Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754...

198
NASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M. R. Mendenhall and S. C. Perkins, Jr. LOAN COPY: RETURN TO AFWL TECHNICAL LIBRARY KIRTLAND AFB, NM. 87117 CONTRACT NAS l- 17027 JANUARY 1984 https://ntrs.nasa.gov/search.jsp?R=19840009061 2018-05-25T09:21:01+00:00Z

Transcript of Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754...

Page 1: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

NASA Contractor Report 3754

Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow

M. R. Mendenhall and S. C. Perkins, Jr. LOAN COPY: RETURN TO

AFWL TECHNICAL LIBRARY KIRTLAND AFB, NM. 87117

CONTRACT NAS l- 17027 JANUARY 1984

https://ntrs.nasa.gov/search.jsp?R=19840009061 2018-05-25T09:21:01+00:00Z

Page 2: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

TECH LIBRARY l&t, N& -’

lsllllllll~l~llll~lllllilllllll OOb2377

NASA Contractor Report 3754

Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow

M. R. Mendenhall and S. C. Perkins, Jr.

Nielsen Engineering G Research, Inc. Momtain View, California

Prepared for Langley Research Center under Contract NASl-17027

National Aeronautics and Space Administration

Sclentlfk and Technical Information Branch

1983

Page 3: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.
Page 4: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

TABLE OF CONTENTS

Section

LIST OF SYMBOLS .

SUMMARY.....

INTRODUCTION . .

GENERAL APPROACH

. .

. .

. .

. .

METHODS OF ANALYSIS .

Conformal Mapping

. .

. .

. .

. .

. .

. .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

Analytic tranformation . . Numerical transformation .

Body Model . . . . . . . . . .

Circular bodies . . . . . . Noncircular bodies . . . .

Vortex Shedding Model . . . . .

Equations of motion . . . .

.

.

.

.

.

.

.

.

.

.

.

.

. Surface pressure distribution Separated wake . . . . . . . Forces and moments . . . . . Vortex smoothing . . . . . . Vortex core . . . . . . . . .

PROGRAM...............

General Description . . . . . . . Limitations . .' . . . . . . . . . Error Messages and STOPS . . . . Numbered STOP Locations . . . . . Input Description . . . . . . . . Input Preparation . . . . . . . .

Panel layouts . . . . . . . . Numerical mapping . . . . . . Integration interval . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. Vortex core . . . . . . . . . . . . . . . . . .

.

Page No.

V

1

1

3

4

5

5 6

7

7 8

9

10 12 14 16 18 21

23

23 25 26 28 31 53

53 56 57 58

iii

Page 5: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Section

Sample Cases. . . output . . . . .

RESULTS . . . . . . .

Circular Bodies . Elliptic Bodies . Arbitrary Bodies

CONCLUSIONS . . . . .

RECOMMENDATIONS . . .

REFERENCES . . . . .

TABLES I AND II

FIGURES 1 THROUGH 33

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Page No.

58 60

65

65 70 75

76

77

79

iv

Page 6: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

LIST OF SYMBOLS

a

b

cn

cY

5 'rn

'n

C P

cpI

C Y

cN

D

G

e ref L

MX

M Y

MZ

semi-major or horizontal axis of elliptic cross section

coefficients of conformal transformation, Eq. (9)

semi-minor or vertical axis of elliptic cross section

normal-force coefficient per unit length, Eq- (39)

side-force coefficient per unit length, Eq. (43)

rolling-moment coefficient, Eq. (47)

pitching-moment coefficient, Eq. (41)

yawing-moment coefficient, Eq. (45)

pressure coefficient, Eq. (29)

incompressible pressure coefficient, Eq- (31)

side-force coefficient, Eq. (44)

normal-force coefficient, Eq. (40)

diameter of circular body, or equivalent diameter of noncircular body

complex velocity component, Eq. (18)

reference length

total number of Fourier coefficients used to describe transformation,Eq. (9), also model length

rolling moment about the x-axis

pitching moment about the y-axis

yawing moment about the z-axis

V

Page 7: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

MC0 P

PC0

%o

r

r'

r C

r 0

Re 5

S

ue

U r

U

v8

VIW

Yv W

XlYIZ

xm

a

a C

B

free-stream Mach number

local static pressure

free-stream static pressure

free-stream dynamic pressure,

radial distance from a vortex to a field point

radial distance to a point on a noncircular body, Fig. 4

vortex core radius, Eqs. (50) and (51)

radius of circle

Reynolds number based on boundary layer run length and minimum pressure conditions, Urns/v, Eq. (37)

reference area

surface velocity in crossflow plane

axial perturbation velocity

local velocity

vortex induced velocity

velocity components in real plane

free-stream velocity

complex potential, Eq. (16)

body coordinate system with origin at the nose: x positive aft along the model axis, y positive to starboard, and z positive up

axial location of center of moments

angle of attack

angle between free-stream velocity vector and body axis

angle of sideslip; also polar angle in c-plane, Fig. 2

vi

Page 8: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

8’

