of dependent variablearray.

ST 3,68(2) Store PLTTBL+68 ,'.0'

LM 2, 3, TEMPSTOR Restore registers.BC 15, 14 Return

:MPSTOR DS 2FEND

G-I06

Page 231: Prepared by James G. Crose and Robert M. Jones

S/360 LIBRAR YPLT360Page 32 of 32Rev 15 September 1967

Appendix D - Output Record Size Changes

The size of records on the plot file may be changed by changing two cards

in PLT and re-assemblying PLT.

Normal record size is 864 characters. In most cases, smaller record sizes

will decrease, and larger sizes will increase efficiency. The minimum record

size is 30 characters/buffer. Maximum is 864 characters/buffer for on-line

plotting and 1140 characters /buffer for off-line plotting.

The cards in PLT which must be changed to alter record size are:

BUFCT

DC

EQU

CLln8

864

These cards must be changed to the following:

BUFCT

DS

EQU

2';'REC\9RD SIZE

REC\9RD SIZE

i. e., for 950 character records

BUFCT

DS

EQU

CL1900

950

These cards are sequenced, columns 73-80, D0440431 and D0440432 in the ,;,

source deck that is on file in the MCC Program Library.

G-l07

Page 232: Prepared by James G. Crose and Robert M. Jones

5/360 LIBRARYPLT360Page 32-1Rev 8 January 1968

_ppendix E - Format of Plot File

All information output by PLT360 for all plots during one computer run is

ontained in one physical file. The file contains two types of records; operator

lformation records and plotter command records. All records are 864 bytes

1 length. When the plot information doe s not fill 864 bytes, the hexadecimal

haracters 'FF' are inserted in the byte following the plot information to desig­

ate the end of the logical record. Any information following the I FF' is to be

;nored. The initial six bytes of each physical record are control characters

f the form, XXXGY (EBCDIC code) whe re:

is present as the first EBCDIC character of each record.

xxx

G

are multiple report designator bytes. These are input to PLT360

by the calling program when multiple report plotting is used. Under

nonmultiple report usage these are the EBCDIC characters: " b or

, , 1. The END OF PLOT TAPE record always contains the hexa­

decimal characters FFFEFI in this field.

is present as the fifth EBCDIC character of each record. '.'

Y may be either T or G. T designates that the remainder of this record

is operator information and is to be sent to the typewriter. G desig­

nates that the remainder of this record contains plotter commands.

An operator information record is output at the beginning of each plot and

: the end of all plots. These are in EBCDIC character code.

,XXXGTIPLOT NUMBER NNN (NNN contains the number of this plot

beginning with 001 for the first plot of the computer run.)

,XXXGTEND OF PLOT TAPE (This record is followed by an end of

file mark. )

Plotte r command records begin with the six byte s: ,XXXGG.

he remainder of these records contains EBCDIC plotter commands.

G-I08

Page 233: Prepared by James G. Crose and Robert M. Jones

8/360 LIBRARYPLT360Page 32-216 November 1967

Appendix E - Format of Plot File (cant)

When the last buffer is not full, the hexadecimal characters 'FF'

are inserted immediately following the last plotter command. The remainder

of the information is to be ignored.

The following codes are output as plotter commands.

HEX HEXFO PEN DOWN F5 -yFl +y F6 -X-YF2 +X+Y F7 -XF3 +X F8 -X+YF4 +X-Y F9 PEN UP

+Y is pen movement toward the top of the paper.

+X is drum movement in the direction of the take -up spool.

G-I09

Page 234: Prepared by James G. Crose and Robert M. Jones

G.7 MODIFICATION OF PROGRAM CAPACITY

Because of the inevitability of modification of this program by other

users, the following description of program size is in order. The SAAS III

program is written to fit in a 216K (54, 000 words) core storage of an IBM

360 computer (4 modules in an MVT system), in a 50K (50, 000 words) core

storage of a UNIVAC 1108 computer, or in a 142s K (49,168 words) core

storage of a CDC 6600 computer. Auxiliary FOR TRAN units are used and are

described in Appendix G, Section G. 1. Since the program is highly compact

due to extensive overlaying in COMMON, it is unlikely that the program will

fit on a computer with less core storage than noted above (e. g., the IBM 7094)

without sacrificing the program capacity. The capacity of the program can

be reduced or increased from the current 1000 nodal points Or elements, 6

materials, 12 material property temperatures, semibandwidth of 50, or

number of temperature cards by modification of certain dimension statements.

These are:

1. Number of Nodal Points - NUMNP - The dimension of 1000

in COMMON arrays R, CODE, XR, Z, XZ, T, and PST

must be changed to the new maximum value. The dimension

of R, Z, T in Subroutine FLDIN and Subroutine TEMI must

also be changed.

2. Number of Elements - NUMEL - The dimension of 1000 in

COMMON arrays IX, EPR, and ALPHA must be changed to

the new maximum value.

3. Number of Different Materials NUMMAT - The maximum

number of different materials is defined by the subscript 6

in the following COMMON statement:

COMMON/MATP/RO(6), AOFTS(6), E(12, 16, 6), EE(21),

POROTY(6)

G-ll0

Page 235: Prepared by James G. Crose and Robert M. Jones

4. Number of Material Temperature Cards - NT - The maximum

number of material temperature cards is given by the subscript

12 in COMMON /MATP /. In addition, the maximum number

appears in the following FORTRAN statements:

DO

DO

200

100

I

MM

= NT, 12

;:: 2, 12

MATL 60

PROP 27

5. Bandwidth - MBAND - The nodal point connectivity is presently

25, which can be changed to "b" by making the following changes:

COMMON/SOLVE/B(4b), A(4b,2b), NUMTC, MBAND

COMMON/SOLVE/X(c), Y(c), TEM(d), NUMTC, MBAND

where c =~ [4b(2b + 1)] truncated to nearest integer value

d = 4b(2b + 1) -2c

NB = b

NN = 2b

STIF 23

SOLV 11

NCODE(b-2,i)

MESH 18

MESH 19

Also, the mesh generation procedure ensures nodal point

connectivity by limiting the size of the I variable of the

I-J grid. (See Appendix A, Section A. 1 for a description

of mesh generation.) Note that b must be greater than or

equal to the maximum value of I plus 2 in order that the

bandwidth be sufficient to accommodate that mesh width.

Note also that the maximum mesh width for most mesh

generation problems must be less than or equal to 23 as

the program is now written. Therefore, to alter the

allowable bandwidth for mesh generation, the following

changes must be made:

COMMON/TD/IMINCi), IMAX(t), JMIN(b-2), JMAX(b-2),

MAXI, MAXJ, NMTL, NBC

DIMENSION AR(b-2, il. AZ(b-2,i),

DO 110 J = l,t

DO 100 I = 1, b-2

G-ll1

Page 236: Prepared by James G. Crose and Robert M. Jones

In Subroutine CONTR, the dimension of ANS is 2>:'NUMNP,

the dimension of X, Y, W is the same as AR and AZ in

Subroutine MESH, and the dimension of DUM is the length

of X + Y. Y is equivalenced to the midpoint of DUM plus 1.

Also, the number 25 is changed to the maximum value of I

in CONT 156 and 169. The dimensioning must be such that

l~'(b - 2) is less than three times the maximum number of

nodal points.

6. Number of Temperature Cards - NUMTC - The maximum

number of temperature cards is given by the subscript 1700

in the arrays X, Y, and TEM in COMMON !SOLVE. For

input of temperature fields on a tape, the number 1201 in

the EQUIVALENCE statement in Subroutine TEMI must

be changed so that it equals 1(2':'NUMTC - NUMNP) rounded

up to the nearest odd integer value.

The above changes must be reflected in the implied

length of COMMON in Subroutine REST.

In summary, the changes noted above affect the following cards:

MAIN 8, 9, 10, 11, 16, 18

REST 4, 5, 6, 8, 10

MESH 3, 4, 5, 18, 19

MNIM 3

NODE 3

POIN 4, 5, 7, 8, 10

PNTN 8, 9

FLDN 8, 10, 11

TEMP 8

TEMI 7, 8, 9

PBND 7, 8

G-1l2

Page 237: Prepared by James G. Crose and Robert M. Jones

APPENDIX H

EXAMPLE PROBLEMS

The following numerical examples with known solutions are presented

to illustrate the use of the various capabilities of the program and to provide

test cases for use when SA AS III is run at other computer installations. All

numerical examples were run on the IBM 360 MVT Computer System at

The Aerospace Corporation, San Bernardino Operations.

H.l HOLLOW CYLINDJ':R WITH UNIFORM INTERNAL AND EXTERNALPRESSURE (LAME CYLINDER)

The well-known Lam~ cylinder solution (Ref. 27) for an elastic

isotropic material is used to check the answers obtained by use of the

SAAS III program. The cylinder is idealized by four elements as shown

in Figure H-l.

The pertinent parameters of the cylinder are:

a. = 5000 psi r. = 1 in.1 1

ao = la, 000 psi r = 2 in.0

E = 3 x 106

psi IJ = O. 3

The computer output is displayed in Figure H-2, and the computer

results are given in Table H-l along with the exact results obtained by the

use of Ref. 27. As can be noted from the table, the computer results are

very close to the exact results. Even better results, however, can be

obtained by the use of more elements in the radial direction. Convergence

to the exact results is discussed in Appendix D.

H-l

Page 238: Prepared by James G. Crose and Robert M. Jones

z

27 8 9

(]) @4

5 6

CD ®1

O'j 2 3 0'0

No

~ 00..---....----2----.. r

Figure H -1. Four -Element Idealization of Hollow Cylinder

Table H-l

EXACT AND COMPUTER STRESSES FOR HOLLOWCYLINDER OF FIGURE H-l

Element Stresses at Element Centera a a a

rEXACT r SAAS gEXACT gSAAS

1 -7400 -7329 -15,933 -16,032

2 -9490 -9473 -13,844 -13,840

H-2

Page 239: Prepared by James G. Crose and Robert M. Jones

10

20

30

40

50

60

70

80

123456789012345678~012345b7890123456789012345678901234567H9012345678901234567090

LAM

EC

YLI

ND

ERTE

STC

ASt

11

14

u.

33

42

11

11

.1

.1

31

.2

.1

13

1.

2.

33

2.

2.

13

32

.2

.3

12

.1

.1

31

2.

1.

11

1.

1.

11

31

12

.1

33

32

.1

13

1~

O.

11

o.a.

2a.

3.+

6.3

7 4 3 6

4 1 6 9

5eac

.5

0G

O.

10

00

0.

10

00

0.

~ I W

END

CFC

ASE

Fig

ure

H-2

.C

orr

tpu

ter

Pro

gra

rrt

Ou

tpu

tfo

rE

xarr

tple

1

Page 240: Prepared by James G. Crose and Robert M. Jones

LAM

t~YLINUER

It>

l~A>t

STA

RTPARA~tTER---------------

1

STO

PP

AR

AM

ET

ER

----

----

----

----

a

IFI.

FLO

TOEFLE~TIONS

a

IFI.

SMAL

LPL

OT.

IF2

.LA

RGE

PLO

T.CT~ER~ISE

NOP

LtT

.---

---

a

NUM

BER

~F

AP

PR

OX

IMA

TIO

NS

----

--a

IFI.

GEN

ERA

TEM

ES

H--

----

----

-I

NUM

BER

~F

TEM

PERA

TURE

CA

RO

S---

a

hUM

BER

CFNO

DAL

PO

INT

S--

----

--a

NUM

BER

OFE

LE

ME

NT

S--

----

----

--a

hUM

BER

~F

INTE

RNA

LPR

ESS

UR

ES-

-a

~NU

MBE

ROF

~ATERIALS-----------

II ~

hUM

BER

CFEX

TERN

AL

PRE

SSL

RE

S--

4

NUM

BER

~F

SHEA

R~AROS---------

a

REF

EREN

CE

TE

MP

ER

AT

UR

E--

----

---

c.o

NUM

BER

CFTEhSI~N-COMPRESSICN

APP

RO

X1M

AT

1CN

S---

-C

Fig

ure

H-2

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

1(C

on

tin

ued

)

Page 241: Prepared by James G. Crose and Robert M. Jones

:r: I lJ'

MES

HG

ENEH

ATI

ON

INFOR~ATION

MAX

IMUM

~ALUE

OFI

INTH

E~ESH--------

3

MAX

IMUM

~ALUE

OF

JIN

THE

ME

SH

----

----

3

NU

MBE

RO

FL

INE

SEG

MEN

TC

AR

OS

----

----

--4

NUM

BER

Cf

BOUN

OAHY

CO

ND

ITIO

NC

AR

DS

----

2

NU

MBE

RO

FM

ATE

RIA

LBL

OCK

CA

RD

S--

----

--1

NU

MBE

RO

FIT

ER

AT

ION

S--

----

----

----

----

C

POLA

RC

CO

Rol

NA

TEPA

RAM

ETER

1---

----

---

0.0

POLA

RC

OO

RD

INA

TEPA

RAM

ETER

J----------

C.C

IO

URV

ATU

REH

OD

lfiO

AT

ION

----

----

----

--a

JCU

RVA

TURE

HO

Dlf

IOA

TIO

N--

----

----

----

a

INPU

T

tl= I I

O. J 2

II I tJ

=

Jl

Rl

11

.00

02

.D

lff=

ARI.

oo

e

II

12

1.0

00

12

.R

INC

=A

l1

.50

0

J23 0

.0

RZ

1.0

00 lIN

C=

12

13

2.0

00

C0

.5ee

J3a

ITE

R=

R3

0.0 1

l30

.0II

NC=

0

IPT

IDN

1JI

NC

=1

KA

PPA

=1

INPU

T11

Jl

Rl

II

12J2

H2

12

13

J3R

3l3

IPT

ION

13

1.0

00

2.0

00

33

2.0

0e

2.0

00

Ca

0.0

0.0

101

=2

.O

J=O

.D

lfF

=2

.R

INt=

0.5

00

IIN

C=

o.e

ITER

=1

IIN

C=

1JI

NC

=0

KA

PPA

=1I

JAR

Al

23

1.5

00

2.0

ee

INPU

TII

Jl

Rl

II

12J2

R2l2

13J3

R3

l3IP

TIO

N3

32

.00

02

.00

03

12

.eee

1.0

00

Ce

e.o

0.0

10

1-

O.

OJ=

2.

Dlf

f=2

.R

INC

=0

.0lI

NC

=-0

.50

eIT

ER

=1

IIN

C=

eJI

NC

=-1

KA

PPA

=IJ

JAR

Al

32

2.0

ee

1.5

00

Fig

ure

H-2

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

1(C

on

tin

ued

)

Page 242: Prepared by James G. Crose and Robert M. Jones

INPU

TII

JI

1<1

ZI

12J

iK

2l2

13J3

R3lj

IPTlG~

3I

2.0

00

1.0

00

II

I.C

CO

1.0

Go

CC

0.0

0.0

IVI

=2

.C

J=O

.U

IFF

=2

.K

INL

=-0

.5ec

ll~C=

0.0

Irt

R=

III

NC

=-I

JIN

C=

0K

APP

A=

II

JAI

<A

I2

I1.

5ec

I.C

CC

CO

OR

DIN

ATE

SCALC~LATEO

AFT

EK43

ITEKATIC~S

IJ

NP

TH

EK

-OR

DIl'

iATE

Z-C

RO

INA

TE

RLC

AL

CRC

ISPL

AC

EMEN

TZ

LOA

GO

RD

ISPL

AC

EMEN

T1

II

2.e

l.ll

OO

I.GO

OG

.D0

.02

12

2.C

1.,

00

1.0

00

0.0

0.0

3I

32

.02.

0GO

I.G

CO

C.O

0.0

I2

4c.

C1

.00

01

.50

00

.00

.02

25

0.0

1.>

00

1.5

00

C.O

0.0

32

6O

.C2

.00

01

.50

00

.00

.01

37

2.C

1.0

00

2.C

CO

0.0

0.0

::r:2

38

2.0

1.5

00

2.0

00

C.O

0.0

I3

39

2.C

2.0

00

2.C

OO

0.0

0.0

0'

El

IJ

K1

MA

TER

lAl

AN

GLE

TE~FERATlJRE

fKES

SUR

£;1

12

54

Iu

.o0

.0C

.O2

23

65

I0

.0C

.C0

.03

45

87

I0

.0O

.CO

.G4

56

98

I0

.00

.0v

.o

Fig

ure

H-2

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

I(C

on

tin

ued

)

Page 243: Prepared by James G. Crose and Robert M. Jones

MA

TER

IAL

=1

NO

.C

fTl

MPE

RA

TUR

ESAT

~H1Ch

P.l

PE

Rll

lSA

RES

PE

CIF

IED

=I

MA

SSC

lNS

IIY

=0

.0PC

RC

SIT

Y=

C.O

AN

ISC

TR

CPY

PAR

AM

ETER

=2

TEM

P=C

.T

EN

SIL

EF

RC

PE

RT

ltS

lMT

=3C

OO

OO

O.

fNT

=3

00

00

00

.ET

T=3

00

00

00

.N

UM

NT

=0.3

00N

UM

TT

=0.

300

NU

NT

T-0

.300

EPT

=3

00

00

00

.COMPRlSSI~E

PR

OP

EK

Tlt

SfM

C=

C.

ENC=

o.ET

C=

o.N

UM

NC

=O.O

NU

MTC

=O.O

NU

NT

C-O

.OfP

O.

THER~AL

A~C

YIE

LD~RCPERTIES

AM=

G.O

AN

=O

.GA

T=C

.OYM

=C

.Y

N=

O.

VT=

O.

PE"R

-0

.0

:r:: I --J

PRES

SUR

EI

J

1"

"1

36

6g

BOU

NCA

RYC

CN

OIT

ILN

SIN

TEN

SlT

Y5

00

0.0

50

00

.01

00

00

.01

00

00

.0

"OO

AL

PC!h

I I 2 3 "5 6 1 8 g

UR-0

.4E

53

21

80

-C2

-0.4

92

21

49

0-C

2-0

.54

59

96

30

-02

-0.4

85

32

61

0-0

2-0

.49

22

82

50

-C2

-0.5

45

99

14

0-0

2-0

.48

53

29

90

-02

-0.4

92

21

51

0-C

2-0

.54

59

91

10

-02

UI

0.0

0.0 o.c

-0.1

14

gS

5tO

-C1

-C.1

05

39

15

0-0

90.3S~82CIO-C8

0.0 e.c

0.0

Fig

ure

H-2

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

I(C

on

tin

ued

)

Page 244: Prepared by James G. Crose and Robert M. Jones

~ I 00

tLR

lSl

GM

AK

SlG

MA

lSI"~~T

SlG

MA

Rl

SIG

MA

MA

XSI

GM

AM

INA

NG

LESI

GM

AM

SIG

MA

NSI

GM

AM

N1

1.2

51

.25

-13

29

.-l

C(;

9.

-U:C

32

.-0

.-7

00

9.

-7

3l9

.-8

9.9

9-7

32

9.

-70

09

.-0

.2

1.7

51

.Z5

-94

13

.-(

;99

4.

-13

84

G.

o.-6

99

4.

-'l4

73

.9

0.0

0-9

47

3.

-69

94

.o.

31

.25

1.7

5-1

32

9.

-7Co~

•-1

00

32

.O

.-7

00

8.

-73

29

.8

9.9

9-7

32

9.

-70

08

.O

.4

1.7

51.7~

-94

13

•-6

99

4.

-13

84

0.

-0.

-09

94

.-9

47

3.

-9G

.OG

-94

73

.-6

99

4.

-0

.

ELE

FSR

CP

Sl

[PS

T[P

SR

ltPS~H

EPS

MIN

AN

GLE

tPSM

EPS

NEP

SMN

TEM

PER

ATU

RE

1-0

.01

4-0

.00

0-U

.39

1-

C.

CGG

-C.C

CC

-C.G

14

0.0

-U.0

14

-0.0

00

-0.0

00

O.

2-0

.lC

7O

.GO

O-0

.29

7U

.CO

O0

.00

G-0

.10

7O

.G-0

.10

70

.00

00

.00

0O

.3

-0.0

14

O.G

OO

-0.3

91

C.C

ClJ

C.(J

OC

-0.0

14

0.0

-0.0

14

O.O

UO

0.0

00

O.

4-0

.10

7-O

.CO

O-0

.29

7-0

.00

0-O

.OC

O-C

.I0

10

.0-0

.10

7-C

.OO

C-0

.00

0O

.

Fig

ure

H-2

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

I(C

on

tin

ued

)

Page 245: Prepared by James G. Crose and Robert M. Jones

H.2 HOLLOW CYLINDER WITH NONCYLINDRICAL ORTHOTROPY­UNIFORM PRESSURE

This example was contributed by Dr. David Rodriguez. The computer

input is simple as is the output, yet the essential features of the transforma­

tion of material properties are illustrated. The axisymmetric solid in the

example is a hollow cylinder with noncylindrical orthotropy under uniform

pressure and temperature. For the case in which the material is transversely

isotropic with the plane of isotropy inclined at 45 degrees to the body axes,

the resulting stresses are isotropic for the particular material properties

chosen. This result can be seen to be a consequence of the form of the

elasticity equations.

The following is a derivation of the material properties necessary to

give an isotropic state of stress in a body. An isotropic state of stress is

defined in body coordinates as

Urr= U\j\j = uzz = U

u rz = 0

and in local coordinates as

U = u\j\j = il = ilmm nn

u mn= 0

(H-l)

(H-2)

(H-3)

(H-4)

The strain transformation equations for a rotation of the plane of isotropy

45 degrees from the body axes are

1( €tn.m + Emu) (H-5)(; = (;

rr 2 nn

1( Erom + + iron) (H-6)(; = 2" (;

zz nn

(; = (; (; (H-7)rz mm nn

H-9

Page 246: Prepared by James G. Crose and Robert M. Jones

However, for the isotropic stress distribution, the shear strains are zero:

< = < < = 0rz mm nn

< = 0mn

but Our

< =~rr

(I-l-8)

(I-l-9)

(I-l-10)

Hence, upon substitution of the stress-strain relations in local coordinates and

when the Poissonts ratios are zero,

< = (J IE + a Tmm mm m m

< = (J IE + a T (I-I-II)nn nn n n

Egg = (Jgg/Em + am T

and using the strain transformation relation in Eq. (I-l-5), Eq. (I-l-IO) b"conws

(H-12)

Upon integration,

u =r

but

<gg =

::r dr = r [I (E~ t E~ )+ iu

rr

(I-l-13)

(H-14)

so, from Eqs. (H-3), (H-ll), (H-13), and (H-14),

~+aT=E I

Q.2 (E~ + E~)

H-IO

Tt 2" (H-15)

Page 247: Prepared by James G. Crose and Robert M. Jones

Solution of Eq. (H-1S) for T yields

T= a (E~ - E~ )/ (am - an) (H-16)

Equation (H-l6) represents a relation between imposed stress and tempera­

ture and material properties which must be satisfied in order for an isotropic

state of stress to exist.

For the numerical values,

E = 104

psim

E = 0.5 x 104

psin

Ct = 10-4/ oF

m

Ct n= 2 x 10-4 / of

a = -100 psi

Equation (H-16) yields T = 100 degrees. For these values, it is easily

verified that ur is zero; hence, lOgg is zero. That result plus verification

of the isotropic stress state of 100 psi is shown in the computer output. The

shear modulus is immaterial since it is never utilized.