Y

Yr

r Ax

3

n

8

V

5

P

u

-c,X

Subscripts

t-1

( )m

( )cp

local slope of body surface, Fig. 4

ratio of specific heats

exterior angles of body segment for numerical mapping, Eq. (7)

vortex strength

axial length increment

-complex coordinate in an intermediate plane, Fig. 2(b)

vertical coordinate in an intermediate plane, Fig. 2(b)

polar angle in v-plane, Fig. 2(a)

complex coordinate in circle plane, Fig. 2(a); also kinematic viscosity

run length, Eqs. (36) and (37); or lateral coordinate in an intermediate plane, Fig. 2(b)

free-stream density

complex coordinate in real plane, Fig. 2(a)

lateral and vertical coordinates in circle plane, Fig. 2(a)

roll angle

velocity potential in real plane

stream function in real plane

conjugate of complex quantity

vortex m

center of pressure

vii

Page 9: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

SUMMARY

An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack

and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and

the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow

problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics are presented for bodies with

circular and noncircular cross sectional shapes.

INTRODUCTION

Current missile applications requiring high aerodynamic performance can involve noncircular body shapes in supersonic flow at high angles of attack and nonzero roll angles. The angle of attack range may be sufficiently high to cause formation of body separation vortices, and the body vortex shedding characteristics are directly influenced by the body cross-sectional shape and the flow conditions. It is desir- able to model the body vortex wake by means of a rational method capable of considering a variety of body shapes over a

wide range of flow conditions. It is important that the separation vortex wake induced effects on the nonlinear aerodynamic characteristics of the body be handled properly.

The phenomena of interest are the sheets of vorticity

formed on the lee side of the body at high angles of attack. The vorticity is formed by boundary-layer fluid leaving the

Page 10: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

body surface from separation points on both sides of the

'body (Fig. 1) and rolling up into a symmetrical vortex pair.

A method to predict these flow phenomena in the vicinity of circular and noncircular bodies in subsonic flow is described

in References 1 and 2. The extension of the method to

supersonic flow is described in Reference 3.

The purpose of this report is to describe an engineering prediction method and associated computer code developed to

calculate the nonlinear aerodynamic characteristics and flow

fields of noncircular noses at high angles of attack in supersonic flow. The objectives of the method are to use a

three-dimensional, attached flow, supersonic panel method, or

a supersonic line source and doublet method to represent the

body and a two-dimensional, incompressible, separated flow

model to calculate the lee side vortex shedding from the body alone at angle of attack and angle of roll. The predicted

pressure distribution on the body under the influence of the

free stream and the separation vortex wake will be used to calculate the aerodynamic loads on the body. Conformal

mapping techniques are used to transform noncircular cross

sections to a circle for calculation purposes.

The following sections of this report include a discus-

sion of the approach to the problem and a description of the

analysis and flow models required to carry out the calculation.

The prediction method is evaluated through comparison of measured and predicted results on a variety of body shapes,

including circular anh elliptical cross sections. A user's

manual for the computer code is also included. The manual

consists of descriptions of input and output, and sample

cases.

2

Page 11: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

GENERAL APPROACH

Bodies at high angles of attack exhibit distributed vorticity fields on their lee side due to boundary-layer fluid leaving the body surface at separation lines. One approach for modeling these distributed vorticity fields has involved the use of clouds of discrete potential vortices. Underlying the basic approach is the analogy between two-dimensional

unsteady flow past a body and the steady three-dimensional flow past an inclined body. In fact, the three-dimensional steady flow problem is reduced to the two-dimensional,

unsteady, separated flow problem for solution. Linear theory for the attached flow model and slender body theory to repre- sent the interactions of the vortices are combined to produce a nonlinear prediction method. The details of the

application of this approach to the prediction of subsonic flow about circular and noncircular bodies are presented in References 1 and 2, and the extension to supersonic flow is

described in Reference 3. Other investigators have also used this approach to successfully model the subsonic flow

phenomena in the vicinity of circular cross section bodies (Refs. 4 and 5). The purpose of this report is to document the extension of the previous subsonic analysis of References 1

and 2 to supersonic flow.