The geometry of the hollow cylinder is shown in Figure H-3.

a 1 2 3

ITIJJa

6

aITITI7 8 9

@ @5

CD ®4

z

2

No

~ O~---+----'*2----""r

Figure H-3. Hollow Cylinder - Uniform Pressure

H-ll

Page 248: Prepared by James G. Crose and Robert M. Jones

The computer output is listed in Figure H-4. Note that the loading

IS input by the use of pressure cards as opposed to the method used in the

first example, and that the angle of inclination of the local coordinates was

specified for each clement.

H-12

Page 249: Prepared by James G. Crose and Robert M. Jones

10

203

04

05

06

07

08

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

0RO

DRI

GU

EZTE

STCA

SEN

O.1

-U

NIF

ORM

PRES

SyR

EI

1-2

1B

33

41

11

I1

.1

.3

12

.1

.1

1I

1.

1.

13

1.

2.

13

32

.2

.1

31

.2

.1

33

2.

2.

31

2.

1.

11

31

12

.1

13

13

-45

.1

00

.1

11

10

0.

.1+

5.5

+4

o.o.

O.

.5+

4

12

23

36

69

'l8

e7

74

:r:4

1

I .....Eh

CCF

CASE

w

.1-3

10

0.

10

0.

lUO

.1

00

.1

00

.1

00

.1

00

.1

CO

.

.2-3

.1-3

Fig

ure

H-4

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

2

Page 250: Prepared by James G. Crose and Robert M. Jones

RO

DR

IGU

EZ

lES

TC

ASE

NO

.1-

UN

I,C

RM

PRE

SSU

RE

STA

RT

PA

RA

ME

TE

R--

----

----

----

-I

STO

PP

AR

AM

ET

ER

----

----

----

----

0

IfI,

PLC

TC

EFL

EC

TIO

NS

0

IFI,

S~ALL

PL

C1

.IF

2.

LAR

GE

PL

LT

.U

lfE

R_

ISE

NOP

LO

T.-

----

-0

NUM~ER

Cf

AP

PR

OX

IMA

TIO

NS

----

--0

IfI,

CE~ERATE

ME

SH

----

----

---

I

NU~BER

OF

TE~PERATURE

CA

RO

S--

--2

NU

MBE

RU

fN

OG

AL

FO

IN1

S--

----

--0

NU

MBE

RO

fE

LE

ME

NT

S--

----

----

--0

~UMBER

Uf

INIER~AL

PR

ES

SU

RE

S--

0

~ I ..... """

NU

MBE

RC

f~ATERIALS-----------

NU

MBE

RO

FEX

TER

NA

LP

KE

SS

LR

ES

--

1 B

NU

MBE

RO

fSH

EAR

CA

RC

S--

----

---

0

RE

fER

EN

CE

lEM

PE

RA

TU

RE

----

----

-G

.O

NU

MEE

RC

fTE~SILN-OUMPRESSICN

AP

PR

OX

IMA

TIC

NS

----

C

Fig

ure

H-4

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

2(C

on

tin

ued

)

Page 251: Prepared by James G. Crose and Robert M. Jones

:r: I ­en

MES

HGE~ERAIION

INFOR~AIION

MAXIM~M

VALU

EOF

IIN

THE

ME

SH

----

----

3

MAX

IMUM

VALU

EO

FJ

INIH

EM

ES

H--

----

--3

NUM

BER

Of

LIN

ESE

GM

ENI

CA

RO

S--

----

----

4

NUM

BER

OFBO

UNDA

RYC

DN

OII

ION

CA

RD

S--

--1

NUM

BER

Of

MA

TER

IAL

BLO

CKC

AR

CS

----

----

1

NUM

BER

Of

ITE

RA

TIO

NS

----

----

----

----

--0

POLA

RCO

ORD

INA

TEPA

RAM

ETER

1--

----

----

C.O

POLA

RCO

ORO

INA

TEPA

RAM

ETER

J--

----

----

0.0

ICU

RVA

TURE

MO

Olf

ICA

TIO

N--

----

----

----

0

JC

UR

VA

IUR

EM

OO

lfIC

AII

ON

----

----

----

--e

INPU

I

013 I 2

2. J I

111 O

J=

J1

RI

11

.00

0O

.O

lfF

=AR

1.5

0e

ZI

121

.00

03

2.

RIN

C=

AZ1

.00

0

J2R

2Z2

I2

.cee

1.00

C0

.50

0ZI

NC

=0

.0

13 C

J3 oIT

ER=

R3 c.o I

Z30

.0ll

NC

=I

IPII

CN

1J

INC

=0

KA

PPA

-I

INPU

T11

JI

RI

Zl

12J2

R2Z2

13J3

R3Z

3JP

TIO

N1

I1

.00

01

.00

0I

3I.

cce

2.0C

O(

00

.00

.01

01=

O.

OJ=

2.

OIF

F=2

.R

INC

=0

.0ZI~C=

0.5

00

ITER

=I

IIN

C=

eJI~C=

1K

APP

A-I

IJ

ARAZ

12

1.0

00

1.5

00

113 O

J-

INPU

T

OI­ I 2

2. J 3

Jl

RI

32

.00

0O

.O

lFf=

AR1

.5eo

ZI

122

.00

C1

2.

RIN

C=

AZ2

.00

0

J2R2

Z23

l.cec

2.0

00

-0.5

00

ZIN

C=

0.0

13 CJ3 C

ITE

R=

R3

0.0 1

Z3

0.0

llN

C=

-1

IPH

ON

1JI

NC

-0

KA

PPA

-I

Fig

ure

H-4

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

2(C

on

tin

ued

)

Page 252: Prepared by James G. Crose and Robert M. Jones

INPU

T1

lJl

Rl

Z11

2J2

R2

I21

3J3

R3

l3IP

TIO

N3

32

.00

0<

.OO

C3

1<

.oec

I.o

ac

c0

c.o

0.0

10

1=

O.

CJ=

<.

OIH

=<

.R

INC

=0

.0ll~C=

-0·.

50

0IH

R=

1II

NC

=a

JIN

C=

-1K

APP

A=1

IJ

ARA

l3

<2

.00

01

.50

0

CO

OR

DIN

AT

ES

CA

LCU

LATE

DA

fTE

R4

3ITcRATIC~S

IJ

NP

TY

PER

-OR

DIN

AT

EI-

CR

CIN

AT

ER

LOA

CO

RD

ISPL

AC

EM

EN

TI

LOA

DO

RD

ISPL

AC

EM

EN

T1

11

2.0

1.0

00

1.0

00

0.0

0.0

21

22

.01

.50

01

.00

00

.00

.03

13

2.0

2.0

00

1.0

00

0.0

0.0

12

40

.01

.00

01

.50

0C

.O0

.02

25

0.0

I.5

CO

1.5

00

0.0

0.0

32

60

.02

.00

01

.50

00

.00

.01

37

0.0

1.0

00

2.0

00

0.0

0.0

::r:2

38

0.0

1.5

00

2.C

OO

0.0

0.0

I3

39

0.0

2.0

00

2.0

00

0.0

0.0

>-" 0'

ELI

JK

LM

AT

ER

IAL

AN

Gl£

TE~PEfiA

TUkE

PRto

S5U

RE

11

25

41

-4S

.0lc

c.c

ee

0.0

22

36

5I

-45

.0lC

O.C

OO

0.0

34

58

7I

-4

?0

ICO

.CC

Oc.

o4

5t

98

I-4

?0

lce.o

oo

0.0

Fig

ure

H-4

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

2(C

on

tin

ued

)

Page 253: Prepared by James G. Crose and Robert M. Jones

MA

TE

RIA

L;

1N

U.

CFT

lMP

EkA

TL

RE

,"T

.HIC

hP

RC

PE

RT

IES

AR

ES

PE

CIF

IED

:1

MA

SSCE~SITY

;C

.UP

UkO

SIT

Y;

O.C

AN

ISC

IRC

PY

PA

RA

ME

TE

R;

I

TE

MP;

10

C.

TE

NS

ILE

PR

CP

ER

TIE

SE

MT

;10

UO

O.

EN

T;

'00

0.

ET

T;

10

0C

O.

NU

MN

T;O

.oN

UM

TT

;O.o

CO

MPR

ESS

IVE

PR

CP

ER

Tlt

SE

MC

-O

.E

hC

;u

.E

TC

;C

.N

UM

N(;

O.u

NU

MT

C;O

.OTH

ERM

AL

ANC

YIE

LO

PK

CP

ER

TIl

SA

M;

C.I

0U

E-U

JA

N;

0.2

00

E-C

3A

T;

C.I

OC

E-0

3Y

M;

O.

YN

;O

.Y

T:

NU

NT

T;O

.OE

PT

-

NU

NT

C-O

.OE

PC

-

O.

PEI'I

R-

0.0

80

00

.

o.

:r: I ---J

PRE

SSU

RE

IJ

12

23

36

69

98

87

74

4I

~OUNDARY

CO

ND

ITIO

NS

INT

EN

SI

TY1

00

.01

00

.01

00

.01

00

.01

00

.01

00

.01

00

.01

00

.C

NO

DA

LPO

INT 1 2 3 4 5 6 7 8 9

UR

-0.1

70

48

46

0-0

7-0

.I

15

14

43

0-0

7-0

.16

30

11

00

-07

-0.4

69

69

16

0-0

8-0

.1l3

08

38

0-0

7-0

.13

43

95

40

-07

-0.3

63

83

53

0-

(8-0

.12

12

89

80

-07

-0.1

82

06

75

0-0

7

UI

0.0

0.0

0.0

0.1

84

07

37

0-0

8-0

.34

47

24

10

-08

-0.5

29

1t3

10

-08

-0.7

24

t61

CO

-09

-0.6

38

38

48

0-0

8-0

.96

89

77

30

-08

)'

Fig

ure

H-4

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

2(C

on

tin

ued

)

Page 254: Prepared by James G. Crose and Robert M. Jones

:r: I '-'

00

ELk

lSI

GM

AR

SIG

MA

lSI

GM

AT

SIG

HA

RlSIGHA~AX

SIG

HA

HIN

AN

GLE

SIG

MA

MSI

GM

AN

SIG

IIA

MN

I·1

.25

1.2

5-I

CO

.-1

00

.-I

CC

.O

.-1

00

.-1

00

."5

.00

-10

0.

-10

0.

o.2

1.7

5l.i

5-I

CC

.-1

00

.-I

CC

.O

.-1

00

.-1

00

.2

8.8

b-1

00

.-1

00

.O

.3

1.2

51

.75

-IC

O.

-IO

U.

-IC

C.

-G.

-10

0.

-10

0.

-81

.27

-10

0.

-10

0.

-0.

41

.75

1.7

5-1

00

.-1

00

.-1

00

.-0

.-1

00

.-1

00

.-"

5.0

0-1

00

.-1

00

.-0

.

EL

EPS

RC

PS

lcP

ST

EP

SR

lEPS~AX

EP

SH

INA

NG

LEEP

SME

PSN

EPSM

NTE

MPE

RA

TUR

E1

-1.5

GO

-1.5

00

-1.G

OG

-1.0

00

-1.0

00

-2.C

OO

-45

.eo

-1.0

00

-2.0

00

C.O

OO

10

0.

2-1

.5C

C-1

.5C

O-1

.00

0-1

.00

0-1

.00

0-2

.CO

O-4

5.C

O-1

.00

0-2

.00

00

.00

01

00

.3

-1.5

CC

-1.5

00

-1.0

00

-1.0

UO

-1.0

00

-2.C

CO

-45

.CC

-1.0

00

-2.0

00

-0.0

00

10

0.

4-1

.5C

C-1

.50

0-1

.CO

O-1

.00

0-1

.00

0-2

.00

0-4

5.C

O-1

.00

0-2

.00

00

.00

01

00

.

Fig

ure

H-4

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

2(C

on

tin

ued

)

Page 255: Prepared by James G. Crose and Robert M. Jones

H.3 HOLLOW CYLINDER WITH NONCYLINDRICAL ORTHOTROPY ­AXIAL LOAD

This example, as was that given in Section H. 2, is due to

Dr. Rodriguez. In a manner similar to that of the previous example. it can

be shown that. with the properties

E " 0.1 x 105 psi II " II " 0m m n

E " 0.33333 x 104psi am " C1 " 0

n n4

G " 0.25 x 10 psimn

and an angle of 45 degrees between the local and general coordinates. the

body in Example 2 given in Section H. 2. when subjected to an axial pressure

of 200 psi as shown in Figure H-5. has normal stresses of 100 psi in the

local coordinate s.

The computer output is given in Figure H-6.

z

(JITIJ]7 8 9

2

4® @)

5CD ®

6

Noi8~;:;

oo

1 2 3

ITIIJ(J

2

Figure H-5. Hollow Cylinder - Axial Load

H-19

Page 256: Prepared by James G. Crose and Robert M. Jones

10

20

30

40

50

60

708

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

0R

OD

RIG

UEZ

TE

STC

ASE

NO

.2-

AX

IAL

LeA

D1

94

14

11

.1

.o.

o.1

00

.2

1.5

1.

o.C

.1

00

.3

2.

1.

O.

C.

10

0.

4O

.1

.1

.5o.

o.1

00

.5

O.

1.5

1.5

O.

O.

10

0.

6O

.2

.1

.5o.

o.1

00

.7

O.

1.

2.

O.

O.

10

0.

8O

.1

.52

.O

.O

.1

00

.9

O.

2.

2.

O.

L.

10

0.

11

25

41

-45

.2

23

65

1-4

5.

34

58

71

-45

.4

56

98

1-4

5.

11

1o.

•1+

5.3

33

33

33

+4

O•

O.

.25

0+

4

12

20

0.

23

20

0.

:r:9

82

00

.I

87

20

0.

N 0EN

DO

FC

ASE

Fig

ure

H-6

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

3

Page 257: Prepared by James G. Crose and Robert M. Jones

:r: I N ....

RO

DR

IGU

EZTE

STC

ASE

NO

.2-

AX

IAL

LOAQ

STAR

TP

AR

AM

ET

ER

----

----

----

---

1

STO

PP

AR

AM

ET

ER

----

----

----

----

0

IF1

,PL

CTD

EFL

EC

TiO

NS

a

If1

,S~ALL

PLO

T.

If2

,LA

RGE

PlC

T.CT~ERWISE

NOP

LO

T.-

----

-a

NUM

BER

tFA

PP

RO

XIM

AT

ION

S---

---

a

IF1

,G

ENER

ATE

ME

SH

----

----

---

a

hUM

BER

(f

TEM

PERA

TURE

CA

RO

S---

a

NUM

BER

CFNO

DAL

PO

iNT

S--

----

--9

NUM

BER

OFE

LE

ME

NT

S--

----

----

--4

NUM

BER

OFIN

TERN

AL

PRE

SSU

RE

S--

a

NUM

BER

CFM

AT

ER

IAL

S--

----

----

-1

NUM

BER

OF

EXTE

RNA

LPR

ESS

UR

ES-

-4

NUM

BER

OFSH

EAR

CA

RO

S--

----

---

a

REf

EREN

CE

TE

MP

ER

AT

UR

E--

----

---

0.0

NUM

BER

Cf

TEN

SIC

N-C

OM

PRES

SIO

NA

PPR

OX

IMA

TIO

NS-

---

a

NODA

LPO

If'oT I 2 3 4 5 < 1 B S

TYPE

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

R-O

RD

INA

TE1

.00

01

.50

02

.00

01

.00

01

.50

02

.00

01

.00

01

.50

02

.00

0

I-O

RD

INA

TE

1.0

00

1.0

00

1.0

00

1.5

00

1.5

00

1.5

00

2.0

00

2.0

00

2.C

OO

RLO

ADC

R01

SPLA

CEM

ENT

0.0

0.0 c.o

0.0 c.o

0.0 c.o

C.O c.o

ILO

AOOR

DIS

PLA

CEM

ENT

0.0

O.C

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TEM

PERA

TURE

10

0.0

00

10

0.0

00

10

0.0

00

10

0.0

00

10

0.0

00

10

0.0

00

10

0.0

00

10

0.0

00

10

0.0

00

PRES

SUR

E0

.00

.00

.00

.00

.00

.00

.00

.00

.0

Fig

ure

H-6

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

3(C

on

tin

ued

)

Page 258: Prepared by James G. Crose and Robert M. Jones

El 1 2 3 4

I 1 2 4 5

J 2 3 5 6

K 5 6 8 9

l 4 5 7 8

MA

TERI

AL

1 1 1 1

AN

GLE

-45

.0-4

5.0

-45

.0-4

5.0

TEM

PERA

TURE

10

0.0

00

lCC

.OO

OlC

O.O

OO

10

0.0

00

PRES

SUR

E0

.00

.00

.00

.0

O.

PEIIR

=0

.0

::I: I N N

MA

TERI

AL

=1

NO

.OF

TEM

PERA

TURE

SAT

WHI

CHPR

OPE

RTI

ESAR

ESP

EC

IFIE

D=

1M

ASS

DEN

SITY

=0

.0PO

RO

SITY

=O

.CA

NIS

OTR

OPY

PARA

MET

ER=

1

TEM

P=C

.T

EN

Sil

EPR

OPE

RTI

ESEM

T=1

00

00

.EN

T=3

33

3.

ET

l=1

00

00

.N

UM

NT=

O.O

NU

MTl

=O.O

CO

MPR

ESSI

VE

PRO

PER

TIE

SEM

C=O

.EN

C=O

.H

C=

O.

NU

MN

C=O

.ON

UM

TC=O

.OTH

ERM

ALAN

DY

IELD

PRO

PER

TIES

AM=

0.0

AN=

0.0

AT=

0.0

YM=

O.

YN=

O.

YT

:

NU

NT

l-O.O

NU

NTC

-O.O

EPT

:s

EPC

-

50

00

.

O.

PRES

SUR

E1

J1

22

39

88

7

8DU

ND

ARY

CO

ND

ITIO

NS

INTE

NSI

TY2

00

.02

00

.02

00

.02

00

.0 Fig

ure

H-6

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

3(C

on

tin

ued

)

Page 259: Prepared by James G. Crose and Robert M. Jones

NOOA

Lpe

lNT 1 2 3 4 5 6 1 8 9

UR0

.49

19

75

20

-C8

-0.6

05

05

74

0-0

9-0

.63

60

63

90

-08

0.4

94

46

58

0-0

8-0

.59

09

9C

20

-u9

-0.6

33

46

42

0-0

80

.49

69

63

00

-08

-0.5

94

00

41

0-0

9-0

.63

84

80

00

-08

Ul

C.1

20

09

61

00

00

.11

00

96

10

00

0.1

00

09

61

00

00

.10

00

96

10

00

0.9

00

96

15

0-0

10

.80

09

6H

O-O

l0

.80

09

61

50

-01

0.7

00

96

15

0-0

10

.60

09

61

50

-01

EL

Rl

SIO

MA

RSI

OM

Al

SIO~AT

SIO

MA

Rl

SIGM

AMAX

SIG

MA

MIN

ANGL

ESI

GMAM

SIG

MA

NSI

GMAM

N1

1.2

51

.25

O.

-20

0.

O.

-0.

O.

-20

0.

-0.0

0-1

00

.-1

00

.1

00

.2

1.7

51

.25

O.

-20

0.

-0.

-0.

O.

-2U

O.

-0.0

0-1

00

.-1

00

.1

00

.3

1.2

51

.75

O.

-20

0.

O.

-0.

O.

-20

0.

-0.0

0-1

00

.-1

00

.1

00

.4

1.1

51

.75

O.

-20

0.

-0.

-0.

O.

-20

0.

-0.0

0-1

00

.-1

00

.1

00

.

::r::

I N w

ELEP

SRE

PS

lEP

STE

PSR

lEP

SMA

XEP

SMIN

ANGL

EEP

SMEP

SNEP

SMN

TEM

PE

RA

TUR

E1

-0.0

00

-4.0

00

0.0

00

-2.0

00

0.2

36

-4.2

36

-13

.28

-1.0

00

-3.0

00

4.0

00

10

0.

2-0

.00

0-4

.00

0-0

.00

0-2

.00

00

.23

6-4

.23

6-1

3.2

8-1

.00

0-3

.00

04

.00

01

00

.3

-0.0

00

-4.0

00

0.0

00

-2.0

00

0.2

36

-4.2

36

-13

.28

-1.0

00

-3.0

00

4.0

00

10

0.

4-O

.CO

O-4

.00

0-0

.00

0-2

.ll0

00

.23

6-4

.23

6-1

3.2

8....

1.0

'00

-3.0

00

4.00

1101

08.

Fig

ure

H-6

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

3(C

on

tin

ued

)

Page 260: Prepared by James G. Crose and Robert M. Jones

H.4 THICK SPHERICAL SHELL OF A BILINEAR ISOTROPICMATERIAL UNDER UNIFORM INTERNAL PRESSURE

In order to illustrate the iteration and convergence ieaturcs for

bilinear material characterizations, SAAS III results are compared with an

exact solution for a thick spherical shell of a bilinear isotropic material

subjected to a uniform internal pressure (Ref. 28). The thick spherical

s hell has an inte rnal radius of 5 inche s, an exte rnal rad ius of 10 inche s,

an elastic modulus of 10 x 10 6 psi, a Poisson's ratio of 0.3, a yield

stress oi 104

psi, and a plastic -elastic modulus ratio of 0.5. The internal

pressure is 16,469.2 psi, which results in yielding at a radius of 7.5 inches

and less. (The yield radius was specified and the pressure required to

force such a yield radius was derived.)

The finite element solution is obtained for a wedge -shaped ring of

the spherical shell so that full advantage is taken oi the spherical symmetry

of the problem within the limitation of SAAS III to axisymmetric solids.

A schematic diagram of the wedge-shaped ring is shown in Figure H-7. A

short computer program was written to generate the geometry of the

wedge-shaped ring, subject to the constraint that H equal W in

Figure H-7 (i. e., an aspect ratio of 1 was prescribed) as closely as

possible for a fixed angle, C1. Thus, the angle C1 is varied to obtain

different numbers of elements in the radial direction.

The computer output is given in Figure H-8.

shaped ring is treated by use of the skew boundaries

in Appendix A, Section A-2.

Note that the wedge­

capability described

Extensive numerical and theoretical results for the thick spherical

shell problem are given in Table H-2. (The numerical results were obtained

by use of The Aerospace Corporation EI Segundo Operations CDC 6600

computer.) The four-element solution is within 6 percent of the exact

solution whereas the 35-element solution is within O. I percent of the exact

solution. Note that the radial stress converges more rapidly than do the

H-24

Page 261: Prepared by James G. Crose and Robert M. Jones

axial and circumferential stresses (which must be equal for this spherically

symmetric problem). Note also that the four-element case presented in

Figure H-8 produced somewhat different results from those shown in

Table H-2. This is due to the different method of calculating stresses (see

Appendix A, Section A. 4). Since both methods apparently converge to the

same answers, as demonstrated in Appendix D, the difference is not

considered important.

z

w__H

+

Figure H-7. Schematic Diagram of Wedge-Shaped Ring

H-25

Page 262: Prepared by James G. Crose and Robert M. Jones

.3

10

203

04

05

06

07

08

01

23

45

61

89

01

23

45

61

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

0SP

HER

ICA

LwE

CGE

OFA

81LI

NEA

RM

ATE

RIA

L1

2010

41

11

-5.1

29

57

64

.97

50

21

-0.4

99

16

72

-11

4.2

70

42

4.9

75

02

10

.49

91

61

3-5

.72

95

78

5.7

89

22

4-0

.58

08

60

4-1

14

.21

04

25

.18

92

24

0.5

80

86

05

-5.1

29

51

86

.85

09

38

-0.6

87

38

76

-17

4.2

70

42

6.8

50

93

80

.68

73

87

1-5

.72

95

78

8.2

15

37

0-0

.82

42

86

8-1

14

.21

04

28

.21

53

10

0.8

24

28

69

-5.1

29

57

89

.95

00

42

-0.9

98

33

41

0-1

14

.21

04

29

.95

00

42

0.9

98

33

41

21

34

12

43

56

13

65

78

14

87

91

01

11

21

0.+

6

21

16

46

9.