The calculation procedure is carried out in the following manner. The body is represented by supersonic source panels (noncircular cross section) or supersonic line sources and

doublets (circular cross section), and the strength of the individual singularities is determined to satisfy a flow tangency condition on the body in a nonseparated uniform flow at angle of attack and roll. Starting at a crossflow plane

near the body nose, the pressure distribution on the body is

computed using the full Bernoulli equation. The boundary

layer in the crossflow plane is examined for separation

3

Page 12: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

using modified versions of Stratford's separation criteria.

The Stratford separation criteria are based on two-dimensional

incompressible flow. At the predicted separation points,

incompressible vortices with their strength determined by the vorticity transport in the boundary layer are shed into

the flow field. The trajectories of these free vortices

between this crossflow plane and the next plane downstream are calculated by integration of the equations of motion of each

vortex, including the influence of the free stream, the body,

and other vortices. The pressure and trajectory calculations

are carried out by mapping the noncircular cross section

shape to a circle using either analytical or numerical

conformal transformations. The vortex-induced velocity con-

tribution to the body tangency boundary condition includes

image vortices in the circle plane. At the next downstream

crossflow plane, new vortices are shed, adding to the vortex

cloud representing the wake on the lee side of the body.

This procedure is carried out in a stepwise fashion over the

entire length of the body. The details of the individual

methods combined into the prediction method are described

in the following section.

METHODS OF ANALYSIS

The development of an engineering method to predict the

pressure distributions on arbitrary missile bodies in super-

sonic flow at high angles of incidence requires the joining of several individual prediction methods. In this section,

the individual methods are described briefly, and the section

concludes with a description of the complete calculation procedure.

4

Page 13: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Conformal Mapping

The crossflow plane approach applied to arbitrary missile bodies results in a noncircular cross section shape

in the presnece of a uniform crossflow velocity and free vortices in each plane normal to the body axis. The pro- cedure used to handle the noncircular shapes is to determine a conformal transformation for mapping every point on or outside the arbitrary body to a corresponding point on or outside a circular body. The two-dimensional potential flow solution around a circular shape in the presence of a uniform flow and external vortices is well known and has been documented numerous places in the literature (Refs. 4 and 6).

Thus, the procedure is to obtain the potential solution for the circular body and transform it to the noncircular body. Conformal transformations used are of two distinct types,

analytical and numerical.

Analytic transformation.- For very simple shapes like an

ellipse [Fig. 2(a)], the transformation to the circle can be

carried out analytically as described in Reference 7. For example,

a2 - b2 u =v+ 4v (1)

where

5 =y+iz (2)

in the real plane, and

V =-c +iX (3)

in the circle plane. The derivative of the transformation

is

da 1- a2 - b2 -= dv I 1 4v2

(4)

5

Page 14: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

which is required for the velocity transformation discussed

later.

Numerical transformation.- For complex noncircular shapes, the transformation cannot be carried and a numerical transformation is required.

transformation chosen is described in detail and a brief summary of the conformal mapping

follows.

out analytically The numerical

in Reference 8,

procedure

The sequence of events in the numerical mapping is shown in Figure 2(b). The arbitrary cross section shape of the body in the o-plane is required to have a vertical plane of

symmetry. The transformation of interest will map the region on and outside the body in the u-plane to the region on and outside a circle in the v-plane. The first step is a rotation to the G-plane so that the cross section is

symmetric about the real axis. Thus,

u = y + iz (5)

and

5 = ia

= 5 + iv

A mapping that transforms the outside of the body in the

<-plane to the outside of the unit circle is

m yr

5 1 -rr = 7

IT iv - v,) dv r=l

(6)

(7)

where y, are the exterior angles of the m segments of the

body cross section. In Equation (7), IT denotes a product series. For a closed body

6

Page 15: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

i y, = 27T r=l

The final transformation has the form

(8)

(9)

where the AL coefficients are obtained through an iterative scheme described in Reference 8 and r. is the radius of the equivalent circle in the v-plane. The derivative of the transformation is

(10)

which is required for the velocity calculations described in

a later section.