10

.+3

.5

::r: I N Cj'-

END

Cf

CASE

Fig

ure

H-8

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

4

Page 263: Prepared by James G. Crose and Robert M. Jones

:r: I N --J

SPH~RICAlwEC~t

UFA

B1L

INtA

RM

ATE

RIA

L

STA

RT

PARA~ETc~---------------

STO

Pp

AR

AM

ET

tR--

----

----

----

--0

IFI,

Fl(

TCEFlc(TIL~S

0

IF1

,S~ALl

PLG

T.

Ifi,

LARG

E

PtC

T.ClhER~iSE

~C

FlG

T.-

----

-0

NU

MBE

R(f

A~PRGXIMATIONS------

20

IF1

,GE~ERATE

ME

5H

----

----

---

0

~UH8ER

(f

TEM

PeRA

TURE

CA

RD

$---

a

NU

MBE

R(f

~GCAl

PO

INT

S--

----

--1

0

NU

MB

eRC

fElEME~TS------------

4

hUH

EER

CFI~TER~AL

FRE

SSU

RE

S--

0

~UHBcR

(f

MA

TcR

IAlS

----

----

---

1

~UMe£~

(f

EXTER~Al

f~ESSLRES--

1

NU

MBE

R(f

SheA

kC

AR

GS

----

----

-c

REFtkt~CE

TE

MP

ER

AT

Uk

E--

----

---

0.0

~UMBtR

CFIE~Sl(~-(C~PKtSSIL~

APPRJXI~ATl(~S----

L

NlD

Al

fLU

.1TY

PER

-OR

CIN

AT

EI-

GR

CIN

AH

:R

LUA

DOR

DIS

PLA

CE

MtN

TI

LOAD

LXol

SPLA

CEM

ENT

TE~PE~ATURE

PRES

SUR

E1

-,.13

4.9

75

-0.4

99

G.O

0.0

0.0

0.0

2-1

14

.21

4.9

15

C.4~~

C.O

0.0

0.0

0.0

,-5

..7

35

.18

9-C

..5

81

C.O

G.C

0.0

0.0

4-1

74

.21

5.7

89

0.5

HC

.O0

.00

.00

.05

-5..

73

6.8

51

-0.6

87

C.O

O.C

0.0

0.0

,-1

14

.27

6.8

51

C.t

E1

G.O

0.0

0.0

0.0

7-5

.73

8.21~

-0.1

:12

4c.

oC

.C0

.00

.0E

-17

4.2

78

.21

5C

.82

4c.

o0

.00

.00

.0~

-5.7

39

..9

50

-c..

sse

c.o

0.0

0.0

0.0

Ie-1

74

.21

9..

95

0C

.99

8C

.O0

.00

.00

.0

Fig

ure

H-8

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

4(C

on

tin

ued

)

Page 264: Prepared by James G. Crose and Robert M. Jones

ELI

JK

LM

ATER

IAL

ANtiL

ETt~PEP~TURE

PRE

SSU

RE

12

13

41

0.0

O.C

0.0

2"

35

61

0.0

0.0

0.0

36

57

tl1

O.C

C.C

0.0

48

7S

10

10

.0C

.O0

.0

MA

TE

RIA

L=

1N

O.

OF

TE

MPE

RA

TU

RE

SA

T'~IO~

p~CPERrIES

ARE

SPECI~IEG

=I

MA

SSD

EN

SIT

Y=

0.0

POR

OSI

TY

=C

.CA

NIS

OT

RO

PYPA

RA

MET

ER=

2

AT=

C.O

YM=

ETT=

100C

CO

OO

.N

UN

TT

=0.

300

EPT

=1

00

00

00

0.

10

00

0.

PEM

R=

0.5

00

o.l:PC~

NU

NT

C=

O.o

10

00

0.

YT=

NU

/HC

=o.

O

NU

MT

T=

0.30

0N

UM

NT

=0.

300

10

00

0.

YN

=

NU

IlN

C=

o.O

O.

ET

C=

TEM

P=O

.T

EN

SIL

EP

RO

PE

RT

IES

EMT=

10

00

00

00

.EN

T=1

00

00

00

0.

COMPRESSI~E

PR

OP

ER

TIE

SEM

C=

O.

ENC

=O

.TH

ERM

AL

AN

DY

IEL

DP

RO

PE

RT

IES

AM=

0.0

AN=

0.0

:r: I N 00

PRE

SSU

RE

IJ

21

eOU

NC

AR

YC

ON

OIT

ION

SIN

TE

NS

ITY

16

'06

9.0

Fig

ure

H-8

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

4(C

on

tin

ued

)

Page 265: Prepared by James G. Crose and Robert M. Jones

1l00

AL

POIN

TU

RUZ

I0

.64

85

70

90

-02

0.0

Z-0

.64

85

70

90

-0Z

0.0

30

.49

87

07

40

-02

0.0

4-0

.49

87

07

40

-02

0.0

50

.38

17

00

60

-02

0.0

6-0

.38

17

00

60

-02

0.0

70

.29

81

05

10

-02

0.0

8-0

.Z9

81

05

10

-02

0.0

90

.24

44

87

50

-02

0.0

10

-0.2

44

48

75

0-0

Z0

.0

EL

RI

SIG

MA

RSI

GM

AZ

SIG

MA

TSI

GM

AR

ZSIGMAMA~

SIG

MA

MIN

AN

GLE

SIG

MA

MSI

GM

AN

SIG

MA

MN

15

.38

0.0

-12

51

2.

96

C1

.':

1133

.-C

.9

60

1.

-12

51

2.

-9C

.OC

-12

51

2.

96

01

.-0

.Z

6.3

20

.0-6

83

1.

68

33

•6

92

9.

-0.

68

33

.-6

83

7.

-90

.00

-68

37

.6

83

3.

-0

.3

1.5

30

.0-3

01

6.

50

0l.

5G

61

.-0

.5

00

1.

-30

76

.-9

0.0

0-3

07

6.

50

01

.-0

.4

9.0

80

.0-1

42

.3

86

8•

39

10

.-C

.3

86

8.

-74

2.

-9C

.00

-14

2.

38

68

.-0

.

:r: I N '"

ELE

PSR

EPS

ZE

PST

EPS

RZ

EPSM

AX

EPS

MIN

AN

GLE

EPSM

EPS

NEP

SMN

TEM

PER

ATU

RE

1-0

.18

30

.10

40

.10

6-c

.CO

O0

.10

4-G

.18

3C

.C-0

.18

30

.10

4-0

.00

0O

.Z

-0.1

1C

O.C

680

.06

9-0

.00

00

.06

8-0

.11

0O

.G-0

.11

00

.06

8-0

.00

0O

.3

-0.0

61

0.0

44

0.0

45

-C.

00

00

.04

4-G

.06

1G

.O-0

.06

10

.04

4-0

.00

0O

.4

-0.0

31

0.G

29

0.0

30

-0.0

00

O.O~9

-0.0

31

O.C

-0.0

31

0.0

29

-0.0

00

O.

Fig

ure

H-8

.C

otn

pu

ter

Pro

gra

tnO

utp

ut

for

Ex

atn

ple

4(C

on

tin

ued

)

Page 266: Prepared by James G. Crose and Robert M. Jones

hOO

AL

PCI~T

URU

lI

0.7

17

96

C4

0-C

2C

.C2

-0.1

17

98

C4

0-0

2O

.C3

0.5

77

16

17

0-0

2C

.C4

-0.5

17

16

17

0-0

2C

.O5

0.4

32

2C

99

0-C

2e.

c6

-0.4

32

20

S9

0-0

2O

.C7

0.3

37

55

25

0-C

20

.0B

-0.3

37

55

25

0-0

20

.0S

0.2

76

83

98

0-0

2G

.O10

-0.2

76

83

SB

O-C

2C

.G

ELR

ZSI

GM

AR

SIG

MA

ZSI

GM

AT

SIG

MA

RZ

SIG

MA

MA

XSIGMAMI~

A~GLE

SIGMA~

SIG

MA

NSI

GM

AM

h1

5.3

80

.0-1

29

42

.6

79

0.

69

03

.-0

.6

79

0.

-12

94

2.

-90

.0C

-12

94

2.

67

90

.-0

.2

6.3

20

.0-1

52

1.

64

06

.6

5G

4.

-0.

64

06

.-7

52

1.

-90

.00

-75

21

.6

40

6.

-0

.3

7.5

30

.0-3

48

3.

56

63

.5

73

B.

-0.

56

t3.

-34

83

.-9

0.0

C-3

48

3.

56

63

.-0

.4

9.G

B0

.0-8

41

.4

37

9.

44

27

.-0

.4

31

9.

-84

1.

-90

.00

-Bio

I.4

37

9.

-0

.0: I LN 0

ELE

PSR

EPS

ZEP

STE

PSR

ZEP

SMA

XE

PSM

INA

NG

LEEP

SMEP

SNEP

SMN

lEM

PER

ATU

RE

1-0

.24

50

.12

30

.12

5-0

.00

00

.12

3-0

.24

5O

.C-0

.24

50

.12

3-0

.00

0O

.2

-0.1

36

0.C

78

0.C

7S

-O.C

OO

C.C

H-C

.13

6O

.C-0

.13

60

.07

8-0

.00

0O

.3

-0.C

6S

0.0

50

0.0

51

-0.0

00

0.G

50

-C.C

69

C.C

-0.0

69

0.0

50

-0.0

00

C.

4-C

.C3

50

.03

30

.03

4-C

.CC

O0

.C3

3-0

.C3

5G

.C-0

.03

50

.03

3-0

.00

0O

.

Fig

ure

H-8

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

4(C

on

tin

ued

)

Page 267: Prepared by James G. Crose and Robert M. Jones

NO

CA

LP

ClH

URL

I1

0.0

13

26

C5

0-C

20

.02

-0.

81

32

6C

50

-C2

C.C

30

.60

10

95

00

-C2

0.0

~-0

.tO

lCS

50

0-C

2a.o

50.4~5980co-a2

c.c

6-0.~~598CCO-02

0.0

70.3~830680-02

C.C

8-0

.34

83

0t8

0-0

20

.09

0.2

85

65

S9

0-0

2C

.C10

-0.2

85

65

99

0-0

2o

.a

El

R2

51G

MA

R51

GM

AI

SIG

MH

SIG

MA

RZ

SIG

MA

MA

XSI

GM

AM

INA

NG

LESI

GM

AM

SIG

MA

NSI

GM

AM

II1

5.3

80

.0-1

29

96

.6

44

0.

1'5

51

.-0

.6

44

0.

-12

99

6.

-90

.00

-12

99

6.

64

40

.-0

.2

1'.

32

0.0

-16

62

.6

01

8.

1'1

14

.-0

.6

01

8.

-16

62

.-9

0.0

0-1

66

2.

60

18

.-0

.3

7.5

3O

.U-3

59

4.

5a

43

.5

92

C.

-0.

58

43

.-3

59

4.

-90

.00

-359

10.

5810

3.-0

.4

S.0

80

.0-8

67

.4

51

9.

45

1'8

.-0

.4

51

9.

-86

1.

-90

.00

-86

1.

45

19

.-0

.

::r: I ...., >-'

ELE

PSR

EPS

ZE

PST

EP

SR

IEP

SMA

XE

PSM

INA

NG

LEEP

SME

PSN

EPSM

NTE

MPE

RA

TUR

E1

-0.2

5S

0.1

29

0.1

31

-O.O

CO

0.1

29

-0.2

59

a.c

-0.l

59

0.1

29

-0.0

00

O.

2-0

.14

50

.08

10

.08

2-o

.oo

c0

.08

1-0

.14

5e.c

-0.H

50

.08

1-0

.00

0o

.3

-0.0

71

0.C

51

0.U

52

-O.O

OC

0.0

51

-0.0

71

o.c

-0.0

11

0.0

51

-0.0

00

o.

4-0

.a3

60

.03

40

.03

5-0

.00

00

.03

4-0

.C3

6O

.C-0

.03

60

.03

4-0

.00

0o

.

Fig

ure

H-8

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

4(C

on

tin

ued

)

Page 268: Prepared by James G. Crose and Robert M. Jones

NO

DA

LPC

INT

Uk

UI

I0

.82

16

03

2C

-02

C.C

2-0

.82

16

03

20

-02

0.0

30

.6C

69

E5

40

-C2

O.C

4-0

.60

69

85

4C

-C2

C.C

50

.44

92

3t2

0-C

2C

.C6

-0.4

49

23

62

0-0

20

.07

0.3

50

84

99

0-0

20

.08

-0.3

50

84

99

0-C

2C

.G9

0.2

87

74

55

0-C

20

.010

-0.2

87

74

55

0-C

2C

.C

El

kl

SIG

MA

kS

IGM

Al

SIG

kAT

SIG

MA

klSI

UM

AM

AX

SIG

MA

MIN

AN

GLE

SIG

MA

MSI

GM

AN

SIG

MA

MN

I5

.38

0.0

-13

00

3.

b3~4

•e

5C

:;).

-0.

63

94

.-1

30

03

.-9

0.0

0-1

30

03

.6

39

".

-0.

26

.32

0.0

-76

91

.5

90

2.

59

97

.-0

.5

90

2.

-76

91

.-9

0.0

0-7

69

1.

59

02

.-0

.3

7.5

30

.0-3

62

0.

58

86

.5

9t4

.-0

.5

88

6.

-3

t20

.-9

0.0

0-3

62

0.

58

86

.-0

.4

9.0

80

.0-8

74

.4

5,,

2.

4tC

I.-G

.4

55

2.

-87

4.

-90

.00

-87

't•

45

52

.-0

.

:r: I ""N

El

EPS

RE

PSZ

EPS

TE

t'SkZ

EPSM

AX

ioPS

MIN

AN

GLE

EPSM

EPS

NEP

SMN

TEM

PER

ATU

RE

I-0

.lt2

0.1

30

0.1

32

-U.O

OO

1l.

13

C-C

.26

2O

.C-0

.26

20

.13

0-0

.00

0O

.2

-0.1

48

0.0

82

0.0

83

-o.G

oe0

.G8

2-C

.14

8G

.G-0

.14

80

.08

2-0

.00

0O

.3

-0.0

72

0.C

52

0.0

53

-0.0

00

0.C

"2-0

.G7

2O

.C-0

.07

20

.05

2-0

.00

0O

.4

-O.C

3t

O.C

34

0.0

35

-0.0

00

G.C

34

-0.C

36

O.C

-0.v

36

0.0

34

-0.0

00

O.

THE

PRO

CEC

UR

EC

ON

VER

GEC

IN4

NC

NlI

NE

Ak

EL

AS

TIC

ITE

kAT

ICN

S

Fig

ure

H-8

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

4(C

on

tin

ued

)

Page 269: Prepared by James G. Crose and Robert M. Jones

:r: I VJ

VJ

TA

BL

EH

-2

EX

AC

TA

ND

CO

MP

UT

ER

RE

SU

LT

SF

OR

ST

RE

SS

ES

INA

TH

ICK

SP

HE

RIC

AL

SH

EL

LO

FA

BIL

INE

AR

ISO

TR

OP

ICM

AT

ER

IAL

No

.o

fN

o.

of

Itera

tio

ns

Str

es

sat

Cen

ter

of

Inn

erm

ost

Ele

men

t

Ele

men

tsfo

rC

on

verg

en

ce

(J(J

(J=

(Ja

arE

XA

CT

rS

AA

SZ

QE

XA

CT

zSA

AS

QS

AA

S

44

-13

,24

7-1

3,1

41

67

08

64

92

62

93

75

-14

,26

8-1

4,2

40

69

00

68

74

67

88

18

5-1

5,5

87

-15

,60

27

17

47

17

17

15

7

35

5-1

6,0

03

-16

,00

67

27

27

26

87

26

4

Page 270: Prepared by James G. Crose and Robert M. Jones

H.5 HOLLOW CYLINDER COMPOSED OF TWO MA TERLALS

This problem was selected to demonstrate and check out the

porous media feature of SAAS III. The cylinder is idealized by ten

elements as shown in Figure H -9.

z

MATERIAL 1 MATERIAL 2. .I \t \

1 2 3 4 5 6 7 8 9 10No

'"~~ o

2.0 3.0r

Figure H-9. Ten-Element Idealization of Hollow CylinderComposed of Two Materials

The pertinent parameters of the problem are:

Pi = 0 for the inner material

5 -5for the outer materialPf = r - r

F = 0 (net axial force)z

Pout = 2.3

Pin = 0

E = I for both materials

V = 0 for the inner material

V = 0.2 for the outer material

H-34

Page 271: Prepared by James G. Crose and Robert M. Jones

The computer output is shown in Figure H-IO. The strain output

was omitted because of the obviously high values that result from use of

the above parameters. (These values exceed the field length of the

variable.) This is a demonstration only and is not meant to represent a

practical problem, whereas the allotted field lengths were designed to

apply to most problems.

That the following equations are the correct solutions may be

easily verified by consulting Ref. 24 where (f is the stress at the interfaceo

and is equal to 3.47. Generalized plane strain is assumed and (0 is the

axial strain.

Material 1

<1 = (-11.I2+2.78r 2)r

Material 2

<1r = <10

(-2.27 + 2°~i54 )_26i' 6 + 0.89347r5

r

- 44.2

= (II. 12 + 2. 78r 2 )

€o

<1 0-2­r

UQ = - U (2.27 + 2:'2

454) - 44. 12

0

269.6 5+ 2+ O.36r

r

- 0.9082

Uz = U - 17.65 + O. 250r + (0 0

The computer results are plotted in Figures H-ll through H-13 along

with the exact results obtained by using the above equations. As can be

noted, the finite element results are excellent. However, better accuracy

can be obtained by USing more elements in the radial direction.

H-35

Page 272: Prepared by James G. Crose and Robert M. Jones

1 1 1 1

0.0

1.0

c.c

C.C

1.1

14

1

0.1

C.C

O.C

C.l

1.0

1.0

3.0

3.0

2.0

2.0

1.06 11

10

.15

10

.15

33

.03

53

3.0

35

59

.64

35

9.6

43

90

.31

69

0.3

16

12

5.1

11

25

.11

1.0

.0 .1 .0 .1 .1 .0 .0 .1 .1 .0 .0 .1 .1 .0 .0 .1 .1 .0 .0 .11

1020

304G

506

07C

801

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

23

4>

67

89

0l2

34

56

78

90

SAA

Sli

P(C

ASE

IG

El

TE

STC

ASE

FOR

POR

OU

SH

OllO

MC

Yll

NV

Ek

OF

2M

AT

ER

IAL

S~(,

681

1-2

202

I2

11

42

21

12

.00

.11

111

11

3.0

0.1

211

21

13

.00

.02

12

12

.CO

.C1

11

11

112

.2

21

112

.1

12

12

12

6o

.G2

.05

2.0

52

.15

2.1

52

.25

2.2

52

.35

2.3

52

.45

2.4

52

.55

2.5

52

.65

2.6

52

.15

2.7

52

.85

2.8

52

.95

2.9

51

0.0

:r: I '-" ""

0.0 2

1O

.C1

.01

.0

0.0

<221

2.3

CEN

eCF

CA

SE

1.

C1

.00

.2C

.20

.21

.0

Fig

ure

H-I

O.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

5

Page 273: Prepared by James G. Crose and Robert M. Jones

TE

STC

ASE

fOR

POR

OU

SHLLLC~

CY

LIN

DE

RC

f2

MATE~IALS

NC~

68

SAA

SlI

PIC

ASE

IG

El

STA

RT

PA

RA

ME

TE

R--

----

----

----

-1

STO

PP

AR

AM

ET

ER

----

----

----

----

a

IFI.

FtC

TD

EFL

EC

TIO

NS

a

IFI.

SMA

LLP

LO

I.If

2.

LAR

GE

PL

lT.CI~ERkISE

NOP

LO

I.--

----

0

NU

MBE

RC

fA

PP

RO

XIM

AT

ICN

S--

----

a

IF1

.G

EhE

RA

IEM

ES

H--

----

----

-1

NU

MBE

RC

fT

EM

PER

AIU

RE

CA

RU

S--

--2

NU

MBE

RC

FN

CG

AL

PO

INT

S--

----

--a

NU

MBE

RC

FE

LE

ME

NIS

----

----

----

0

NU

MBE

RC

FIN

TE

RN

AL

PR

ES

SU

RE

S--

20

~N

UM

BER

Uf

MA

TE

RIA

LS

----

----

---

2I W ~

NU

MBE

RC

FE

XIE

RN

AL

PR

ES

SU

RE

S--

I

NU

MfE

RC

FSH

EAR

CA

RC

S--

----

---

a

RE

fER

EN

CE

IEM

PE

RA

IUR

E--

----

---

0.0

NU

MBE

RC

FT

EN

SIl

N-C

lMfR

ES

Sll

NA

PP

RO

XIM

AII

lNS

----

C

Fig

ure

H-I

O.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

5(C

on

tin

ued

)

,

Page 274: Prepared by James G. Crose and Robert M. Jones

MES~

GE~ERATIO~

INFORMATIG~

~AXIMU~

VA

LUE

OF

INTH

EH

ES

H--

----

--<

~AXIMUH

VA

LUE

GF

JIN

THE

HE

SH

----

----

11

NU

MBE

RO

FL

INE

SEG

MEN

TG

AR

OS

----

----

--4

NU

MBE

RC

FBG

UN

DA

RYC

ON

DIT

ION

CA

RD

S--

--2

~UHBER

OF

MA

TE

RIA

LB

LOC

KC

AR

DS

----

----

2

NU

MBE

RO

FIT

ER

AT

ION

S--

----

----

----

----

C

POLA

RC

GO

RD

INA

TE

PAR

AM

ETER

1----------

0.0

POLA

RC

CC

RD

INA

TE

PAR

AM

ETER

J----------

C.C

IC~RVATvRE

MO

OIF

ICA

TIO

N--

----

----

----

a

JC~RVATURE

MO

OIF

ICA

TIO

N--

----

----

----

C

::r: I W 00

INPU

TII

JI

RI

ZI

12

II

2.C

OO

C.I

OO

10

1-

O.

OJ=

10

.O

IFF

=1

0.

RIN

C=

IJ

ARAZ

12

2.1

00

O.l

CO

I3

2.2

00

0.1

00

I4

2.3

00

C.I

OO

I5

2.4

00

0.1

00

It

2.5

0C

0.1

00

I7

2.6

00

0.1

00

I8

2.7

0C

0.1

00

19

2.8

00

0.1

00

11

02

.9C

O0

.10

0

J<

R2

l211

113.

CO

CC

.IO

O0

C.l

00

ZIN

C=

0.0

J3

K3

oO

.C1

TE

R=

S

Z3

0.0

IINC

=0

IPT

ION

IJI~C=

IK

APP

A=I

INPU

T

OI­ I

I. J

11

JI

R1

III

3.0

00

tJ:

O.