The above numerical mapping procedure has been applied to a wide range of general cross section shapes with good

success.

Body Model

The prediction method described in this report is

applicable to both circular and noncircular bodies. Separate body models are developed for circular and noncircular shapes because arbitrary noncircular shapes require panels and numerical conformal mappings and circular bodies can be represented by more computationally efficient means. Both flow models are described in this section.

Circular bodies.- A potential flow model of an axisym- metric body in supersonic flow is described in References 9

and 10. Such a body is represented by a distribution of line

7

Page 16: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

sources and sinks and line doublets,on the body axis to

account for volume and angle of incidence effects, respec-

tively. The strengths of the line singularities are

determined from the flow tangency condition applied at points

on the body surface. A downstream marching procedure from the nose tip to the body base is used for this calculation.

The axis singularity distribution for bodies of revolu-

tion provides an accurate and efficient means to calculate the induced velocity field associated with the body at angle of incidence. The calculation requires much less

computation time than a panel method, and the resulting

velocity distributions are quite smooth. One restriction on the body shape is the requirement that the nose contour lie

inside the Mach cone. This constitutes the major limitation

to the method.

Noncircular bodies.- The configurations considered in this study are bodies alone, without fins or control surfaces.

The body geometry is described by the coordinates of the

cross-sectional shape at a number of axial stations, and linear interpolation between specific points is used. The body is represented by a three-dimensional lattice of super-

sonic source panels distributed on the surface of the body.

The panels account simultaneously for volume and angle of incidence effects. The attached flow solution for a panel

inclined to the flow direction is based on supersonic linear

theory as described in Reference 11 and the method used is a

modified version of the program code presented in

Reference 12. The pitch and yaw angles are related to the

included angle of attack and angle of roll by the expressions

since = sincrc cos$ (11)

sinf3 = sina, sin@ (12)

8

Page 17: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

- 0

The flow tangency condition is applied at the control point located at the panel centroid of each body panel. The

result is a set of linear simultaneous equations in terms of the unknown panel source strengths. Solution by an iterative approach produces the singularity strength on each panel and

thus provides a means to calculate the velocity field induced by the body. The nature of the solution is such that the velocity on the body surface is correct only at the control

points; therefore, linear interpolation is used to determine body surface velocity components for use in pressure calcula- tions at points lying between control points. The body panel

induced velocities are calculated one time for the entire body to provide a table of velocity components for interpola- tion purposes. Using a slender-body theory approximation,

these velocity components are combined with other velocity components for the pressure calculation described in a later

section.

There is a basic limitation in the use of the above

panel method. The angle of inclination between a body source panel and the body centerline must be less than the semi- apex angle of the Mach cone associated with the free-stream

Mach number. Thus, there is a limit to the body nose con- figurations which can be modeled by the body source panel

method.

Vortex Shedding Model

The body vortex shedding model described in this section is nearly the same as the subsonic model presented in

Reference 2; therefore, the following description will be

brief, and only the differences between the two models will be discussed in detail.

9

Page 18: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Equations of motion.- The equations of motion of a shed nose vortex in the presence of other free vortices in the vicinity of a body in a uniform stream follow. In the circle

W plane, the position of a vortex, rm, is

vm =Tm+ihm r

and the image of rrn is located at

r2 V

0 =- m-r cm

In the real plane, the position of the vortex IYm is

cl mr = ym + izm

The complex potential in the real plane is

W(a) = @+iY

and the corresponding velocity at rm is

dWmW V m - iwm = da = g W,(u) 1 2

U’U, v=vm

(13)

(14)

(15)

(16)

(17)

The complex potential of Tm is not included in Equation (17)

to avoid the singularity at that point. The derivative of

the transformation is obtained from Equation (4) or Equation (10).

The total velocity at rrn in the crossflow plane is

written as

vm - iwm

L = Gcx + G8 + Gn + G, + GT + Gr (18)

10

Page 19: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

where each term in Equation (18) represents a specific velocity component in the u-plane. The first term represents

the uniform flow due to angle of attack.

G, =

2 r 0 dv

v, II ’ = u‘=(J m

(19)

The second term represents the uniform flow due to angle of yaw.

GB = m

(20)

The next term represents the influence of all vortices and their images, with the exception of rm.

Gn = i ,b 27rfnv 1

0 m (vm/ro) - (ro/Gm)

1 - (vm/ro) - (vn/ro)

The next term is due to the image of rm.

Gm = i rm 1 271roVo3 (vm/ro)-(ro/3m) m

(21)

(22)

The fifth term in Equation (18) represents the potential

of rm in the a-plane and is written as

(23)

11

Page 20: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

The last term in Equation (18) represents the velocity com-

ponents induced by the portion of the body panel singularities representing the body volume effects.

V - iw G,= rv r (24)

00

Since the body panel singularities are three dimensional, they contribute an induced axial velocity, ur.

The differential equations of motion for rm are

dam V m - iw m PC dx VoDcosac + ur

where

a’ m = y, - izm

(25)

(26)

Therefore, the two equations which must be integrated along

the body length to determine the trajectory of rm are

and

dYm V m -= dx v,cosac + ur

dzm W m dx= VoDcosac + ur

(27)

(28)

There are a pair of equations like (27) and (28) for each

vortex in the field. As new vortices are shed, the total number of equations to solve increases by two for each added

vortex. These differential equations are solved numerically

using a method which automatically adusts the step size to provide the specified accuracy.

Surface pressure distribution.- The surface pressure dis- .

tribution on the body is required to calculate the forces on the body and the separation points. The surface pressure coef-

ficient is determined from the Bernoulli equation in the form

12

Page 21: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

where

-

:

(29)

and

P - PC0 cp =

+ PVZ

2 2cosa C =

PI l- + - /g I 1 al OJ

(30)

(31)

In Equation (31), U is the total velocity (including V,) at a point on the body. It consists of many of the components described in the previous section. The body induced velocity components from Equation (24) include the total effect of the panel solution at angle of attack and roll. As a consequence of using the full panel solution in this component, the two-

dimensional doublet part of Equations (19) and (20) are not required. The vortex wake contribution is included through Equations (21) and (22).

The last term in Equation (31) represents the axial velocity missing from the two-dimensional singularities

in the flow model. In this case, the shed vortices are the only singularities contributing to this term. The complex

their images in potential of a number of vortices, Tn, and the circle plane is

[

-i Ln(w - un) + i en (32)

13

Page 22: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

The "unsteady" term in Equation (31), evaluated on the

body surface, is

3 = Real dw(v) dx dx r=r

0

(33)

Equation (33) becomes

dX dT ('I - Tn) dxn -- (A - XJ 2

(T - -q 2 + (X - An) 2 1

(Tr2 dX 2 dhn drO

,

r n + 2x1, g - o dx - - 2roXn dx I

(rr2 - T,ri) 2 2.

n + (Xr 2 n - An+

dT r 2 d-rn drO

+ (Ari- + 2'rTn --$ - o dx - - 2roTn dx

I

(-crz- -&I 2 2 2

+ (Xr, - h,ri)

(34)

where r2 = r2 + A2 n n n (35)

Separated wake.- The separated wake on the lee side of

the body is made up of a large number of discrete vortices, each vortex originating from one of two possible locations

at each time step in the calculation. The major portion of

the lee side vortex wake has its origin at the primary separation points on each side of the body. The remainder

of the wake originates from the secondary separation points

located in the reverse flow region on the lee side of the

14

Page 23: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

body. Both of these points are illustrated in the sketch of a typical crossflow plane of an elliptic cross section body shown in Figure 3. The mechanics of the calculation of the individual vortices follows.

As described in References 1 and 2, the pressure dis- tribution for the primary flow in the crossflow plane is referenced to the conditions at the minimum pressure point,

and a virtual origin for the beginning of the boundary layer is assumed. The adverse pressure distribution downstream of the minimum pressure point is considered with either

Stratford's laminar (Ref. 13) or turbulent (Ref. 14) separa-

tion criterion to determine whether or not separation has occurred. These criteria, based on two-dimensional,

incompressible, flat plate data, are adjusted for three- dimensional crossflow effects in Reference 2. The laminar

separation criterion states that the laminar boundary layer

separates when

$/2 P

= 0.087 sinac

In a turbulent boundary layer, separation occurs when

l/2 -0.1 (ReE ~10~~) = 0.35 sinac (37)

If the criteria indicate a separation point, the vorticity flux across the boundary layer at separation is

shed into a single point vortex whose strength is

r u: Ax -=- Ym 2v2 cosac

co (38)

assuming no slip at the wall,

15

Page 24: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

The initial position of the shed vortex is determined

such that the surface velocity at the separation point is

exactly canceled by the shed vortex and its image. When this criterion results in a vortex initial position that is too near to the body surface, certain numerical problems can

cause difficulty in calculating the trajectory of this vortex. If the intial position of the vortex is nearer than five percent of the body radius from the surface, the vortex

is placed five percent of the equivalent body radius.from the

surface. This position represents the approximate thickness of the boundary layer.