OIF

F=

AR

Zl

12

C.I

OO

21

.R

INC

=AZ

J2 11 0

.0

R2

Z213

3.C

OC

C.O

CZ

INC

=-O

.IO

C

J3 a

ITE

R=

R3

0.0 o

Z3

0.0

IINC

=1

1P

TiO

NI

JIN

C=

cK

APP

A=I

Fig

ure

H-I

O.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

5(C

on

tin

ued

)

Page 275: Prepared by James G. Crose and Robert M. Jones

INP

UT

11

Jl

Rl

Zl

12

J2R

2Z

21

3J3

R3

Z3

IP

TI

ON

21

13

.00

00

.0Z

12

.00

00

.00

00

.00

.01

01

=o.

GJ=

10

.O

IFF

=1

0.

RIN

C=

-C.I

0C

lIN

C=

0.0

lTE

R=

9lI

NC

=0

JIN

C=

-1K

AP

PA

-II

JA

RA

Z2

10

2.9

00

0.0

29

2.8

00

0.0

28

2.1

00

0.0

21

2.6

00

0.0

26

2.5

00

0.0

25

2.4

00

0.0

24

2.3

00

0.0

23

2.2

00

0.0

22

2.1

00

0.0

INP

UT

11

Jl

Rl

Zl

12

J2R

2l2

13

J3R

3Z

3IP

lIO

N2

12

.00

00

.01

12

.00

0C

.I0

00

00

.00

.01

DJ-

1.

OJ-

O.

DIF

F-

I.

RIN

G=

0.0

ZIN

C=

0.1

00

ITE

R=

0II

NC

=-1

JIN

C-

aK

AP

PA

-II

JA

RA

Z

CO

OR

DIN

AT

ES

CA

LC

UL

AT

ED

AFT

ER

1IT

ER

AT

ION

S

~I

JN

PT

YPE

l{-O

RO

INA

TEl-

CR

ClN

AT

ER

LCA

GO

RO

ISPL

AG

EM

EN

TZ

LOA

DO

RD

ISPL

AC

EM

EN

TI '"

11

12

.G2

.0C

CG

.10

0C

.O0

.0

'"2

12

2.C

2.0

00

0.0

0.0

0.1

1l'

tl0

0E

01

12

32

.02

.10

0C

.IG

G0

.00

.02

24

2.G

2.1

00

0.0

0.0

0.1

11

41

00

£0

11

35

2.0

2.2

00

C.I

00

G.O

0.0

23

62

.02

.20

00

.00

.00

.11

14

10

0E

01

14

12

.C2

.3eO

C.I

00

0.0

0.0

24

82

.02

.30

00

.0C

.O0

.11

14

10

0E

01

15

92

.C2

.40

CC

.I0

00

.00

.02

51

02

.02

.40

0O

.G0

.00

.11

14

10

0E

01

1t

11

2.0

2.~CO

0.1

00

0.0

0.0

26

12

2.0

2.5

0C

c.e

0.0

0.1

11

41

00

£0

11

11

32

.C

2.6

00

G.1

00

0.0

0.0

21

14

2.0

2.6

0G

C.O

c.o

0.1

11

10

10

0E

01

18

15

2.0

2.7

00

0.1

00

0.0

0.0

28

16

2.C

2.1

00

C.O

0.0

0.1

11

10

10

0E

01

19

17

2.0

2.8

00

C.I

00

0.0

0.0

29

18

2.C

2.8

CO

C.O

0.0

0.1

11

10

10

0E

01

11

0IS

2.0

2.

-)0

0e

.10

00

.00

.02

10

2C2

.G2..~CC

C.O

O.l

l0

.11

14

1C

OE

01

11

12

12

.03

.JG

OC

.10

0G

.O0

.02

112

22

.e3

.0G

Oo

.e0

.00.

1111

01C

OE

01

Fig

ure

H-

10

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

5(C

on

tin

ued

)

Page 276: Prepared by James G. Crose and Robert M. Jones

2.0

;02

.15

02

.15

0L

.25

02

.25

02

.35

02

.35

02

.45

02

.45

02

.55

02

.55

02

.65

02

.t5

C2

.75

02

.15

02

.85

02

.85

02

.95

02

.95

0

0.1

00

O.C

0.1

00

C.1

0C

0.0

0.0

C.I

OC

0.1

00

0.0

0.0

C.1

CC

0.1

00

C.C

0.0

0.1

00

O.l

GO

0.0

O.C

0.1

00

0.0 o.c

0.0

G.C

0.0

0.0

G.C o.c

o.c

10

.L5

01

0.1

50

33

.C3

53

3.0

35

59

.<4

35

9.6

43

9C

.31

6'l

0.3

76

12

5.7

1C

12

5.1

1C

::r:N

RI

TI

12

.00

00

0.1

00

0o.

ol>2

2.0

00

00

.0O

.0

32

.10

00

0.1

00

0o.

I,2

.10

00

0.0

O.

52

.20

00

C.l

00

0O

.6

2.2

00

00

.0o.

72

.30

00

0.1

00

0O

.8

2.3

00

0c.

oO

.9

2.1

,00

00

.10

00

o.1

02

.40

00

0.0

o.11

2.5

00

00

.10

00

5.

12

2.5

00

00

.05

.1

32

.60

00

G.l

00

02

2.

14

2.6

00

00

.02

2.

15

2.;

00

0C

.l0

00

46

.1

62

.10

00

0.0

46

.1

12.

EO

OO

0.1

00

07

5.

18

2.8

00

00

.07

5.

19

2.~000

0.1

00

0L

08

.2

02

.90

00

0.0

10

8.

21

3.0

00

00

.10

00

14

3.

22

3.C

OO

O0

.01

43

.

Fig

ure

H-l

O.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

5(C

on

tin

ued

)

Page 277: Prepared by James G. Crose and Robert M. Jones

"

ELI

JK

LM

ATE

RI

Al

AN

Glt

TE

MfH

HU

Rt

PRE

SSU

RE

11

24

31

0.0

C.C

C.O

23

46

51

O.C

0.0

0.0

35

68

7I

O.C

(;.c

C.O

47

81

09

I0

.0C

.C0

.05

910

12!l

10

.0O

.C2

.53

76

11

1214

132

0.0

O.C

13

.33

37

13

14

161

52

0.0

(i.e

33

.90

58

15

1618

17

20

.00

.06

0.

e73

91

718

20

192

0.0

O.C

91

.54

010

1920

222

12

0.0

O.C

12

5.7

69

MA

TtR

IAl

=1

NO

.CF

TEM

PEK

ATU

RES

AI

.hlC

hP

RO

PE

RT

IES

ARE

SP

EC

IFIE

D=

1M

ASS

DE

NSI

TY

=0

.0PU

RC

SIT

Y=

O.I

OO

OE

01

A~IS(TRCPY

PAR

AM

tTE

R=

0

::r: I "" -

TEM

P=O

.T

EN

SIL

EF~GPERTIES

EMT=

I.

ENT=

(CMPRESSI~E

PR

OP

ER

TIE

SEM

C=

O.

ENC

=TH

ERM

AL

A~C

YIE

LD

PR

CP

ER

TIE

SAM

=0

.0A

N=

0.0

1.

ET

T=

C.

ET

C=

AT=

0.0

1.

~UMNT=C.O

~UMTT=O.o

C.

~UMN(=O.O

NU

MTC

=O.O

YM

=O

.Y

N=

O.

YT=

NU

NT

T=O

.OEPT~

NU

NT

C=O

.OE

PC=

O.

PEM

Rz

0.0

1.

O.

MA

TE

RIA

L=

2N

O.

CFT

EM

PER

AT

UR

ES

AT

.hIC

hP

RC

PE

RT

IES

ARE

SP

EC

IFIE

D=

1M

ASS

CE

NSI

TY

=0

.0PO

RO

SIT

Y=

C.l

CC

CE

01

AN

ISO

TR

CPY

PAR

AM

ETER

=0

TEM

P=C

.T

EN

SIL

EP

RG

PE

RT

ltS

EMT=

I.

E~T=

COMPRESSI~E

PR

OP

ER

TIE

SEM

C=

O.

EN

e=TH

ERM

AL

AND

Ylt

LO

PR

OP

ER

TIE

SAM

=C

.OA

N=

C.O

I.

ET

T=

O.

ETC

=

AT=

0.0

I.N

UM

NT

=C

.200

NU

MTT

zO

.20

0NUNTT~0.200

EP

T-

C.

NU

MN

C=C

.ON

UM

rc=

o.o

NU

NT

t-O

.OE

Pt-

YM=

O.

YN

=C

.Y

T:

O.

PE"R

-0

.0

1. o.

Fig

ure

H-I

O.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

5(C

on

tin

ued

)

"''>

.~

.~

Page 278: Prepared by James G. Crose and Robert M. Jones

PRE

SSU

RE

IJ

222

1

ECU

NC

AK

YC

CN

CIT

ICN

SIN

TE

NS

ITY

2.3

NC

OA

LP

(Ih

TU

RU

I1

0.4

01

32

5tO

C2

0.0

20

.40

13

25

tOC

2C

.11

14

10

CO

Cl

30

.40

18

05

40

02

O.C

40.~0180540

C2

C.I

11

41

CC

OC

l5

0.4

03

15

38

00

20

.06

0.~0315380

02

C.1

11

41

CC

OC

l1

0.4

05

25

12

C0

2C

.O8

0.4

05

25

12

00

2C

.11

14

10

CC

019

0.4

08

02

15

D0

2O

.C1

00

.40

80

21

50

02

0.1

11

41

00

00

11

10.413853~0

02

0.0

12

0.4

13

85

35

00

20

.11

14

10

00

01

13

0.4

21

11

44

00

20

.01

40

.42

11

14

80

02

0.1

11

41

CO

O0

1

:r:1

50

.45

98

96

'>0

02

O.C

I1

60

.45

98

91

10

02

0.1

11

41

CC

O0

1

""11

0.5

15

13

40

00

20

.0N

18

0.5

15

13

66

00

2C

.11

14

1C

CO

01

19

0.5

96

31

14

002

0.0

20

0.5

96

38

19

00

20

.11

14

1C

OO

C1

21

0.1

C5

86

C5

00

20

.022

0.1

05

86

C4

00

20

.11

14

1C

OO

C1

EL

Rl

SIG

MA

RS

IGM

Al

SIG

MA

TSI

GM

AR

lSI

GM

AM

AX

SIG

MA

MIN

AN

GLE

SIG

MA

MSI

GM

AN

SIG

MA

MN

12

.05

0.0

5O

.-1

1.

2G

.O

.O

.-1

1.

O.C

OO

.-1

1.

O.

22

.15

0.0

51

.-1

1.

IS.

-G.

1.

-11

.-0

.00

1.

-11

.-0

.3

2.2

50

.05

2.

-11

.1

8.

-G.

2.

-11

.-C

.CO

2.

-11

.-0

.4

2.3

50

.C5

3.

-11

.1

1.

-0.

3.

-11

.-0

.00

3.

-11

.-0

.5

2.4

50

.05

6.

-11

.1

1.

-0

.b

.-1

1.

-0.0

0b

.-1

1.

-0

.t

2.5

50

.C5

17

.-4

.IS

.-c

.1

1.

-4.

-0.0

01

1.

-4

.-0

.1

2.6

50

.05

31

.1

.2

4.

-G.

31

.I.

-0.0

03

1.

1.

-0

.8

2.1

50

.05

,e3

.8

.3

2.

-C.

O.

8.

-0.0

06

3.

8.

-0

.9

2.8

50

.05

93

.1

6.

4I.

-C.

S3

.1

6.

-0.0

09

3.

16

.-0

.1

02

.S5

0.0

51

25

.2

4.

52

.o.

12

5.

24

.o.

oe1

25

.2

4.

O.

Fig

ure

H-I

O.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

5(C

on

tin

ued

)

Page 279: Prepared by James G. Crose and Robert M. Jones

175

-"EXACT" SOLUTION (Ref 24)150 t:. SAAS III FINITE ELEMENT SOLUTION

125

.- 100'"...-b

75

50

25

o~,,",,"",~~~;;:::~~-~_~_-.--l2.0 2.2 2.4 2.6 2.8 3.0 3.2

RADIUS· in.

Figure H-ll. Radial Stress in Hollow Cylinder

H-43

Page 280: Prepared by James G. Crose and Robert M. Jones

30

20

--"EXACT" SOLUTION (Ref 24)

6. SAAS III FINITE ELEMENTSOLUTION

Nb

10

o

-10

Noo -20~_~~_~~_~~_~~_"""!,,,~_~~ 2.0 2.2 2.4 2.6 2.8 3.0 3.2

RADIUS - in.

Figure H-12. Axial Stress in Hollow Cylinder

H-44

Page 281: Prepared by James G. Crose and Robert M. Jones

­...

60

--"EXACT" SOLUTION (Ref 24)50 ~ SAAS III FINITE ELEMENT

SOLUTION

40

30

20 ~

10

o~__~__~__~__~__~__"'"2.0 202 204 206 2.8 3.0 3.2

RADIUS - in.

Figure H -13. Circunlierentia1 Stress in Hollow Cylinder

H-45

Page 282: Prepared by James G. Crose and Robert M. Jones

H.6 SOLID POROUS CYLINDER

This problem was selected to demonstrate and check out the porous

media feature of SAAS III. The cylinder is idealized by ten elements as

shown in Figure H-14.

z

0) 0 0) 0 CD 0 0 C9 CD ®0.1

0.5 1.0

Figure H-14. Ten-Element Idealization of Solid Cylinder

The pertinent parameters of the problem are:

-4Ct T = 1.5xlO

Pi = 100 for 0 ~ r ~ O. 1

. -100 (rZ- r - 1) for O. 1 ~ r ~ 1. 0Pi =

F = 1.0 (net axial force)z

Pout = 100

E = 106

IJ = 0.5

H-46

Page 283: Prepared by James G. Crose and Robert M. Jones

In the program, V = 0.5 IS not allowed. Therefore, V = 0.49 was used as

a reasonable approximation.

The computer output is displayed in Figure H-15.

That the following equations are the correct solutions may be easily

verified by consulting Ref. 24.

a = IOOr (l - r)r

a = a = IOOr (1 - r)Q r

10 Or (1 - r) - 17=a z =ar -17

The computer results are plotted in Figures H-16 and H-17 along

with the exact re sults obtained by using the above equations. As can be

noted, the finite element results are excellent. However, better accuracy

can be obtained by using more elements in the radial direction.

H-47

Page 284: Prepared by James G. Crose and Robert M. Jones

1•

1 I 1 1

2 .49

•1

+5

-.1

33

-4

0.1

O.C

0.0

0.1

0.1

1.0

1.0

0.0

0.0

1

10

00

•1

00

0.

11

27

.51

12

7.5

11

87

.51

18

7.5

12

27

.51

22

7.5

12

47

.51

24

7.5

12

41

.51

24

1.5

12

27

.51

22

7.5

11

87

.51

18

7.5

11

27

.51

12

7.5

10

47

.51

04

7.5

.1+

1.1

5-]

10

0.

.0 .1 .1 .0 .0 .1 .1 .0 .0 -.1 .1 .0 .0 .1 .1 .0 .0 .1 .1 .0

1 21

CA

SE

11

50

0.

22

CEN

eO

F

1020

30

4050

6070

8012~567890123456189012345678901234567890123456789012]456789012345678901234561890

TE

STC

ASE

fOR

ASO

LID

SIN

GL

EPO

RO

US

CYLI~GER

ICA

SE61

GE1

1-2

201

12

114

21

1I

0.0

0.1

111

111

1.0

0.1

211

211

I.e

0.0

21

21

o.e

0.0

11

11

11

12

.2

21

112

.1

12

111

15

00

.•

05.0

5.1

5.1

5.2

5.2

5.3

5.3

5.4

5.4

5.5

5.5

5.6

5.6

5.7

5.1

5.8

5.8

5.9

5.9

5

:r: I o!>

00

Fig

ure

H-l

5.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

6

Page 285: Prepared by James G. Crose and Robert M. Jones

TEST

CASE

FOR

ASO

LID

SI~GLE

PORO

US

CYLI~CER

ICA

S.b

lGE

STA

RTP

AR

AM

ET

.R--

----

----

----

-I

STO

PP

AR

AM

ET

ER

----

----

----

----

0

IF1

.Pl

CT

OEF

LEC

TIO

NS

C

IFI.

S~AlL

PLC

T.

IF2

,LA

RGE

PLO

T.

01M

ERW

ISE

NOP

L0

1.-

----

-0

hUM

BER

CFA

PPR

OX

IMA

TIU

NS-

----

-0

IF1

.G

ENER

ATE

ME

SH

----

----

---

1

hUM

BER

GF

TEM

PERA

TURE

CA

RO

S---

-2

NUM

BER

CFNO

DAL

PO

INT

S--

----

--0

NUM

BER

OF

EL

EM

EN

TS

----

----

----

0

NUM

BER

OF

I~TERNAL

PRE

SSU

RE

S--

20~ I

NUM

BER

CFM

AT

ER

IAL

S--

----

----

-1

~ ~NU

MBE

ROF

EXTE

RNA

LPR

ESS

UR

ES-

-I

NUM

BER

CFS~EAR

CA

RD

S--

----

---

0

REFE

REN

CET

EM

PE

RA

TU

RE

----

----

-0

.0

NUM

BER

OF

TEN

SIC

N-C

OM

PRES

SIO

NAPPRuXIMATIO~S----

0

Fig

ure

H-1

5.

Co

:mp

ute

rP

rog

ra:m

Ou

tpu

tfo

rE

xa:m

ple

6(C

on

tin

ued

)

Page 286: Prepared by James G. Crose and Robert M. Jones

:r: , U1 o

MES

HGE~ERATIC~

INFoRMATIC~

MAX

IMUM

~ALUE

OFI

INTH

EM

ES

H--

----

--2

MAX

IMUM

~ALUE

OFJ

INTH

E~ESH--------

11

hUM

BER

CFLI~E

SEG

MEN

TC

AR

DS

----

----

--4

NUM

BER

CFBO

UNDA

RYC

oNO

ITIC

NC

AR

DS

----

2

~MBER

Cf

MA

TERI

AL

BLO

CKC

AR

DS

----

----

I

NUM

BER

OF

ITE

RA

TIO

NS

----

----

----

----

--0

POLA

RC

OO

RD

INA

TEPA

RAM

ETER

1--

----

----

C.C

POLA

RCO

ORD

INA

TEPA

RAM

ETER

J--

----

----

0.0

ICU

RYA

TURE

MO

Olf

ICA

Tlo

N--

----

----

----

C

JCUR~ATURE

MO

Olf

ICA

TID

N--

----

----

----

0

Jl

Rl

I0

.01

0.

OIF

F=AR

C.I

CO

C.2

CO

C.3

00C

.400

0.5

00

C.6

000.10~0

C.B

OO

C.9

00

INPU

T

01= I I I I I I I 1 I 1

II I

O.

OJ=

J 2 3 4 5 6 1 8 ~

10

Zl

12

0.1

00

I1

0.

RIN

C=

AZ0

.10

00

.10

00

.10

0C

.I0

00

.10

00

.10

00

.10

00

.10

00

.10

0

J2

R2

Z211

I.CO

OO

.lOC

0.1

00

ZIN

C=

0.0

13C

J3o

ITE

R=

R30

.0 'I

Z3

0.0

IIN

C=

0

IPlI

DN

1JI

NC

=~

KA

PPA

=1

INPU

T

Dis 1

1. J

II

Jl

Rl

11

11

.00

0C

J=O

.O

IFF=

AR

ZI

12

0.1

00

21

.R

INO

=AZ

J2 11O

.C

R2

Z21

31

.00

00

.0C

ZIN

O=

-0.1

00

J3(

IHR

=

R3(.

0 o

Z3

0.0

IIN

C=1

IPT

ICN

1JI

N(=

oK

APP

A=1

Fig

ure

H-1

5.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

6(C

on

tin

ued

)

Page 287: Prepared by James G. Crose and Robert M. Jones

INP~T

I1

JI

RI

II

Ii

J2R

2l2

13

J3R

3l3

IPT

JON

21

11

.00

Cc.

o2

1C

.O0

.0(

CC

.u0

.0I

Gl=

O.

LJ=

10

.D

IF-F

=1

0.

RIr

.C=

-C.1

0C

Zlh

C=

0.0

11ER

=9

IlN

C=

aJI

NC

s-1

KA

PPA

=I

IJ

f,K

Al

2lC

C.9

(O0

.02

SC

.8(O

0.0

28

C.7

00

0.0

21

C.6

eeO

.C2

6C

.50

Ue.G

25

C.4

CO

O.C

24

C.3

l0O

.C2

lC

.2CC

0.0

22

C.I

C()

C.C

Ir.P

Ul

11Jl

;>.1

ZI

12J£

R2

Z21

3J3

~3

nlP

llO

/Io

21

0.0

O.L

1I

o.c

C.l

00

CC

0.0

0.0

1U

=1

.G

J=O

.u

lfF

=1

.kI

NC

=0

.0Zl~C=

0.1

00

ITER

=a

IIN

C=

-1JI

NC

=-=

aK

AP

PA

=l

IJ

ARA

Z

CO

UR

ClN

A1E

SCALC~LAlcC

.FT

£K

1ITEKATI(~S

:I: II

JhP

TYPE

R-O

RD

INA

TE

I-(R

OIN

ATE

RLO

AC

ORD

ISPL

AC

EM

EN

TI

LGA

OO

RoISPlAC£~£NT

en ...1

11

2.0

0.0

C.I

OO

0.0

0.0

21

22

.00

.00

.00

.0-0

.13

30

00

-04

12

32

.0C

.IO

O0

.10

00

.00

.02

24

2.0

0.1

00

c.o

0.0

-0.1

33

00

00

£-0

41

35

2.0

0.2

00

0.1

00

0.0

0.0

23

62

.00

.20

CC

.Oc.

o-0

.13

30

00

-04

14

12

.00

.30

0C

.I0

00

.00

.02

48

2.C

0.3

00

C.O

0.0

-0.1

33

00

00

£-0

41

59

2.0

0.4

00

0.1

00

0.0

0.0

25

10

2.e

0.4

00

c.o

0.0

-0.1

33

00

00

£-0

41

61

12

.00

.50

00

.10

0c.

o0

.02

61

22

.00

.50

0o.

ll0

.0-0

.13

30

00

-04

17

13

2.0

0.6

00

C.1

00

c.o

0.0

27

14

2.e

0.6

00

0.0

0.0

-0.1

33

00

00

£-0

41

81

52

.00

.70

00

.10

00

.00

.02

81

62

.00

.70

00

.00

.0-0

.13

30

00

-04

19

112

.00

.80

00

.10

00

.00

.02

91

82

.00

.80

00

.00

.0-0

.13

30

00

-0'0

11

01

92

.00

.90

00

.10

00

.00

.02

10

20

2.0

0.9

00

0.0

0.0

-0.1

33

00

00

£-0

41

11

21

2.0

1.0

00

C.1

00

0.0

0.0

21

12

22

.01

.00

0c.

o0

.0-0

.13

30

00

-04

Fig

ure

H-1

5.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

6(C

on

tin

ued

)

Page 288: Prepared by James G. Crose and Robert M. Jones

0.0

50

C.1

50

C.1

50

C.2

50

C.2

5C

C.3

50

C.3

5C

0.4

50

C.4

50

0.5

50

0.5

50

C.6

50

(.6

50

C.1

5(

C.7

50

(.8

50

(.8

50

0.9

50

0.9

50

C.I

00

0.1

00

0.0

0.0

C.I

00

0.1

00

0.0

0.0

0.1

00

0.1

00

0.0

0.0

0.1

00

0.1

00

0.0

O.C

0.1

00

0.1

00

0.0

10

00

.CC

O1

12

7.5

00

11

<1

.5C

C1

18

7.5

00

ll8

7.5

ec

12

27

.50

12

27

.50

01

24

7.5

CC

12

47

.50

01

24

7.5

CO

12

47

.50

C1

22

7.5

CC

12

27

.50

0ll

87

.50

C1

18

7.5

00

11

27

.50

01

12

7.5

0C

10

47

.50

C1

(41

.5C

C

~N

RZ

TI

10

.00

.10

00

93

6.

'"N2

0.(

o.e

9310

.3

0.1

00

00

.10

00

10

b4

.4

(.1

00

0O

.C1

0b

4.

5C

.20

00

C.1

00

0U

58

.6

(.2

CO

O0

.01

15

8.

70

.30

00

C.I

00

01

20

8.

8C

.30C

OC

.O1

20

8.

9C

.40

00

C.I

0O

O1

23

8.

10

0.4

00

00

.01

23

8.

11

0.5

00

00

.10

00

12

48

.1Z

0.5

00

00

.01

24

8.

13

0.6

00

00

.10

00

12

38

.1

40

.60

00

0.0

12

38

.1

50

.10

00

C.I

0C

O1

20

8.

16

C.1

0CC

0.0

12

G8

.1

7(.

CO

OO

C.1

00

C1

15

7.

18c.

cOO

C0

.01

15

1.

19

C.5

00

00

.10

00

10

88

.2

0C

.SO

OO

C.O

lGd

d.

21

1.0

00

0C

.I0

00

lCC

8.

22

1.C

CO

OC

.O1

00

8.

Fig

ure

H-1

5.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

6(C

on

tin

ued

)

Page 289: Prepared by James G. Crose and Robert M. Jones

:I: I '" '"

ELI

JK

LM

ATE

RIA

LA

NliL

ETE

MPE

RA

TUR

EFR

ESS

UR

EI

I2

43

10

.01

5ce.c

co

lCC

O.O

OO

2'3

46

51

0.0

15

ce.e

co

11

10

.62

53

56

81

10

.01

50

0.e

oo

11

62

.50

0

"1

810

9I

0.0

15

ce.c

oo

1.2

2.5

00

59

1012

11

10

.01

5C

O.0

00

1.4

2.5

00

61

112

1"

n1

0.0

15

ce.c

eo

1.4

2.5

00

113

1"

161

51

0.0

15

00

.00

01

22

2.5

00

815

16

181

11

0.0

15

ce.c

eo

11

62

.49

59

11

1820

19

I<.

\.01

50

e.e

oo

11

22

.49

91

019

2022

21I

0.0

Iseo

.(eo

lC4

7.5

00

MA

TER

IAL

=I

~o.

OF

TEM

PER

ATU

RES

ATkF

ICH

PR

CP

ER

TIE

SA

RES

PE

CIF

IED

=I

MA

SSCE~SITY

=0

.0PU

RU

SIT

Y=

C.I

cceE

00A

NIS

OT

RC

PYPA

RA

ME

IER

=2

TE

MP

=15

00.

TE

hS

llE

FRC

PER

TIE

SEM

T=1

00

00

00

.tN

T=

10

00

00

0.

ETT=

10

0co

eo

.~UMNT=0.490

NU

MT

T=

0.49

0N

UN

TT

=0.

490

EPT

=1

00

00

00

.COMPRESSI~E

PR

OP

ER

TIE

SEM

C=O

.EN

C=

O.

ETC

=e.

NU

MN

c=e.

oN

UM

TC

-O.O

NU

NT

C=O

.OE

PC=

O.

THER

MA

LAN

CY

IEL

DPR

OPE

RT

IES

FM=

e.1

50

E-0

3FN

=O

.15

0E

-03

FT

-0

.15

0E

-e3

YM=

10C

OO

.Y~-

10

00

0.

YT=

10

00

0.

PEM

R-

1.0

00

PRE

SSU

RE

IJ

222

1

eoU

NC

AR

YC

CN

CIT

ICN

SIN

TE

NSI

TV1

00

.G

Fig

ure

H-1

5.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

6(C

on

tin

ued

)

Page 290: Prepared by James G. Crose and Robert M. Jones

:r: I <n >I>-

r.GO

AL

ftl

r.T 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 IS 20 21 22

UK0

.16

12

08

60

-10

-0.6

17

70

94

0-1

10

.15

83

44

0D

-C4

0.1

58

34

25

0-0

40

.31

71

64

80

-04

0.3

17

16

33

0-0

40

.47

62

28

50

-04

0.4

76

22

89

0-0

40

.63

53

9S

40

-04

0.6

35

40

29

D-0

40

.79

46

06

20

-04

0.7

94

60

48

0-0

40

.95

37

56

50

-04

0.9

53

75

85

0-0

40

.11

12

17

20

-03

0.1

11

27

69

0-0

30

.1<

71

55

8D

-03

0.1

27

15

61

0-0

30

.14

30

03

80

-03

0.1

43

00

35

0-0

30

.15

88

14

40

-03

0.1

58

81

38

0-0

3

Ul

0.0

-0.1~300CCO-04

0.0

-0.1

33

00

Co

o-C

40

.0-0

.13

3C

OC

OO

-04

0.0

-0.1

33

00

00

0-0

40

.0-0

.13

30

0C

OO

-04

0.0

-0.1

33

00

00

£:-

04

0.0

-0.1

33

00

00

0-0

40

.0-0

.13

30

00

00

-04

c.e

-0.1

33

00

00

0-0

40

.0-0

.13

30

00

00

-04

C.O

-0.1

33

00

Co

o-C

4

ELR

lSl

GM

MSl

GM

Al

SlG

MA

TSI

GM

AR

lSI

GMAM

AXSI

GM

AM

lNAN

GLE

SIG

MA

MSI

GM

AN

SIG

MAM

N1

0.0

50

.05

O.

-11

.O

.O

.O

.-1

1.

0.0

0O

.-1

7.

O.

20

.15

0.0

51

1.

-6

.1

1.

O.

11

.-6

.0

.00

11

.-6

.O

.3

0.2

50

.05

18

.1

.1

8.

O.

18

.1

.0

.00

18

.1

.O

.4

0.3

50

.05

22

.5

.2

2.

-a.

22

.5

.-0

.00

22

.5

.-0

.5

0.4

50

.05

24

.7

.2

4.

-0.

24

.7

.-0

.00

24

.7

.-0

.6

0.5

50

.05

24

.7

.2

4.

C.

24

.7

.0

.00

24

.1

.o.

10

.65

C.0

52

2.

5.

22

.o.

22

.5

.0

.00

22

.5

.o.

8C

.75

0.0

51

8.

1.

18

.O

.1

8.

1.

0.0

01

8.

1.

o.9

0.8

50

.05

12

.-s

.1

2.

O.

12

.-5

.0

.00

12

.-5

.O

.1

0C

.95

0.0

55

.-1

2.

5.

o.5

.-1

2.

0.0

15

.-1

2.

O.

Fig

ure

H-1

5.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

6(C

on

tin

ued

)

Page 291: Prepared by James G. Crose and Robert M. Jones

::r: I U1

U1

ELEP

SRE

PS

lEP

STE

PSR

lEP

SMA

XEfS~IN

ANGL

EEP

SMEP

SNEP

SMN

TEM

PERA

TURE

10

.00

1-0

.00

20

.00

10

.00

00

.00

1-0

.C0

2O

.C0

.00

1-0

.00

20

.00

01

50

0.

20

.CC

1-0

.C

O2

0.0

01

0.0

00

0.0

01

-0.0

02

0.0

0.0

01

-0.O

C2

c.oo

o1

50

0.

30

.00

1-0

.00

20

.00

10

.00

00

.00

1-0

.C0

2C

.C0

.00

1-0

.00

20

.00

01

50

0.

"0

.00

1-0

.00

20

.00

1-C

.CO

O0

.OC

1-0

.00

2O

.C0

.00

1-0

.00

2-0

.00

01

50

0.

50

.00

1-0

.00

20

.00

1-C

.OO

O0

.00

1-0

.CC

2O

.C0

.00

1-0

.00

2-0

.00

01

50

0.

60

.00

1-0

.00

20

.00

10

.00

00

.00

1-0

.00

20

.00

.00

1-0

.00

20

.00

01

50

0.

70

.00

1-0

.00

20

.00

1O

.CO

O0

.OC

1-C

.CC

2C

.C0

.C0

1-0

.00

20

.00

01

50

0.

B0

.OC

1-0

.00

20

.00

10

.00

00

.00

1-0

.00

2O

.C0

.00

1-0

.00

20

.00

01

50

0.

90

.00

1-0

.00

20

.00

10

.00

0O

.CO

I-c

.CO

2O

.C0

.00

1-0

.00

20

.00

01

50

0.

10

0.0

01

-0.0

02

0.0

01

0.0

00

0.0

01

-0.0

02

O.C

O.O

CI

-C.0

02

0.0

00

15

00

.

Fig

ure

H-1

5.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

6(C

on

tin

ued

)

Page 292: Prepared by James G. Crose and Robert M. Jones

20enCI.

~

bClz:c...b

10

­...

--"EXACT" SOLUTION (Ref 24)30 6 SAAS III FINITE ELEMENT SOLUTION

01.Clo-----------......--......_-__....._---'o 0.2 0.4 0.6 0.8 1. 0 1. 2

RADIUS· in.

Figure H-l6. Radial and Circumferential Stress in SolidCylinder

H-56

Page 293: Prepared by James G. Crose and Robert M. Jones

N

t::l

10

o

-10

--"EXACT" SOLUTION (Ref 24)6 SAAS III FINITE ELEMENT SOLUTION

-20~_~~__~__~~_~~__~_~o O. 2 0.4 O. 6 O. 8 1. 0 1. 2

RADIUS - in.

Figure H-l7. Axial Stress in Solid Cylinder

H-57

Page 294: Prepared by James G. Crose and Robert M. Jones

H.7 THICK SPHERICAL SHELL OF A MULTIMODULUS ISOTROPICMATERIAL UNDER INTERNAL AND EXTERNAL PRESSURE

In order to illustrate the iteration and convergence features of

SAAS III for multimodulus materials, SAAS III results are compared with

an exact solution due to Ambartsumyan and Khachatryan (Ref. 18) for a

thick spherical shell of an isotropic material with different moduli in

v , is O. 1. Note thatc

satisfy Ambartsumyan' s reciprocal relation

tension and com pre s sion subj ected to internal and exte rnal pre s sure. The

thick spherical shell has an internal radius of 5 inches and an external

radius of 10 inches. The tensile modulus, Et

, is 6 x 10 6 psi, the

compressive modulus, E, is 3 x 106

psi, the tensile Poisson's ratio,c

vt' is 0.2, and the compressive Poisson's ratio,

the moduli and Poisson's ratios

=

The internal pressure is 100 psi, and the external pressure is -100 psi

(tension on the surface).

As was shown in Example 4, the finite element solution is obtained

for a wedge -shaped ring of the spherical shell so that full advantage is taken

of the spherical symmetry of the problem within the limitation of SAAS III

to axisymmetric solids. A schematic diagram of the wedge-shaped ring is

presented again in Figure H-18. A short computer program was written

to generate the geometry of the wedge-shaped ring, subject to the constraint

that H equal W in Figure H-18 (i. e., an aspect ratio of I was prescribed)

as closely as possible for a fixed angle, a. Thus, the angle a is varied

to obtain different numbers of elements in the radial direction.

The computer output is given in Figure H-19. Note that the wedge­

shaped ring is treated by use of the skew boundaries capability described

in Appendix A.

H-58

Page 295: Prepared by James G. Crose and Robert M. Jones

10

w--.

z

NC>.."'a 01

Ht

Figure H-l8. Schematic Diagram of Wedge -Shaped Ring

Extensive numerical and theoretical results for the thick spherical

shell problem are given in Table H-3. The numerical results were

obtained by use of the IBM 360/65 computer. The four-element solution

is within 6 percent of the exact solution. Further accuracy improvement

is achieved with increased elements, but the results are masked by the

truncation of stresses in the SAAS III program.

H-59

Page 296: Prepared by James G. Crose and Robert M. Jones

10

20

30

40

50

601

08

01234561890123~561890123456189012345618S01234561890123456189012345078901234567890

lAH

E-

AH8A~TSUHYAN

SPH

ER

ICA

LW

EOG

ET

EST

CA

SE-

4ElE~ENTS

10

10

01

04

12

CO

.5

1-5

.12

95

84

.91

50

21

-0.4

99

16

12

-11

'0.2

10

42

4.9

75

02

10

.49

91

67

3-5

.12

95

85

.18

92

24

-0.5

80

86

04-17~.

21

04

25

.18

92

24

0.5

80

86

05

-5.1

29

58

6.8

50

93

8-0

.68

13

81

6-1

1'0

.27

04

26

.85

09

38

0.6

87

38

11

-5.1

29

58

8.2

15

31

0-0

.82

42

86

8-1

74

.27

04

28

.21

53

10

0.8

24

28

69

-5.1

29

58

9.9

50

04

2-0

.99

83

34

10

-17

4.2

10

42

9.9

50

u4

20

.99

83

34

12

13

41

24

35

61

36

51

81

48

79

10

11

1O

.O

.6

.*6

6.+

66

.+6

.2.2

.26

.+6

3.+

63

.+6

3.+

6.1

.1.1

3.+

6

21

10

0.

~9

10

-10

0.

I ""EN

OO

FC

ASE

0

Fig

ure

H-1

9.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

7

Page 297: Prepared by James G. Crose and Robert M. Jones

LAM

E-

A~BARTSU~YAN

SPH

ER

ICA

L.EC~E

TE

STC

ASE

-4

EL

EH

EN

Ts

STA

RT

PA

RA

ME

TE

R--

----

----

----

-1

STO

PP

AR

AH

ET

ER

----

----

----

----

0

IFI,

PlC

TD

EFL

EC

TIU

NS

C

IFI,

S~ALL

PL

CI.

IF2

,LA

RG

E

PL

CI.

OI~ER.ISE

NOP

lCT

.---

---

0

NU

MBE

RCF

APFRC~IHATICNS------

1

IFI,

GEN

ERA

TEH

ES

H--

----

----

-0

NU~BER

CfTE~PERATURE

CA

RC

S--

-0

NU

HB

ERC

FN

OC

Al

FO

INIS

----

----

10

NU~BER

CF

EL

EH

EN

TS

----

----

----

4

~UHfER

GF

INTE

RN

AL

PR

ES

SlR

ES

--0

~ I~UMBER

CF

~ATERIALS-----------

I0

' -~UHBEk

OF

E~TERNAL

PR

ES

SC

RE

S--

2

~U~BER

CF

ShE

AR

CA

RC

S--

----

---

0

RE

FER

EN

CE

TE

MP

EP

AT

UR

E--

----

---

0.0

NU

HfE

RIF

IE~SlCN-COMPRtSSICNAPPRU~IMATICN5----

5

Fig

ure

H-1

9.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

7(C

on

tin

ued

)

Page 298: Prepared by James G. Crose and Robert M. Jones

NODA

LPO

Il\T

TY

Pt

k-C

f<D

I/'li.

ATE

I-C

RC

lf\A

Tl:

KLCA~

GWLlSPL~CEM~/'IiT

ILO

ADlR

OlS

PlA

CtM

EN

TTE

MPE

RATU

RE,R

ES

SU

RE

1-5

..73

4.9

75

-C.4

<;0

;e.

.e0

.00

.00

.02

-17

4..2

74

.97

50

..49

9C

.Oo

.C0

.00

.03

-5.7

35.

78<

1-C

.~El

c.o

0.0

0.0

0.0

•-1

74

.27

5..7

69

<..

.581

c.o

o.e

0.0

0.0

5-5

.73

6..

85

1-C

.H:7

e.u

0.0

0.0

0.0

6-1

74

.27

6..8

51

o.t

E7

c.c

c.c

0.0

0.0

7-5

.73

0.2

15

-C.

E2A

C..

D0

.00

.00

.08

-17

4..

27

8.2

15

0..82~

c.o

0.0

0.0

0.0

~-5

.73

~.950

-e.g

Sae.

c0

.00

.00

.0Ie

-17

4.2

7S

.95

0C

.<;<

;8c.o

o.e

0.0

0.0

El I 2 3 •

I 2 • t 8

J I 3 5 7

KL

3•

56

78

~1

0

MA

TER

IAL

I 1 I I

ANG

LE0

.00

.00

.00

.0

TE

flPE

RA

TU

RE

0.0

o.c

o.e

c.c

PRES

SUR

E0

.00

.00

.00

.0

::r: I cr-­

N

MA

TER

IAL

=1

NO

.CF

TEM

PER

ATU

RES

AT~HIC~

PRC

PER

TIE

SAR

ES

PE

CIf

IED

.1

MA

SSD

EN

SIT

Y=

0.0

POR

CSI

TY

=0

.0A~ISCTRLPY

PARA

MET

ER=

0

TEM

P=o

.T

EN

SIL

EFR

GPE

RT

IES

EHT'

=<6

00

00

00

.EN

T=6

00

00

00

.E

T7=

6ecco

eo

.N

UM

NT

=C.2

00N

U"'

TT

=O.2

00N

UN

TT

-O.2

00E

PT-

60

00

00

0.

CO

MP

RE

SS

I.E

,.O

PE

RT

IES

EMC~

3CO

OO

OO

.EN

(..=

30

00

00

0.

ET

C=

300C

OO

O.

t-.U

MN

C=O

.100

NU

MIC

:o::O

.IOO

kU

kT

C-0

.I0

0E

PC-

10

00

00

0.

THER

MAL

~l\C

YIE

LD

PRC

FER

TIE

SA

M=

C.O

AN=

0.0

AT

:0

.0YM

=o

.Y

N=

o.V

I'"O

.'E

M"

0.0

PRE

SSU

RE

IJ

2I

91

0

eOuN

GA

RY

CG~CITI(~S

It.T

EN

S1T

Y1

0C

.C

-lO

u.-C F

igu

reH

-19

.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

7(C

on

tin

ued

)

Page 299: Prepared by James G. Crose and Robert M. Jones

hCD

Al

PC

II\T

UR

Ul

I0

.17

68

CS

20

-C3

0.0

2-0

.17

68

0S

20

-03

O.C

30

.15

18

47

10

-03

O.C

4-0

.15

18

47

10

-03

0.0

50

.14

77

98

90

-03

0.0

6-0

.14

77

98

90

-03

C.C

70

.14

13

81

00

-03

C.O

8-0

.14

13

81

00

-03

0.0

90

.15

61

02

00

-C3

0.0

10-0

.15

61

02

00

-03

0.0

ELR

ISIG~AR

SIG

MA

lSIG~Ar

SIG

MA

RlSIGMA~AX

SIG

MA

MIN

AhG

LESI

GH

AH

SIG

HA

hSI

GH

AII

NI

5.3

80

.0-5

2.

21

7.

21S

.-0

.2

11

.--

:>2.

-90

.00

-52

.2

11

.-0

.2

6.3

20

.01

7.

18

3.

18

4.

-0.

18

3.

11

.-9

0.C

O1

1.

18

3.

-0

.3

7.5

30

.06

3.

16

1.

H2

.-C

.1

61

.6

3.

-90

.0C

63

.1

61

.-0

.4

s.oa

0.0

'::i1

•1

41

.1

48

.-0

.1

41

.9

1.

-90

.00

91

.li

t7.

-0

.

:r: I cr--

coE

lE

PSR

"PS

lE

Psr

EP

SR

IEPS~AX

EfS~IN

AN

GLE

EPSM

EPS

NE

PSII

NIE

IIPE

RA

TU

RE

1-0

.00

20

.00

30

.00

3-O

.OO

C0

.00

3-0

.C0

2O

.C-0

.00

20

.00

3-0

.00

0o.

2-O

.CC

I0

.00

20

.OC

2-O

.CO

O0

.00

2-0

.00

1O

.C-0

.00

10

.00

2-0

.00

0o.

3-O

.OO

C0

.00

20

.CC

2-G

.CC

C0

.00

2-C

.CO

OC

.C-0

.00

00

.00

2-0

.00

0o.

4O

.CC

I0

.CC

20

.OC

2-O

.OC

O0

.OC

2G

.CO

IO

.C0

.00

10

.00

2-0

.00

0o.

Fig

ure

H-1

9.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

7(C

on

tin

ued

)

Page 300: Prepared by James G. Crose and Robert M. Jones

NO

DA

LP

OIN

TUH

Ul

10

.18

30

20

20

-03

0.0

2-0

.18

30

20

20

-03

0.0

30

.15

10

31

70

-03

0.0

4-0

.15

10

31

10

-03

0.0

5O

.H7

15

29

0-0

3O

.C6

-0.

14

71

52

9D

-03

0.0

10

.14

68

5C

I0-0

30

.08

-0.H

68

5C

1D

-03

0.0

90

.15

62

38

10

-03

0.0

10

-0.1

56

23

81

0-0

30

.0

El

RI

SlG

MA

RS

IGM

Al

SIG

MA

lSI

GM

AR

lSI

GM

AM

AX

SIG

MA

MIN

AN

GLE

SIG

MA

NSI

GM

AN

SIG

NA

MN

15

.38

0.0

-51

.2

21

.2

23

.-0

.2

21

.-5

1.

-90

.00

-51

.2

21

.-0

.2

6.3

20

.01

8.

18

3.

18

4.

-0.

18

3.

18

.-9

0.0

01

8.

18

3.

-0

.3

1.5

30

.06

3.

16

0.

Itl.

-0.

16

0.

63

.-9

0.C

C6

3.

16

0.

-0

.4

9.0

80

.09

1.

14

1.

14

1.

-0.

14

7.

51

.-9

0.0

09

1.

1-'

1.

-0

.

~ I 0' "'"

El

EPS

RE

PS

lE

PST

EP

SR

IEP

SMA

XE

PSM

l1't

AN

(,U

EPSM

EPS

NEP

SMN

lEM

PEH

AT

UR

E1

-0.O

C3

0.C

C3

0.0

03

-0.0

00

0.0

03

-0.0

03

O.C

-0.0

03

0.0

03

-0.0

00

O.

2-0

.00

10

.C0

20

.00

2-O

.OO

C0

.00

2-0

.C

elO

.C-O

.OC

I0

.00

2-0

.00

0O

.3

-O.O

CO

0.C

02

0.0

02

-0.0

00

0.0

02

-0.0

00

O.C

-0.0

00

0.0

02

-C.O

OO

O.

40

.00

10

.00

20

.00

2-0

.00

00

.00

2O

.OC

IC

.CO

.OC

l0

.00

2-0

.00

0o.

Fig

ure

H-1

9.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

7(C

on

tin

ued

)

Page 301: Prepared by James G. Crose and Robert M. Jones

MoD

AL

PCI~T

Uk

UI

10

.18

30

2tl

C-C

30

.02

-0.1

83

02

(10

-03

0.0

30

.15

10

31

10

-03

0.0

4-0

.15

10

31

10

-0G

.O5

0.1

41

15

29

G-0

30

.06

-0.1

41

15

2S

0-0

30

.01

0.1

46

85

G7

0-0

30

.08

-0.14t8~C7D-0

0.0

9O

.15

b2

3B

IC-C

30

.010

-0.1

5t2

3E

lC-C

30

.0

El

RI

SIG

MA

RSI

GM

AI

SIG

MA

TSI

GM

AR

ISIGMA~AX

SIG

MA

MIN

AN

Gle

SIG

MA

MSI

GM

AN

SIG

MA

""I

5.3

8O

.c-5

1.

22

1.

22

3.

-0.

22

1.

-51

.-9

0.0

0-5

1.

22

1.

-0

.2

6.3

20

.01

8.

18

3.

18

4.

-0.

IB3

.1

8.

-90

.00

18

.1

83

.-0

.3

1.5

3O

.C6

3.

16

0.

Itl

.-G

.Ib

O.

63

.-9

0.0

06

3.

16

0.

-0

.4

S.0

8G

.e9

1.

14

7.

14

1.

-0.

14

7.

91

.-9

0.0

09

1.

14

1.

-0

.

::r::

I 0' '"

El

EPS

RE

PS

ItP

ST

EP

Sk

lEPSM~X

EFS~IN

AN

GLE

EPSM

EPS

NEP

SMN

TEM

PER

ATU

RE

1-0

.00

0.C

03

0.0

03

-C.l

OC

a.u

o3-C

.CC

3c.

c-0

.OG

3c.0

03

-0.0

00

O.

2-0

.00

10

.00

20

.00

2-\

l.O

Ol

0.0

02

-0.0

01

O.C

-O.O

CI

0.0

02

-0.0

00

O.

3-O

.OO

G0

.C0

20

.GC

2-G

.CD

CC

.CC

2-c

.CC

OC

.C-0

.00

00

.00

2-0

.00

0O

.4

C.O

CI

O.G

l20

.00

2-o

.OO

C0

.00

2O

.CO

IO

.C0

.00

10

.00

2-0

.00

0O

.

THE

PRO

CED

UR

ECl~VERGEG

I~

3TE~SIO~

-Cl~PkESSICN

ITE

RA

TIC

NS

Fig

ure

H-1

9.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

7(C

on

tin

ued

)

Page 302: Prepared by James G. Crose and Robert M. Jones

:r: I 0'

0'

TA

BL

EH

-3

EX

AC

TA

ND

CO

MP

UT

ER

RE

SU

LT

SF

OR

ST

RE

SS

ES

INA

TH

ICK

SP

HE

RIC

AL

SH

EL

LO

FA

MA

TE

RIA

LW

ITH

DIF

FE

RE

NT

TE

NS

ILE

AN

DC

OM

PR

ES

SIV

EM

OD

UL

I

No

.o

fN

o.

of

Itera

tio

ns

Str

ess

at

Cen

ter

of

Inn

erm

ost

Ele

men

t

Ele

men

tsfo

rC

on

verg

en

ce

aa

a-

qa

arE

XA

CT

rS

AA

SZ

BE

XA

CT

zSA

AS

gS

AA

S

43

-53

.84

8-5

1-

22

.3.1

422

.1-

22.3

.

73

-68

.06

8-6

7.

23

2.1

22

32

.2

32

.

18

3-8

7.3

20

-87

.2

44

.70

24

5.

24

5.

35

3-9

3.1

87

-93

.2

48

.62

24

9.

24

9.

Page 303: Prepared by James G. Crose and Robert M. Jones

H.8 PLANE STRESS SOLUTION TO THE BENDING OF A CANTILEVERBEAM

In order to illustrate the plane stress option, SAAS III results are

compared to a two-dimensional theoretical result (Ref. 27) for a cantilever

beam loaded at the free end by a parabolical shear distribution.

The finite element model of a cantilever beam is illustrated in

Figure H-20. Two fixed end boundary conditions were investigated in

Ref. 27. The first sets the slope of the mid-surface at the end to zero.

The second sets the rotation of the normal to the mid-surface equal to zero

at the mid-surface. Both boundary conditions allow warping of the end

cross section and enable One to find simple closed-form solutions to the

problem. With SAAS III, the fixed end condition was obtained by specifying

zero longitudinal (u ) displacement of all nodal points at the end plusr

zero transverse (u ) displacement of the nodal point at the mid-surface.z

Since this boundary condition does not exactly duplicate those employed in

Ref. 27, absolute convergence of results will not be demonstrated.

However, the conditions are sufficiently similar so that the theoretical

solution serves as a reasonable check on SAAS III results.

The total shearing force applied on the ends of the cantilever is

1000 pounds. Young's modulus was 30 x 106 psi and Poisson's ratio

was 1/3. Part of the computer printout is shown in Figure H-21.

Figure H-22 is a computer-generated plot showing the deformed

shape of the cantilever with exaggerated displacements (u x 50). This

illustrates the capability of plotting deformed grids for rapid screening

of computer results. Figure H-23 is a computer -generated plot of con­

tours of longitudinal stress, (J.r

As can be noted from the printout, the end point deflection of

0.01672 compares favorably with that given by Timoshenko (Ref. 27) of

u (r = 0, z = 0) = 0.016666 ..•.• and u (r = 0, z = 0) = 0.017333 .•.• forz zthe first and second boundary conditions respectively.

H-67

Page 304: Prepared by James G. Crose and Robert M. Jones

11.

9.

5.

(J)....~ -1.I~

-1.Z-AXIS

1.

Figure H-20. Element Plot

H-68

Page 305: Prepared by James G. Crose and Robert M. Jones

IG20

30

40

50

60

70

80

12345~18q012345678q01234567H9012345678901234567890123456789012345678901234567890

8EhC

lhG

GFA

CANTILEVE~

8EAM

21

11

01

1-2

120

1121

42

11

11

.1

n1

0.

1.

11

21

10

.1

.1

1L

l1

0.

-1.

111

211

0.

-I.

111

-I.

111

1-1

.1

1I.

1I

11<

l21

1.

tt

•I

<l

3.

1III

12

1

-I.

-1.

••?G

.1

1.3

E+

&•

3l+

8.3

E+

/j.3

33

33

.33

33

3.3

33

33

.3E

+8

11IG

14

2.5

109

3B

2.5

98

5t2

.5~

76

B2

.?7

67

42

.5

:r:6

57

42

.5I

54

68

2.'

cr-

43

56

2.5

'"'3

23

82

.'2

11

42

.5<

212

22

14

2.5

222

22

331

>2.

522

32

24

56

2.5

22

.U

S6

82

.?~2~

22

61

42

.522

62

27

74

2.5

.27

22

86

B2

.522

82

29

56

2.5

22

923

D3

82

.523

023

11

42

.53 1

9.1

3+

5.1

0+

5.G

7+

5.0

4+

5.0

-.C~+S-.07+5-.10+5-.13+5

..9

80

0.

60

0.

40

0.

20

0.

.C-2

00

.-4

00

.-6

0C

.-8

00

.5

9.1

3+

5.1

0+

5.G

7+

5.0

4+

5.0

-.O~+5-.07+5-.10.5-.13+5

EI\C

CFCA

SE

Fig

ure

H-2

1.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xarr

.ple

8

Page 306: Prepared by James G. Crose and Robert M. Jones

:r: I --l

o

6ENOl~G

LFA

CANTILE~ER

6EA~

ST

AR

lP

Ak

Ap

cT

cR

----

----

----

---

1

STC

FPAR~PETEk----------------

0

IFI,

PLC

TD

tfL

llT

ICN

S1

IFI,

SP

AL

LF

LO

.IF

Z,

LA

k(E

PL

ll.GT.~K.lSE

NOP

LO

I.--

----

10

1

NO

PBE

kLF

APPkLXl~ATIGNS------

0

IFI,

GE~ER~TE

PE

Sh

----

----

---

1

~UM6ER

(FT

EPP

EPA

TU

kEC

Ak

CS

---

-2

NU

MBE

RC

fN

GD

AL

PO

INIS

----

----

0

~UPBfR

Cf

EL

EM

cN

1S

----

----

----

0

NU

P8cR

Lf

INT

tRN

AL

PR

tSS

lRE

S--

0

~UPHER

(f

~ATlkIALS-----------

I

NO

MBE

RC

FEX

TER

NA

LP

kE

SS

LR

ES

--0

~UPBER

(f

ShE

AR

CA

RD

S--

----

---

20

RE

fER

EN

(ET

EP

Ptk

AT

UR

E--

----

---

0.0

lhE

PLA

NE

ST

RtS

SL

PII

CN

HA

SB

EEN

SEL~CTE[

~O~HER

(f

TE

NS

ILN

-CL

PP

KE

SS

ILN

APFRlXl~ATl(NS----

C

NO

TE

:M

esh

Gen

erat

ion

Dat

aH

asB

een

Del

eted

Fig

ure

H-2

l.C

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

8(C

on

tin

ued

)

Page 307: Prepared by James G. Crose and Robert M. Jones

~ATE~IAL

=1

NO

.C

FT

EM

PER

AT

UR

ES

AT

.hIC

HP~CPERTIES

ARE

SP

EC

IFie

D=

IM

ASS

CH

SIT

Y=

0.0

PUR

OS

ITY

=0

•.0A

NIS

GT

RG

PYPA

RA

ME

TE

R=

0

HT

=3

00

00

00

0.

AT=

0.0

YM=

NU

IIT

T=

0.3

33

EF

T=

30

00

00

00

.

O.

PEM

R=

0.0

o.E

PC=

NU

NT

C=O

.O

o.'Y

T=

IIU~TC=O.O

IIU

Mll

=0

.33

3N

llMN

T=

0.3

33

O.

YN

=

NU

MN

C=O

.Oo.

ET

C=

TE

MP=

C.

TE

NS

ILE

FR

OP

ER

TIE

SE~T=

30

00

00

00

.E

NT

=3

00

00

00

0.

CO

MPR

ESS

IVE

PR

OP

ER

TIE

SEM

C=

o.

EN

C=

O.

THER

MA

LA

NC

VIE

LO

PR

OP

ER

TIE

SA

M=

C.O

AN

=0

.0

SHEA

R8C

lNC

AR

VC

GN

OIT

ICN

SI

JIN

TE

NS

ITV

11

10

14

2.5

10

53

82

.59

85

62

.58

7b

82

.57

b7

42

.56

<7

42

.5:r:

-1

54

68

2.5

-J

43

56

2.5

-3

23

82

.52

11

42

.52

21

22

21

42

.52

22

22

33

82

.52

<3

£2

45

62

.52

24

22

:62

.52

25

22

67

42

.52

26

22

77

42

.52

27

22

86

82

.52

28

22

55

62

.52

29

23

03

82

.52

30

23

11

42

.5

Fig

ure

H-2

1.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

8(C

on

tin

ued

)

Page 308: Prepared by James G. Crose and Robert M. Jones

:r: I -J N

~OOAL

PU

NT I 2 3 4 5 6 7 8 9 10 11 12

13

14

15

16 17

18

H 20

21

22

23

2~

25

26

27

28

29

30

31 32

33

34

35

36

37

38

39

40

UR0

.24

34

88

90

-02

0.1

94

22

75

0-0

20

.14

53

46

40

-02

0.9

67

44

33

0-0

30

.48

32

64

50

-03

0.4

13

60

40

0-1

0-0

.48

32

64

00

-03

-0.9

67

44

39

0-0

3-0

.14

53

46

40

-02

-0.1

94

22

15

0-0

2-0

.24

34

88

80

-02

0.2

42

85

56

0-0

20

.19

37

23

90

-02

0.1

44

97

32

0-0

20

.96

48

61

30

-03

0.4

81

96

78

0-0

3-0

.33

15

48

30

-08

-0.4

82

01

38

0-0

3-0

.96

"9

82

60

-03

-0.1

4'<

97

79

0-0

2-0

.19

37

2n

O-0

2-0

.2"2

85

55

0-0

20

.24

10

26

40

-02

0.1

92

26

56

0-0

20

.14

38

71

00

-02

0.9

57

50

99

0-0

30

.47

82

97

10

-03

-0.1

97

58

79

0-0

7-0

.41

83

85

50

-03

-0.9

57

77

01

0-0

3-0

.14

38

89

00

-02

-0.1

92

27

41

0-0

2-0

.24

10

26

60

-02

0.2

37

99

12

0-0

20

.18

98

38

10

-02

0.1

42

04

35

0-0

20

.94

53

68

90

-03

0.4

12

24

13

0-0

3-0

.68

00

74

50

-0

8-0

.47

23

79

00

-03

Ul

0.1

67

16

19

0-0

10

.16

71

03

0-0

10

.16

71

60

50

-01

00

16

71

59

10

-01

0.1

67

15

84

0-0

10

.10

15

82

0-C

!0

.16

71

58

40

-01

0.1

01

59

10

-01

0.1

61

16

06

0-0

10

.16

11

03

0-0

10

.16

71

HO

O-O

I0

.15

48

04

90

-01

0.1

54

79

14

0-0

10

.15

41

76

40

-01

0.1

54

76

53

0-0

10

.15

41

58

n-0

10

.15

47

63

50

-01

0.1

54

16

96

0-0

10

.15

41

73

91

;-0

10

.15

41

76

50

-01

0.1

54

78

90

0-0

10

.15

48

04

90

-01

0.1

42

51

19

0-0

10

.14

24

82

60

-01

0.1

42

45

08

0-0

10

.14

24

30

EO

-Ol

0.1

42

42

2ID

-OI

0.1

42

43

30

0-0

10

.14

24

4C

90

-01

0.1

42

44

43

0-C

I0

.14

24

55

80

-01

0.1

42

48

19

0-0

10

.14

25

11

90

-01

C.1

30

33

98

0-0

1C

.13

02

9C

90

-Cl

0.1

30

24

83

0-0

10

.13

0n

C4

0-C

I0

.13

02

14

10

-01

0.1

30

22

38

0-C

l0

0l3

C2

31

l0-0

1

Fig

ure

B-2

!.C

om

pu

ter

Pro

gra

De

Ou

tpu

tfo

rE

xam

ple

8(C

on

tin

ued

)

Page 309: Prepared by James G. Crose and Robert M. Jones

~COAl

PCI~T

Uk

LZ41

-0.9

45

67

tlZ

G-C

3C

.13

C2

34

50

-01

42-0

.14

2C

6>

40

-02

(.1

3C

25

EeO

-(1

43

-0.1

89

84

78

0-0

2l.

13

C2

97

60

-CI

44

-0.2

37

9>

13

0-C

2C.13C33~eO-CI

45U

.23

37

43

0C

-02

0.l

lb3

4S

90

-01

46

0.I

E6

43

75

0-C

2C

.11

82

8C

8C

-Cl

41

0.1

39

4S

54

C-C

2C

.11

82

29

60

-01

4e

0.>

28

41

31

O-C

3C

.1H

1H

3C

-Ol

4<;

0.4

63

80

81

C-0

30

.11

81

SC

6C

-Cl

5C0

.1%

43

36

0-0

70

.11

81

95

<;C

-Ol

51

-0.463~911D-03

o.1

1E

50

-Cl

52

-C.

,2b

C7

95

0-C

3C

.11

82

08

9C

-Ol

53-0

.13

S5

1>

SO

-C2

C.1

18

24

46

0-C

154

-O..

lS6

45

2b

lJ-0

2C

.l1

B2

S4

CC

-01

55

-0.<

33

74

2>

0-0

20

.llE

J4S

S0

-01

56

0.2

28

28

C5

C-0

<'

0.1

06

10

02

60

-01

57

0.1

82

00

10

0-0

2C

.IC

t51

82

0-C

I5

80

.13

62

21

10

-02

0.1

0E

45

cS

O-0

15S

O.>

C6

t22

40

-03

C.I

0E

41

>1

0-0

16

0O

.45

29

4S

2C

-1.3

c.l

L6

4C

S,C

-C1

tl

C.2

32

S3

CL

O-C

l0

.10

04

09

7C

-01

62

-0.4

52

S6

26

0-0

C.l

CE

4l<

>C

-CI

:r:63

-C.>

C6

8C

C,C

-C3

0.1

00

42

92

0-0

1

1b

4-0

.13

6L

42

4C

-CL

0.1

06

41

42

0-C

l--

J6

5-U

.18

20

83

10

-02

C.1

06

53

26

0-0

1'-"

66-0

.22

82

8l5

0-C

Z0

.IC

I'6

02

1O

-C1

t10

.22

16

04

0C

-02

C.S

51

58

>0

0-0

2Eo

0.1

16

72

74

0-C

2C

.'i5

C6

2C

3C

-02

6>0

.13

22

20

20

-02

0.9

4>

91

51

0-0

21

00.E7S98210-~3

O.S

4S

41

15

0-0

271

0.4

3S

63

10

C-C

3C

.94

SJl

>5

0-0

272

0.2

4"8

4>

SO

-C1

C.S

49

26

10

0-0

27

3-0

.43

95

95

90

-C3

O.S

4S

2E

1C

O-C

274

-O.8

EO

OE

84

0-C

3U

.94

95

47

5C

-02

75-0

.U

2Z

35

1l;

-C2

C.9

50

C1

C7

0-G

276

-0.1

16

13

99

C-C

2C

.S5

C1

42

4D

-02

77

-u.

<'2

10

04

00

-C2

(.9

51

58

>1

O-C

21

80.213113~C-02

C.8

4C

7>

33

0-0

27S

0.1

70

41

6'-

0-0

2C

.83

S7

C2

2D

-C2

80

o.1

27

49

11

C-C

2C

.d3

89

lt2

C-C

2

Fig

ure

H-2

1.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

8(C

on

tin

ued

)

Page 310: Prepared by James G. Crose and Robert M. Jones

::c I ;;;!

"CO

AL

PCl~T 81

82

83

04

85

06

87

88

89

9C 91

S2

93

S4

S5

96

S7

98

99

10

01

01

10

21

03

10

41

05

10

61

07

10

81

09

11

0III

11

21

13

11

41

15

11

61

17

11

81

19

12

0

uKu

.8

4&

46

77

0-0

30

.42

38

76

70

-03

0.4

33

14

78

0-0

7-0

.42

37

14

60

-03

-0.6

4d

46

S1

0-0

3-0

.12

74

S8

8D

-C2

-0.1

70

42

59

0-0

2-0

.21

37

13

60

-02

0.2

04

60

96

0-0

20

.16

31

35

10

-02

0.1

22

03

55

0-0

20

.81

21

09

30

-03

0.4

05

72

22

0-0

30

.94

50

32

40

-07

-0.4

05

51

98

0)-

03

-0.8

12

02

34

0-0

3-0

.12

20

36

40

-02

-0.1

63

14

35

0-0

2-0

.lC

46

0S

6C

-02

0.1

94

29

15

0-C

20

.15

48

85

20

-C2

0.1

15

85

C4

0-0

20

.71

08

92

10

-03

0.3

85

12

24

0-0

30

.11

12

14

70

-06

-0.3

84

89

S4

0-0

3-0

.77

07

8S

aO

-03

-0.1

15

85

12

0-C

2-0

.15

48

S(8

0-C

2-O

.19

42

S1

80

-C2

0.1

82

75

98

0-0

2C

.14

56

63

30

-02

0.I

C8

93

29

0-0

20

.72

47

50

10

-03

0.3

62

01

94

0-0

0.4

.11

83

0-0

7-0

.3

61

9C

4L

D-

C3

-0.7

24

7C

30

0-0

3-0

.10

89

33

20

-02

-0.1

45

66

41

0-C

2

Ul

0.6

36

41

13

0-0

20

.83

81

03

60

-(2

0.8

38

08

54

0-0

20

.83

01

2(9

0-C

20

.83

84

36

30

-02

0.8

39

01

92

0-0

20

.83

97

91

10

-C2

C.6

4C

79

35

0-0

2O

.13"

t2"

tt:l

O-C

20

.73

30

41

90

-02

0.7

32

lf5

lD-0

20

.73

15

72

80

-02

0.7

"IU

30

0-0

20

.73

11

33

10

-02

0.7

31

17

53

0-0

20

.73

15

40

70

-02

0.7

"2

20

18

0-0

20

.73

30

90

40

-02

0.7

34

24

64

0-0

2O.632~5Lt1D-C2

0.6

31

23

93

C-0

20

.63

(24

12

0-0

20

.62

95

52

00

-02

0.6

<S

I62

50

-02

0.6

29

C0

39

0-0

20

.62

90

65

10

-02

0.6

29

49

81

0-0

20

.6"0

25

39

0-0

2O.6312!:~4C-C2

0.b

32

55

48

0-C

2C

.53

63

25

60

-C

20

.53

48

78

60

-02

0.5

33

75

56

0-0

20

.53

29

69

10

-02

o.5

"2

51

J1

0-(

20

.53

23

29

10

-02

0.5

32

43

50

0-0

20

.53

29

4<

80

-02

C.5

33

71

11

0-C

20

.53

4H

26

C-C

2

Fig

ure

H-2

1.

Co

mp

ute

rP

rog

ram

0u

tpu

tfo

rE

xam

ple

8(C

on

tin

ued

)

Page 311: Prepared by James G. Crose and Robert M. Jones

:r: I --.) en

,",O

OA

lp

Cl"

,r1

21

12

21

23

12

41

25

1zt

12

71

28

12

91

30

13

11

32

13

31

34

13

51

36

13

71

38

13

91

40

14

11

42

14

31

44

1"5

14

61

47

14

81

49

15

01

51

15

21

53

15

41

55

15

61

51

15

81

59

16

0

Uk

-0.1

82

16

00

0-0

20

.17

0C

14

20

-C2

0.1

35

46

67

C-G

20

.10

12

"18

0-U

20

.67

37

06

10

-03

0.3

36

45

26

0-C

3-O.20549~70-C7

-0.3

30

42

57

0-0

-0.6

73

70

50

0-0

-0.1

01

28

52

0-C

2-0

.13

54

68

1O

-C2

-0.1

70

01

43

0-C

20

.15

60

54

90

-C2

0.1

24

29

66

0-0

20

.,2

89

97

S0

-C3

0.6

17

81

30

0-0

30

.3C

85

04

00

-C3

-0.8

73

73

65

0-0

8-0

.3C

84

82

5U

-0-0

.61

78

81

40

-03

-C.9

29

10

83

0-C

3-0

.12

43

00

70

-02

-0.1

56

05

47

0-0

20

.14

08

81

80

-02

0.1

12

15

3%

-02

0.8

37

93

54

0-(

30

.55

71

61

60

-03

0.2

78

21

6S

0-0

30

.20

76

27

10

-07

-0.2

78

13

79

0-0

3-0

.55

71

98

90

-03

-0.838068~0-03

-0.1

12

H3

10

-02

-0.1

40

88

08

0-0

20

.12

44

n8

0-C

20

.99

04

96

00

-03

0.7

39

76

C9

0-C

30

."9

17

37

60

-03

0.2

45

49

14

0-0

30

.3It

23

13

10

-07

II

0.5

36

32

55

0-0

20

.44

61

65

80

-02

0.4

44

57

27

0-0

20

.44

33

21

40

-02

0.4

42

43

35

0-0

20

.44

19

36

40

-02

0.4

41

75

55

0-C

20

.44

19

06

20

-02

C.4

42

46

C2

0-0

20

.44

33

56

60

-02

0.4

44

58

18

0-C

20

.44

61

65

60

-02

0.3

62

t62

40

-C2

C.3

6C

92

6,O

-02

0.3

59

54

16

0-0

20

.35

85

92

70

-C2

0.3

58

C8

91

O-0

20

.35

78

93

00

-02

C.3

58

05

71

0-C

2C

.35

H5

58

0-0

20

.35

96

16

70

-02

0.3

60

95

2,O

-C2

0.3

62

t81

,O-0

20

.28

64

81

50

-C2

0.2

84

56

28

0-0

20

.28

30

9,7

0-0

20

.28

21

05

70

-C2

0.2

81

53

47

0-0

20

.28

12

,62

0-C

20

.28

14

81

80

-02

0.2

82

12

35

0-0

20

.28

31

61

20

-02

0.2

84

6H

40

-02

0.28648150~02

0.2

Hl7

19

0-0

20

.21

61

50

70

-02

C.2

14

60

02

0-C

20

.21

34

91

30

-02

0.2

12

85

22

0-0

20

.21

25

'86

0-0

2

Fig

ure

H-2

1.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

8(C

on

tin

ued

)

Page 312: Prepared by James G. Crose and Robert M. Jones

:r: I -.J

0'

NO

DA

LPO

INT

16

1It

21

63

It4

16

5It

61

67

ItS

16

91

70

11

11

72

17

31

74

11

51

16

11

11

18

11

91

60

18

1H

21

83

18

41

85

H6

18

7!S

81

89

19

0lS

I1

92

19

31

94

19

51

96

19

71

98

19

92

00

UR

-0.l

45

35

22

C-C

3-0

.4S

16

tC5

0-0

3-0

.73

97

63

80

-03

-C

.99

05

41

00

-03

-0.1

24

49

22

0-0

20

.10

66

92

00

-02

0.8

49

17

36

0-0

30

.63

41

95

20

-C3

O.42132~30-

C3

0.2

10

27

89

0-0

30

.49

60

54

90

-07

-0.2

IDI2

't7

0-0

3-0

.42121~20-C3

-0.6

34

07

93

0-0

3-0

.84

96

4(2

0-0

3-0

.10

68

94

30

-02

0.8

60

19

34

0-0

30

.6S

91

9C

30

-03

0.5

21

23

54

0-C

30

.34

60

12

60

-03

0.1

72

60

21

0-0

30

.95

92

14

60

-08

-0.1

72

52

75

C-0

3-0

.34

59

62

70

-0-0

.52

12

16

50

-03

-0.6

99

26

17

0-0

3-0

.86

01

71

60

-03

0.6

80

52

83

0-0

30

.53

69

65

40

-C3

0.4

CI0

8C

90

-03

0.2

65

90

05

0-0

30

.13

25

37

40

-03

0.1

42

69

87

0-0

7-0

.13

24

51

00

-03

-0.2

65

82

72

0-0

3-0

.40

10

74

10

-03

-0.5

38

96

03

0-0

3-0

.68

05

35

10

-C3

0.4

68

09

71

0-0

30

.36

89

94

50

-03

UZ0

.21

28

C4

CO

-(2

0.2

13

49

47

C-0

2G

.21

4H

t1C

-Ol

0.2

1tI

65

2C

-02

0.<

10

11

31

0-(

2C

.15

83

59

9C

-02

C.l

!:t:

lS5

5C

-C2

0.1

54

50

12

C-0

2G.l~33C440-C2

0.1

52

60

59

0-0

20

.15

23

32

50

-C2

C.1

52

55

91

0-0

20

.15

32

88

30

-02

0.1

54

41

13

0-(

20

.15

tl5

17

0-0

2C

.15

83

59

6O

-C2

C.I

07

t5C

90

-02

C.l

C5

31

Sl0

-C2

0.I

C3

52

CO

C-0

2C

.1C

22

4C

2C

-C2

0.1

C1

4S

(00

-02

0.I

CI2

01

tO-C

20

.IC

I45

53

C-C

20

.10

22

3le

O-0

20

.10

35

05

1C

-C2

0.1

05

34

13

0-0

20

.IC

H5

C4

0-C

20

.6t6

49

63

C-0

3C

.64

HL

2E

O-0

30

.62

26

28

40

-03

O.tC

89

S2

40

-03

0.t

CC

e9

94

0-0

30

.59

79

22

30

-03

0.6

00

51

C4

C-0

3o

.60

61

19

4C

-03

o.6

22

t31

90

-C3

0.6

41

74

96

C-0

30

.66

64

SS

S0

-C3

0.3

59

49

81

0-0

3C

.33

33

C4

40

-C3

Fig

ure

H-2

1.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

8(C

on

tin

ued

)

Page 313: Prepared by James G. Crose and Robert M. Jones

:I: I --J

--J

~GOAl

PCI~T

2C

l2

02

20

32

C4

20

52

06

20

T2

08

20

92

10

~ll

21

22

13

£1

42

15

21

62

17

21

8.£

192

20

22

12

22

22

32

24

22

52

26

22

72

28

22

S2

30

23

1

UR0

.2/3

61

CW

-03

0.1

81

07

S1

0-0

30

.90

16

18

W-0

40

.50

00

55

80

-C8

-0.9

01

13

S9

0-C

4-0

.18

10

12

00

-03

-0.2

13

63

41

0-C

3-0

.36

89

94

10

-03

-G.4

68

0S

6G

O-C

30

.24

25

29

90

-03

0.1

89

10

81

O-C

30

.13

97

12

80

-(3

0.9

23

96

03

0-0

40

.45

9S

18

10

-C4

-0.5

86

60

30

0-0

8-0

.45

97

88

3U

-C4

-0.9

23

61

C1

C-0

4-0

.13

97

5,0

0-0

3-0

.18

91

08

50

-0-0

.24

25

3C

I'0

-03

0.0

0.0

G.(J

0.0

c.o

0.0

0.0

0.0

0.0

J.G

o.e

Ui

G.3

13

C3

5C

C-0

C.2

S8

10

G3

0-0

30

.2>

C<

14

80

-03

0.2

01

l96

3C

-03

0.2

89

95

63

0-C

30

.29

67

03

40

-03

0.3

12

S1

58

0-C

30

.33

33

01

50

-03

G.3~949630-03

C.l

tl5

2C

90

-03

0.1

33

11

66

0-0

30

.1l2

E4

C4

0-0

30

.98

18

28

80

-04

0.8

'46

35

30

-C4

o.li6

47

43

S0

-04

c.a

S4

61

2C

O-C

4C

.98

14

47

30

-04

0.1

12

82

S4

0-0

30

.13

31

15

%-(

30

.16

15

2C

80

-03

0.8

34

88

76

0-0

40

.'>

39

CI5

60

-04

O.

3C5

05

26

0-0

40

.13

01

58

60

-04

0.3

4IE

58

20

-C5

0.0

0.}

41

HC

10

-0S

0.1

36

81

41

0-0

4O

.3C~64840-C4

0.5

39

CC

70

0-C

40

.63

46

17

30

-04

Fig

ure

H-2

1.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

8(C

on

tin

ued

)

Page 314: Prepared by James G. Crose and Robert M. Jones

El

Rl

SIG~AP

SIO

MA

lS

IG~

ATSI

GM

AR

lSI

GM

AM

AX

SIGMAMI~

AN

GLE

SIG

MA

HSIGHA~

SIG

HA

HN

IG

.25

O.S

O-3

2,.

30

.O

.-1

5t.

89

.-3

a7

.-6

9.4

8-3

29

.3

0.

-15

6.

2C

.25

C.7

0-2

53

.I,.

O.

-38

7.

L9

4..

-52

8.

-54

.70

-25

3.

19

.-3

81

.3

COo2

50

.50

-1

8l.

1I.

C.

-SO

C.

48

4.

-65

3.

-49

.86

-18

1.

11

.-5

60

.4

C.2

'C

.30

-lo

a.o

.C

.-0

16

.6

27

..-7

29

.-4

7.4

2-l

C8

.f.

-61

6.

5C

.25

C.I

0-3

t.2

.C

.-7

33

..7

16

.-7

51

.-4

5.7

4-3

6.

2.

-73

3.

60

.25

-0.1

03

6.

-L.

C.

-13

3.

75

1.

-71

6.

-44

.26

36

.-2

.-1

33

.7

0.2

5-C

.30

lC&

.-6

.O

.-6

76

.7

29

.-6

27

.-4

2.5

81

08

.-t

o-6

16

.8

0.2

5-O

.5U

18

1.

-12

..C

.-5

6C

.b

53

.-4

84

.-4

0.1

31

81

.-1

2.

-56

0.

9C

.25

-0.7

02

::3

.-1

9.

O.

-38

7.

52

8.

-29

4.

-35

.31

25

3.

-19

.-3

81

.1

0C

.25

-0.9

03

2Y

.-3

0.

G.

-L5

6.

38

7..

-89

.-2

0.5

13

29

.-3

0.

-15

6.

11

C.7

50

.90

-98

6.

-5

.O

.-1

50

.1

8.

-10

09

.-81.~1

-98

6.

-5.

-15

0.

12

C.7

50

.70

-It3

.-2

.C

.-3

85

.1

59

.-9

24

.-6

7.3

2-7

63

.-2

.-3

85

.1

3C

.75

C.5

0-5

44

.-0

.C

.-5

62

.3

52

.-8

96

.-5

7.9

1-5

44

.-c

.-5

62

.1

40

.75

0.3

0-3

2t.

..O

.C

.-6

7,•

53

5.

-&6

1.

-51

.76

-32

6.

O.

-61

9.

15

C.7

5C

.10

-10

9.

O.

O.

-73

7.

68

5.

-7q

3.

-47

.12

-10

9.

O.

-73

1.

16

C.7

5-0

.10

lOG

.-

O.

O.

-73

7.

79

3.

-68

5.

-42

.89

10

9.

-c.

-73

7.

17

C.7

5-0

.30

32

6.

-0

.O

.-6

7S

.8

61

.-5

35

.-3

8.2

43

26

.-0

.-6

19

.1

8C

.75

-C.

SO5

44

.O

.O

.-5

62

.8

96

.-3

52

.-3

2.0

85

44

.O

.-5

62

.1

9C

.75

-C.7

07

63

.2

.O

.-3

85

.9

24

.-1

59

.-2

2.6

81

63

.2

.-3

85

.2

0C

.75

-C.9

0,8

6.

5.

O.

-15

0.

laC

Y.

-16

.-8

.48

98

6.

5.

-15

0.

n1

.25

C.9

0-1

63

<:.

1.

O.

O.

-15

3.

14

.-1

65

3.

-84

.72

-16

39

.O

.-1

53

.2

21

.25

C.7

C-1

27

5.

-1

.C

.-3

85

.1

01

.-1

38

2.

-14

.41

-12

15

.-1

.-3

85

.

~2

31

.25

C.5

0-9

10

.-1

.C

.-5

61

.2

66

.-1

17

7.

-64

.52

-91

0.

-1

.-5

61

.I

24

1.2

5C

.30

-54

6.

-0.

G.

-67

8.

45

7.

-10

04

.-5

5.9

6-5

46

.-0

.-6

18

.--

J2

51

.25

C.I

0-1

62

.-0

.C

.-7

36

.0

51

.-8

33

.-4

8.5

2-1

82

.-0

.-1

36

.0

02

61

.25

-C.1

01

82

.C

.O

.-7

36

.8

33

.-6

51

.-4

1.4

91

82

.O

.-1

36

.2

71

.25

-0.3

05

46

.O

.C

.-6

78

.1

00

4.

-45

7.

-34

.04

54

6.

O.

-67

8.

28

1.2

5-0

.50

91

0.

1•

O.

-56

1.

1I

77

.-2

66

.-2

5.4

89

10

.1

.-5

61

.2

91

.25

-C

.7C

12

75

.1

.C

.-3

85

.D

82

.-1

07

.-1

5.5

81

27

5.

1.

-38

5.

30

1.2

5-G

.9L

l1

63

<;.

-1

.C

.-1

53

.1

65

3.

-15

.-5

.28

16

39

.-1

.-1

53

.3

11

.75

C.9

0-2

29

4.

-0

.C

.-1

53

.1

0.

-23

04

.-8

6.2

0-229~.

-0

.-1

53

.3

21

.75

0.7

0-1

78

5.

O.

C.

-38

6.

eo

.-1

86

5.

-78

.30

-17

85

.O

.-3

86

.3

31

.75

C.5

0-lL7~.

O.

o.

-56

1.

21

2.

-14

86

.-6

9.3

3-1

21

5.

O.

-56

1.

34

1.7

50

.30

-76

5.

o.

O.

-67

1.

39

5.

-11

60

.-5

9.7

3-1

65

.O

.-6

17

.3

51

.75

C.I

0-2

55

.-0

.O

.-7

36

.0

1g

.-6

74

.-4

9.9

1-2

55

.-C

.-7

36

.3

61

.75

-0.1

02

55

.-0

.C

.-7

36

.a1

4.

-61

9.

-40

.08

25

5.

-0

.-1

36

.3

71

.75

-C.3

u7

65

.O

.O

.-6

77

.1

16

0.

-39

5.

-30

.28

16

5.

O.

-61

7.

38

1.7

5-

0.5

01.

2:7

5..

O.

C.

-56

1.

14

86

.-2

11

.-2

0.6

11

21

5.

O.

-56

1.

39

10

75

-C.7

01

7b

4.

O.

O.

-3e6

.1

86

4.

-80

.-1

1.1

01

18

4.

O.

-38

6.

40

1.1

5-c

.sc

2L

S4

.O

.C

.-1

53

.2

30

4.

-10

.-3

.80

22

94

.C

.-1

53

.

Fig

ure

H-2

1.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

8(C

on

tin

ued

)

Page 315: Prepared by James G. Crose and Robert M. Jones

ELR

lSI

GM

AR

SIO

MA

lSI~MH

SIG

MA

Rl

SIO

MA

MA

XSI

GM

AM

INA

NbL

ESI

GM

A"

SIG

MA

NSI

GM

AM

N4

12

.25

C.9

0-2

95

0.

-0

.C

.-1

53

.8

.-l

S5

8.

-87

.04

-29

50

.-0

.-1

53

.4

22

.25

0.7

0-2

29

5.

-0

.O

.-3

86

.6

3.

-23

58

.-8

0.7

0-2

29

5.

-0

.-3

86

.4

32

.25

0.5

0-1

63

9.

-0

.C

.-5

61

.1

14

.-1

81

3.

-72

.81

-16

39

.-0

.-5

61

.4

42

.25

0.3

0-9

83

.O

.O

.-6

77

.3

45

.-1

32

9.

-62

.99

-98

3.

o.

-67

1.

45

2.2

50

.10

-32

8.

O.

C.

-73

6.

59

0.

-91

8.

-51

.28

-32

8.

O.

-73

6.

46

2.2

5-0

.10

32

8.

-0.

C.

-73

6.

91

7.

-59

0.

-38

.72

32

8.

-0

.-7

36

.4

12

.25

-C.3

09

83

.-0

.o.

-67

7.

13

28

.-3

45

.-2

1.0

19

83

.-0

.-6

17

.4

82

.25

-C.5

01

63

9.

O.

O.

-56

1.

18

12

.-1

74

.-1

7.1

91

63

9.

O.

-56

1.

49

2.2

5-C

.l0

22

94

.-0

.O

.-3

86

.2

35

7.

-63

.-9

.3C

22

94

.-G

.-3

86

.5

02

.25

-G.9

02

95

0.

-0

.C

.-1

53

.2

95

8.

-8

.-2

.96

29

50

.-0

.-1

53

.51

2.1

50

.90

-36

06

.O

.O

.-1

53

.7

.-3

H2

.-8

7.5

8-3

60

6.

O.

-15

3.

52

2.7

50

.70

-28

04

.O

.C

.-3

86

.5

2.

-28

57

.-8

2.3

1-2

80

4.

O.

-38

6.

53

2.7

50

.50

-20

03

.O

.O

.-5

61

.1

46

.-2

14

<;.

-75

.38

-2C

C3

.o.

-56

1.

54

2.1

50

.30

-12

02

.O

.C

.-6

77

.3

05

.-1

50

6.

-65

.79

-12

02

.o.

-61

7.

55

2.1

50

.10

-40

1.

-0

.o.

-73

6.

5<

2.

-S6

3.

-52

.61

-40

1.

-0.

-73

6.

56

2.7

5-0

.10

40

1.

O.

C.

-73

6.

96

3.

-56

2.

-37

.38

40

1.

o.-7

36

.5

12

.15

-0.3

01

20

2.

o.O

.-6

77

.1

50

6.

-30

5.

-24

.21

12

02

.o.

-67

7.

582

.75

-0.5

02

00

3.

-0

.o.

-56

1.

21

49

.-1

46

.-1

4.6

22

00

3.

-0.

-56

1.

59

2.7

5-0

.10

28

04

.-0

.o.

-38

6.

28

56

.-5

2.

-7.7

C2

80

4.

-0.

-38

6.

60

2.7

5-C

.90

3t0

5.

-0

.C

.-1

53

.3

61

2.

-7.

-2.4

23

60

5.

-0

.-1

53

.6

13

.25

O.q

O-4

26

1.

o.

O.

-15

3.

6.

-42

66

.-8

7.9

5-4

26

1.

O.

-15

3.

62

3.2

50

.70

-33

14

.O

.O

.-3

86

.4

5.

-33

59

.-8

3.4

5-3

31

4.

o.-3

86

.6

33

.25

0.5

0-2

36

7.

O.

O.

-56

1.

12

6.

-24

93

.-7

7.3

2-2

36

7.

O.

-56

1.

:r:6

43

.25

0.3

0-1

42

0.

-0

.O

.-6

77

.2

71

.-ItS

!.

-66

01

8-1

42

0.

-0

.-6

77

.I

65

3.2

50

.10

-41

3.

-0

.O

.-7

36

.S

36

.-1

01

0.

-53

.91

-47

3.

-0

.-7

36

."" '"

66

3.2

5-C

.I0

47

3.

-0

.O

.-7

36

.1

00

9.

-53

6.

-H

.08

47

3.

-C.

-1]6

.6

73

.25

-0.3

01

42

0.

-0

.C

.-6

77

.1

69

1.

-27

1.

-21

.82

14

2C

.-0

.-6

71

.6

83

.25

-0.5

02

36

7.

-0

.O

.-5

61

.2

49

3.

-12

6.

-12

.68

23

61

.-0

.-5

61

.6

93

.25

-0.7

03

31

4.

-0

.C

.-3

86

.3

35

8.

-44

.-6

.56

33

14

.-0

.-3

86

.7

03

.25

-0.9

04

26

1.

-0

.C

.-1

53

.4

26

6.

-6.

-2.0

54

26

1.

-0

.-1

53

.1

13

.75

C.9

0-4

91

7•

O.

o.-1

53

.5

.-4

92

1.

-88

.22

-49

17

•o.

-15

3.

72

3.1

50

.70

-38

24

.O

.C

.-3

86

.3

9.

-38

62

.-8

4.2

9-3

82

4.

o.-3

86

.1

33

.15

C.5

0-2

73

1.

O.

O.

-56

1.

Ill.

-28

42

.-7

8.8

4-2

73

1.

O.

-56

1.

74

3.7

5C

.30

-16

39

.-0

.C

.-6

77

.2

44

.-1

88

2.

-70

.21

-16

3q

.-0

.-6

11

.1

53

.15

0.1

0-5

46

.-0

.O

.-7

36

.5

11

.-1

05

8.

-55

.1S

-54

6.

-C.

-73

6.

16

3.7

5-0

.10

54

6.

-0.

C.

-73

6.

lC5

8.

-51

2.

-34

.81

51

t6.

-0.

-73

6.

77

3.1

5-0

.30

16

39

.-0

.o.

-67

7.

18

82

.-2

44

.-1

9.7

91

63

9.

-0.

-61

1.

78

3.1

5-0

.50

27

31

.-0

.C

.-5

61

.2

84

2.

-Ill.

-11

.16

21

31

.-0

.-5

61

.7

93

.15

-0.1

03

82

4.

O.

o.-3

86

.3

86

2.

-39

.-5

.71

38

24

.o.

-38

6.

80

3.1

5-0

.90

49

16

.O

.C

.-1

53

.4

92

1.

-5.

-1.1

84

91

6.

o.-1

53

.

Fig

ure

H-2

LC

om

pu

ter

Pro

gra

mO

utp

ut

for

Ex

am

ple

8(C

on

tin

ued

)

Page 316: Prepared by James G. Crose and Robert M. Jones

EL

RZ

SIG

MA

RSI

GM

Al

SIG

MA

TSI

GM

AR

ZSl

GM

AM

AX

SlGMAMI~

AN

GLe

SIG"A~

SJ(;MA~

SIGMAM~

81

4.2

50

.90

-55

72

.o.

o.-1

53

.4

.-5

57

6.

-88

.43

-55

72

.o.

-15

3.

82

4.2

50

.70

-43

33

.-0

.O

.-3

86

.3

4.

-43

68

.-8

4.9

5-4

33

3.

-0.

-38

6.

83

4.2

50

.50

-30

95

.-0

.C

.-5

61

.~8

•-3

19

4.

-8C

.04

-30

95

.-0

.-5

61

.8

44

.25

0.3

0-1

85

7.

-0.

c.-6

77

.2

21

.-2

C7

8.

-71

.94

-18

57

.-0

.-6

77

.8

54

.25

0.1

0-6

19

.-c

.O

.-7

36

.4~8.

-11

08

.-5

6.4

1-6

19

.-G

.-7

36

.8

64

•.25

-0.1

06

19

.-0

.C

.-7

36

.1

10

7.

-4~9.

-33

.59

61

9.

-0.

-73

6.

87

4.2

5-0

.30

18

57

.O

.O

.-6

77

.2

07

8.

-22

1.

-18

.06

18

57

.o.

-67

7.

88

4.2

5-0

.50

30

95

.o.

G.

-56

1.

31

94

.-9

8.

-9.9

63

09

5.

o.-5

61

.8

94

.25

-C.7

04

33

3.

-0.

o.-3

86

.L

tJb

7.

-34

.-5

.05

43

33

.-0

.-3

86

.9

04

.25

-0.9

05

57

2.

-0

.C

.-1

53

.5

,16

.-4

.-1

.57

55

72

.-0

.-1

53

.9

14

.75

C.9

0-6

22

7.

O.

C.

-15

3.

4.

-62

31

.-8

8.5

9-6

22

7•

O.

-15

3.

92

4.7

5G

.70

-48

43

.-0

.C

.-3

86

.3

1.

-4~74.

-~5.4

7-4

84

3.

-0.

-38

6.

93

4.7

5C

.50

-34

59

.-0

.O

.-5

61

.8

9.

-35

48

.-8

1.0

2-3

45

9.

-0

.-5

61

.9

44

.75

C-3

0-2

G7

6.

-0.

C.

-67

7.

20

1.

-22

77

.-7

3.4

3-2

07

6.

-0

.-6

77

.9

54

.75

C.I

0-6

92

.-0

.o.

-73

6.

46

7.

-11

59

.-5

7.5

9-6

92

.-0

.-7

36

.9

64

.75

-0.1

06

,2.

o.C

.-7

35

.1

15

9.

-46

7.

-32

.41

69

2.

O.

-73

5.

97

4.7

5-0

-30

20

75

.O

.C

.-6

77

.2

27

7.

-20

1.

-16

.57

2C

75

.o.

-67

7.

98

4.7

5-C

.5

03

45

9.

-0

.O

.-5

01

.3

54

8.

-d9

.-8

.98

34

59

.-0

.-5

61

.9

94

.15

-0.1

04

84

3.

-0.

C.

-3&

6.

48

14

.-

31

.-4

.53

48

43

.-0

.-3

86

.1

00

4.1

5-0

.90

62

27

.-0

.C

.-1

53

.6

23

1.

-4.

-1.4

16

22

7•

-0.

-15

3.

10

15

.25

0.9

0-6

88

3.

O.

O.

-15

3.

3.

-68

86

.-8

8.7

3-6

88

3.

O.

-15

3.

10

25

.25

C.7

0-5

35

3.

-0

.O

.-3

86

.2~.

-53

dl.

-85

.90

-53

53

.-c

.-3

86

.1

03

5.2

5C

.50

-38

23

.-0

.C

.-5

61

.d

V.

-39

04

.-8

1.8

2-3

82

3.

-0.

-56

1.

~1

04

5.2

50

.30

-22

94

.O

.o.

-67

7.

IdS

.-2

41

9.

-14

.72

-22

94

.o.

-67

7.

I1

05

5.2

5C

.IO

-76

5.

O.

c.-7

35

.4

41

.-1

21

1.

-58

.75

-76

5.

O.

-73

5.

C);>

10

65

.25

-0.1

07

65

.o.

G.

-73

5.

12

11

.-4

46

.-3

1.2

77

65

.O

.-7

35

.0

10

75

.25

-0.3

02

29

4.

-0.

C.

-67

7.

24

79

.-1~5.

-15

.28

22

94

.-0

.-6

77

.1

08

5.2

5-0

.50

38

24

.-0

.C

.-5

61

.3

9G

4.

-81

.-8

.11

38

24

.-0

.-5

61

.1

09

5.2

5-0

.70

53

53

.O

.O

.-3

86

.5

38

1.

-28

.-4

.10

53

53

.O

.-3

86

.1

10

5.2

5-0

.90

68

83

.-0

.O

.-1

53

.6

88

6.

-4.

-1.2

76

88

3.

-0.

-15

3.

III

5.7

50

.90

-75

38

.-0

.O

.-1

53

.J.

-15

41

.-8

8.8

4-1

53

8.

-0

.-1

53

.1

12

5.7

50

.70

-58

63

.-1

.o.

-38

6.

25

.-5

88

8.

-86

.25

-58

63

.-1

.-3

86

.1

13

5.7

50

.50

-41

88

.J.

O.

-56

1.

14

.-4

26

2.

-82

.51

-41

88

.G

.-5

61

.1

14

5.7

5C

.30

-25

13

.1

•C

.-6

77

.1

72

.-2

68

4.

-15

.85

-25

13

•1

.-6

77

.1

15

5.7

50

.10

-83

6.

O.

o.-7

35

.4

28

.-1

26

5.

-59

.83

-83

8.

C.

-73

5.

11

6~.75

-0.1

08

38

.-0

.C

.-7

36

.1

26

5.

-42

8.

-30

.17

83

8.

-c.

-73

6.

11

75

.75

-0.3

02

51

3.

O.

O.

-67

7.

20

84

.-1

71

.-1

4.1

72

51

3.

O.

-67

7.

11

85

.75

-C.5

04

LE

8.

-0

.C

.-5

61

.4

26

2.

-74

.-7

.50

41

88

.-c

.-5

61

.1

19

5.7

5-0

.70

58

63

.-0

.C

.-3

8t.

56

88

.-2

5.

-3.7

55

86

3.

-0.

-38

6.

12

05

.75

-C.9

07

53

8.

o.C

.-1

53

.7

'41

.-3

.-1

.16

75

38

.o.

-15

3.

Fig

ure

H-2

1.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

8(C

on

tin

ued

)

Page 317: Prepared by James G. Crose and Robert M. Jones

El

~I

SIGN.~

SIG

NH

SIG~U

SIG

N.R

ISIGM.N.~

SIG

N.N

lhAN

GLE

SIGMA~

SIG

NA

IISI

GN

""N

12

16

.25

0.9

0-8

19

4.

-1.

O.

-15

3.

2.

-81

91

>.

-88

.93

-81

94

.-1

.-1

53

.1

22

6.2

50

.10

-63

13

•1

.O

.-3

81

>.

210.

-63

91

>.

-86

.55

-1>

31

3.

1.

-31

6.

12

36

.25

0.5

0-1

05

52

.1

.O

.-5

bl.

b9

.-I

ob

20

.-8

3.0

8-4

55

2.

1.

-56

1.

12

46

.25

0.3

0-2

13

1.

-0

.O

.-6

11

.1

58

.-2

89

0.

-11•

•81

-21

31

.-0

....n

.1

25

f.2

50

.10

-91

0.

-1.

O.

-13

b.

41

0.

-13

20

.-b

O.8

1>-9

10

.-1

.-lU

.1

26

6.2

5-0

.10

91

0.

O.

C.

-13

6.

13

20

.-4

10

.-2

9.1

3n

o.

o.-7

36

.1

21

f.2

5-0

.30

21

31

.-0

.O

.-b

11

.2

89

0.

-15

9.

-13

.19

27

]1.

-0

.-6

71

.1

28

6.2

5-C

.50

10

55

2.

O.

O.

-5b

l.10

620.

-6S

.-6

.92

45

52

.O

.-5

61

.1

29

6.2

5-0

.10

b3

13

.O

.O

.-3

86

.b

39

b.

-23

.-3

.45

63

7].

O.

-31

6.

13

06

.25

-0.9

08

19

4.

-0.

O.

-15

3.

81

91

.-3

.-1

.01

81

94

.-0

.-1

53

.1

31

6.1

50

.90

-88

50

.1

.O

.-1

53

.4

.-8

85

3.

-89

.01

-88

50

.1

.-1

5].

13

26

.15

0.1

0-6

88

3.

1.

C.

-38

6.

22

.-b

90

4.

-86

.80

-b8

83

.1

.-3

16

.1

33

6.1

50

.50

-49

15

.-1

.O

.-5

61

.6

2.

-49

19

.-8

3.5

1-4

91

5.

-1.

-56

1.

13

46

.15

0.3

0-2

94

9.

-0.

C.

-61

8.

1"8

.-3

09

8.

-11

.b6

-29

10

9.

-0

.-6

78

.1

35

6.1

50

.10

-98

3.

-0.

O.

-13

6.

39

3.

-13

16

.-6

1.8

8-9

8].

-0.

-7]6

.B

e6

.15

-0.1

09

0.

-0

.O

.-1

35

.1

31

6.

-39

3.

-28

.12

98

3.

-0

.-7

35

.1

31

6.1

5-0

.30

29

49

.O

.O

.-6

11

.3

09

1.

-14

8.

-12

.33

29

49

.O

.-6

71

.1

38

6.1

5-0

.50

49

1b

.-0

.O

.-5

61

."9

19

.-6

4.

-6.4

34

91

6.

-0

.-,.

1.

13

96

.15

-0.1

0b

88

2.

-0

.O

.-3

86

.b

90

4.

-22

.-3

.20

68

82

.-0

.-3

86

.1

40

6.1

5-0

.90

88

49

.-1

.O

.-1

53

.8

85

2.

-3

.-0

.99

88

49

.-1

.-1

53

.1

41

1.2

50

.90

-95

04

.O

.O

.-1

53

.3

.-9

50

1.

-89

.08

-95

04

.O

.-1

5].

14

21

.25

0.1

0-1

39

2.

-1.

O.

-38

6.

19

.-1

41

2.

-81

.02

-13

92

.-1

.-]

86

.

:r:1

43

1.2

50

.50

-52

80

.O

.C

.-5

61

.5

9.

-53

39

.-8

4.0

0-5

28

0.

O.

-56

1.

I1

44

1.2

50

.30

-31

68

.-0

.O

.-6

11

.1

39

.-3

30

1.

-18

.43

-31

68

.-0

.-6

11

.0

01

45

1.2

50

.10

-10

56

.-0

.O

.-7

36

.3

11

.-1

43

4.

-62

.84

-10

56

.-0

.-1

36

.~

14

61

.25

-0.1

01

05

6.

-0

.C

.-1

36

.1

43

3.

-31

8.

-21

.11

10

56

.-0

.-1

36

.1

41

1.2

5-0

.30

31

es.

-1.

o.-6

11

.3

30

7.

-13

9.

-11

.58

31

68

.-1

.-6

11

.1

48

7.2

5-0

.50

52

80

.-0

.O

.-5

61

.5

33

9.

-59

.-6

.00

52

80

.-0

.-5

61

.1

49

1.2

5-0

.70

73

92

.-1

.O

.-3

86

.H

12

.-2

1.

-2.9

87

39

2.

-1

.-)8

6.

15

07

.25

-0.9

09

50

3.

2.

C.

-15

3.

9'>

C5.

-0.

-0.9

29

50

3.

2.

-15

3.

15

17

.15

0.9

0-1

01

'>9

.-1

.O

.-1

53

.1

.-1

01

61

.-8

9.1

4-1

01

59

.-1

.-1

53

.1

52

1.7

5C

.I0

-79

02

.1

.O

.-3

86

.2

0.

-79

21

.-8

1.2

1-1

90

2.

1.

-38

1>

.1

53

1.1

50

.50

-56

45

.O

.O

.-5

61

.5

5.

-51

G0

.-8

4.3

8-5

64

5.

O.

-56

1.

15

47

.75

0.3

0-3

38

7.

1.

O.

-61

1.

13

1.

-35

18

.-1

9.1

0-3

38

1.

1.

-61

1.

15

51

.15

0.1

0-1

13

0.

O.

O.

-13

6.

36

3.

-14

93

.-6

3.7

5-1

13

0.

O.

-13

6.

15

61

.15

-0.1

01

12

8.

-0.

C.

-13

6.

14

92

.-3

63

.-2

b.2

61

12

8.

-0.

-73

6.

15

11

.15

-0.3

03

38

7.

O.

O.

-61

8.

35

11

.-1

31

.-I

C.9

13

38

7.

O.

-67

8.

15

87

.75

-0.5

05

64

4.

-1.

C.

-56

1.

56

99

.-5

6.

-5.b

25

64

4.

-1.

-56

1.

15

97

.15

-C.7

01

'10

2.

3.

O.

-38

5.

79

21

.-lb

.-2

.79

79

02

.3

.-3

65

.1

60

1.7

5-(.9

01

01

61

.-2

.O

.-1

53

.1

01

63

.-5

.-0

.86

10

16

1.

-2.

-15

3.

Fig

ure

H-2

1.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

8(C

on

tin

ued

)

Page 318: Prepared by James G. Crose and Robert M. Jones

ELI'

lSI

GM

Ak

SIG

MA

lSI

GM

AT

SIG

MA

klSI

GM

AM

AX

SIG

MA

MIN

AN

GL<

SIG

MA

MSI

GM

AN

SIG

HA

MN

161

8.2

50

.90

-10

81

5.

1.

O.

-15

2.

3.

-10

ijl1

.-8

9.1

9-1

08

15

.1

•-1

52

.16

2B

.25

0.1

0-8

41

2.

-1.

O.

-38

5.

11

.-0

43

0.

-81

.38

-84

12

.-1

.-3

85

.1

63

8.2

50

.50

-60

09

.-1

.O

.-5

61

.5

1.

-60

61

.-8

4.7

1-6

CC

9.

-1.

-56

1.

16~

8.2

50

.30

-36

06

.-1

.O

.-6

18

.1

22

.-3

12

9.

-19

.10

-36

06

.-1

.-6

78

.1

65

8.2

50

.10

-12

C2

.-1

.O

.-1

36

.1

46

.-1

55

2.

-64

.61

-12

02

.-1

.-1

36

.1

66

8.2

5-0

.10

12

02

.1

.C

.-1

36

.1

55

2.

-34

9.-2503~

12

02

.1

.-1

36

.1

61

8.2

5-C

.30

36

C6

.-0

.O

.-6

16

.3

12

9.

-12

3.

-10

.3C

36

06

.-C

.-6

18

.1

68

8.2

5-0

.50

60

C9

.4

.O

.-5

6C

.6

06

1.

-48

.-5

.28

60

09

.4

.-5

60

.1

69

B.2

5-0

.10

84

13

.-3

.O

.-3

86

.ij

43

0.

-20

.-2

.82

84

13

.-3

.-3

86

.1

10

8.2

5-0

.90

10

81

4.

1.

C.

-15

2.

10

81

6.

-1

.-0

.81

10

81

4.

1.

-15

2.

111

S.1

50

.90

-11

41

3.

-1.

O.

-15

4.

1.

-11

41

5.

-89

.23

-11

41

3.

-1.

-15

4.

17

28

.15

0.1

0-8

92

3.

-6.

C.

-39

1.

12

.-8

94

1.

-81

.49

-89

23

.-t

o-3

91

.1

13

8.1

50

.50

-63

10

.-1

4.

O.

-56

5.

36

.-6

42

0.

-84

.96

-63

10

.-1

4.

-56

5.

11

4E

.15

0.3

0-3

81

9.

-13

.O

.-6

15

.1

03

.-;

93

5.

-80

.24

-38

19

.-1

3.

-61

5.

11

55

.15

0.1

0-1

21

2•

-5.

O.

-12

8.

32

6.

-l6

03

.-6

5.5

3-1

27

2.

-5.

-12

8.

11

68

.75

-0.1

01

21

2.

4.

O.

-12

1.

16

02

.-3

21

.-2

4.4

11

21

2.

4.

-72

1.

11

18

.75

-0.3

03

81

8.

16

.O

.-6

74

.3

93

4.

-10

0.

-9.1

63

81

8.

16

.-6

H.

17

88

.15

-C.5

06

31

1.

10

.O

.-5

65

.6

42

0.

-40

.-5

.04

63

11

.1

0.

-56

5.

11

98

.15

-0.7

08

92

3.

7.

C.

-39

1.

89

41

.-1

0.

-2.5

18

92

3.

1.

-39

1.

18

0E

.15

-0.9

01

14

13

.O

.O

.-1

54

.1

14

15

.-2

.-0

.17

11

41

3.

O.

-15

4.

181

9.2

50

.90

-12

16

E.

-7

.C

.-1

81

.-5

.-1

21

08

.-8

9.1

5-1

21

66

.-1

.-1

81

.18

29

.25

0.1

0-9

42

8.

-41

.O

.-4

26

.-2

8.

-94

41

.-8

1.4

C-9

42

8.

-41

.-4

26

.

::r:1

83

9.2

50

.50

-66

93

.-5

1.

C.

-56

9.

-2.

-61

42

.-8

5.1

4-6

69

3.

-51

.-5

69

.I

18

49

.25

0.3

0-3

99

1.

-31

.O

.-6

50

.6

1.

-41

00

.-8

0.9

1-3

99

1.

-37

.-6

50

.0

01

85

9.2

50

.10

-13

29

.-1

4.

O.

-68

6.

27

9.

-16

22

.-6

6.8

9-1

32

9.

-lit

.-6

86

.N

18

69

.25

-0.1

01

32

8.

16

.C

.-6

86

.1

62

1.

-21

7.

-23

.14

13

28

.1

6.

-68

6.

18

79

.25

-0.3

03

99

1.

33

.O

.-6

50

.'1

01

.-1

0.

-9.0

83

99

1.

33

.-6

50

.1

88

9.2

5-0

.50

66

93

.5

2.

C.

-56

9.

61

42

.4

.-4

.86

66

93

.5

2.

-56

9.

18

99

.25

-C.l

09

42

8.

46

.O

.-4

26

.9

44

1.

21

.-2

.6C

94

28

.4

6.

-42

6.

19

09

.25

-0.9

01

21

66

.8

.O

.-1

81

.1

21

68

.5

.-0

.85

12

16

6.

8.

-18

1.

I'll

5.7

50

.90

-12

95

5.

-18

.O

.-2

14

.-1

2.

-12

5tl

.-8

8.1

9-1

29

55

.-1

8.

-21

4.

19

29

.15

0.1

0-9

85

3.

35

.C

.-4

36

.5

4.

-98

13

.-8

1.4

8-9

85

3.

35

.-~36.

19

3~.15

0.5

0-6

94

5.

54

.O

.-5

43

.9

5.

-69

81

.-8

5.5

9-6

<;4

5.

54

.-5

43

.1

94

9.1

50

.30

-41

35

.4

4.

C.

-61

3.

13

2.

-42

23

.-8

1.8

3-4

13

5.

~4.

-61

3.

19

59

.75

0.1

0-1

37

4.

19

.C

.-6

48

.2

13

.-1

62

9.

-68

.54

-13

14

.1

9.

-64

8.

19

69

.75

-0.1

01

31

4.

-19

.O

.-6

48

.1

62

9.

-21

4.

-21

.48

13

14

.-1

9.

-64

8.

19

79

.15

-0.3

0~135.

-43

.O

.-6

13

.4

22

3.

-13

1.

-8.1

14

13

5.

-43

.-6

13

.1

98

9.7

5-0

.50

69

45

.-5

4.

O.

-54

2.

69

81

.-g

b.

-4.4

06

94

5.

-54

.-5~2.

19

99

.75

-0.7

09

85

4.

-35

.O

.-4

36

.9

87

3.

-0

5.

-2.5

2985~.

-35

.-4

36

.2

00

9.1

5-0

.90

12

95

5.

18

.C

.-2

14

.1

29

61

.1

2.

-1.2

11

29

55

.1

8.

-2

H.

NO

TE

:E

lem

en

tS

train

sH

ave

Bee

nD

elet

ed

Fig

ure

H-2

1.

Co

mp

ute

rP

rog

ram

Ou

tpu

tfo

rE

xam

ple

8(C

on

tin

ued

)

Page 319: Prepared by James G. Crose and Robert M. Jones

11.

s.

5.

Figure H -22. Deformed Grid

H-83

III

I

I

IIIII

I

I

IIIII

I

IIIII

I

I

IIIII

I

I

I

Page 320: Prepared by James G. Crose and Robert M. Jones

19.

1;>.

15.

13.

11.

9.

5.

1.

SIGNA RCONTOURS PLOTTED-1.29999E 04-1.00000E 04-;>.OOOOOE 03-4.00000E 03

O.4.DDODOE 03;>.DODDDE 031.DODOOE 041.29999E 04

-1. -1. 1. 3. 5.

Figure H-23. Contours of Longitudinal Stress

H-84Q

Page 321: Prepared by James G. Crose and Robert M. Jones

REFERENCES

1. R. W. Clough, "The Finite EleInent Method in Plane Stress Analysis,"Proceedin s, 2nd ASCE Coni. on Electronic COInputation, Pittsburgh,Pennsylvania eptember 9

2. M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp, "Stiff­ness and Deflection Analysis of Complex Structures, " Journal of theAeronautical Sciences, VoL 23, No.9, pp. 805-823 (September 1956).

3. R. J. Melosh, "A Stiffness Matrix for the Analysis of Thin Plates inBending, " Journal of the Aeronautical Sciences, VoL 28, pp. 34-42(1961).

4. R. W. Clough and Y. Rashid, "Finite Element Analysis of AxisymmetricSolids," Journal of the Engineering Mechanics Division, ASCE, pp. 71­85 (February 1965).

5. Y. R. Rashid, "Analysis of Axisymmetric Composite Structures by theFinite Element Method, " Nuclear Engineering and Design, VoL 3, pp.163-182 (1966).

6. E. L. Wilson, "Structural Analysis of Axisymmetric Solids, " AIAAJournal, VoL 3, pp. 2269-2274 (1965).

7. P. E. Grafton and D. R. Strome, "Analysis of Axisymmetric Shellsby the Direct Stiffness Method," AIAA Journal, VoL I, No. 10, pp.2342-2347 (October 1963).

8. J. H. Percy, T. H. H. Pian, S. Klein, and D. R. Narvaratna, "Appli­cation of the Matrix Displacement Method to Linear Elastic Analysisof Shells of Revolution," AIAA Journal, VoL 3, No. 11, pp. 2138-2145 (NoveInber 1965).

9. R. J. Melosh, "Structural Analysis (If Solids," Journal of the StructuralDivision ASCE. PP' 205 -224 (August 1963).

10. J. H. Argyris, "Continua and Discontinua," Proceedings of the Conf.on Matrix Methods in Structural Mechanics, Dayton, Ohio, October 1965,AFFDL-TR-66-80, pp. 11-189 (November 1966).

R-l

Page 322: Prepared by James G. Crose and Robert M. Jones

11. L. R. Herrmann, "Elastic Torsional Analysis of Irregular Shapes,"Journal of the Engineering Mechanics Division, ASCE, Vol. 6, pp.11-19 (December 1965).

12. O. C. Zienkiewicz and Y. K. Cheung, "Finite Elements in the Solutionof Field Problems," The Engineer, Vol. 220 (1965).

13. E. L. Wilson and R. E. Nickell, "Application of the Finite ElementMethod to Heat Conduction Analysis," Nuclear Engineering and Design,Vol. 4, pp. 276-286 (1966).

14. E. L. Wilson and R. M. Jones, Finite Element Stress Analysis ofAxis mmetric Solids with Orthotropic, Tern erature -DependentMaterial Properties, TR-O 58(S38 -22)-, The Aerospace Corporation,San Bernardino, California (September 1967). (Available only fromthe Defense Documentation Center.)

15. R. M. Jones and J. G. Crose, SAAS II, Finite Element Stress Analysisof Axisymmetric Solids with Orthotropic, Temperature -DependentMaterial Properties, TR-0200(S4980)-I, The Aerospace Corporation,San Bernardino, California (September 1968). (Available from theDefense Documentation Center. )

16. R. D. Cook, "Strain Resultants in Certain Finite Elements," AIAAJournal, Vol. 7, No.3, p. 535 (March 1969).

17. E. M. Lenoe, D. W. Oplinger, and J. C. Serpico, "ExperimentalStudies of the Elastic Stability of Three -Dimensionally ReinforcedComposite Shells," AIAA Paper No. 69-122, New York, January 1969.

18. S. A. Ambartsumyan, "Basic Equations and Relations in the Theoryof Elasticity of Anisotropic Bodies with Differing Moduli in Tensionand Compression, " Inzhenernyi zhurnal, Mekhanika tverdo 0 tela,No.3, pp. 51-61 (19 9). Translation available as LRG-70-T-The Aerospace Corporation, El Segundo, California.)

19. S. W. Tsai, A Test Method for the Determination of Shear Modulusand Shear Strength, AFML-TR-66-372, Air Force Materials Laboratory,Dayton, Ohio (January 1967).

20. J. G. Crose, Finite Element Stress Analysis of Porous Media,TR-0200(S4816 -76)- 1, The Aerospace Corporation, San Bernardino,California (23 May 1969).

21. M. A. Biot, "Theory of Elasticity and Consolidation for a PorousAnisotropic Solid," Journal of Applied Physics, Vol. 26, No.2,pp. 182-185 (February 1955).

R-2

Page 323: Prepared by James G. Crose and Robert M. Jones

22. M. A. Biot, "Theory of Deformation of a Porous Viscoelastic Aniso­tropic Solid," Journal of Applied Physics, Vol. 27, No.5, pp. 459­467 (May 1956).

23. M. A. Biot. "Theory of Propagation of Elastic Waves in a FluidSaturated Porous Solid, " Journal of the Acoustical Society of America,Vol. 28, Nos. 1 and 2, pp. 179-191 (March 1956).

24.

25.

26.

27.

28.

P. Tong and T. H. H. Pian, "The Convergence of Finite ElementMethod in Solving Linear Elastic Problems, " International Journalof Solids and Structures, Vol. 3, No.5, pp. 865-879 (September 1967).

Calcom Software Reference Manual, Section 1. Basic Software,alifornia Computer Pro ucts, Anaheim, California (February 1968).

S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill,Book Company, Inc., New York, New York, pp. 58-60 (195l).

A. Philips, Introduction to Plasticitf' The Ronald Press Company,New York, New York, pp. 168-179 1956).

R-3

Page 324: Prepared by James G. Crose and Robert M. Jones

(This page intentionally left plank)

R-4n