The calculation of secondary separation is carried out

in the same manner as described above for primary separation. It is necessary that a reverse flow region exist on the lee

side of the body and that a second minimum pressure point be

found in this region. Surface flow visualization of secondary separation regions on bodies at high angles of

attack in subsonic flow are shown in Reference 15. For

purposes of this analysis, the reverse flow is assumed to be laminar from the lee side stagnation point to the secondary

separation point, and Stratford's laminar criterion is used

to locate the secondary separation point. Laminar separation in the reverse flow region is expected because of the low

velocities on this portion of the body. The vortex released

into the flow at the

opposite sign of the weaker in strength.

secondary separation point has the

primary vortex and is generally much

Forces and moments.- The forces and moments on the body

are computed by integration of the pressure distribution

around the body. At a specified station on the body, the

normal-force coefficient on a Ax length of the body is

16

Page 25: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

- I

An L-l 2lT c' = E =l

n q-D 5 Cpr' COSB' dg

0

where r' is the distance from the axis of the body to the body surface and (3' is the local slope of the body in the crossflow plane. This is illustrated in the sketch in Figure 4. For circular bodies, r' = r. And f3' = 8. The total normal force coefficient on the body is

L N D

cN=9ms=g I cndx

0

and the pitching-moment coefficient is

cm=&=~fcn[~]dx 0

The center of pressure of the normal force is

X C 2=&-e

Similarly, the side-force coefficient on a Ax length of the body is

2T 1. C r' sin8' dB - = - - D J P

0

The total side-force coefficient on the body is

cydx

(39)

(40)

(41)

(42)

(43)

(44)

17

Page 26: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

and the yawing-moment coefficient is

The center of pressure of the side force is

X cP

2G 'n xm =

ref r+G Y

(45)

(46)

A noncircular body at an arbitrary roll angle may

experience a rolling moment caused by the nonsymmetry of the loading around the body. The total rolling moment on the body is calculated by summing the moments of the individual

components of normal force and side force around each cross section and integrating over the body length. Using Equations (39) and (43), the rolling moment coefficient is

calculated as

M

cL = qJGref

(YCpr' COSB' - zCpr' sinB')dB dx

3 (47)

Vortex smoothing.- A problem common to discrete vortex

models is the singularity in the vortex induced velocity distribution at the loction of a point vortex and the very

large velocities induced near the vortex. This can lead to errors in the surface pressure distribution when there

are vortices near the body surface and to errors in the

vortex tracking when vortices pass in close proximity.

18

Page 27: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

-

The vortex diffusion model described in Reference 2 has the effect of removing the singularity at the vortex, but very large induced velocities are still in evidence near the vortex, thus the noted roughness in the surface pressure distribution continues to be a problem. Several solutions to this problem have been investigated, and a discussion of thesevortex flow models follows.

In Reference 16, discrete vortices are replaced by a distribution of vortices on straight line segments connect- ing the discrete vortex positions. In this way, the algebraic singularity is reduced to a logarithmic singularity. The strength of the uniform distribution of vorticity on each line segment is determined from the strengths of the discrete vortices at the ends of the segment. Defining Gd as the complex velocity induced at vm by the line segment, analogous to Equation (21), the velocity becomes

Gd j

where V, is not on the line segment. The strength of the vortex segment is

rn, = Zj u, + rn+l)

(48)

except when rn or rn+l represents the last vortex in the chain. When this occurs, the remainder of the strength of

the last vortex is included in the last line segment to avoid losing a portion of the shed vorticity.

(49)

This smoothing procedure was investigated for a number of calculations, and it accomplished the smoothing of the induced velocity field to a great extent. The surface

pressure distributions had some residual roughness caused

19

Page 28: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

by other effects, but the pressure spikes caused by locally

high vortex-induced velocities were eliminated. The major

disadvantage of the above smoothing technique is cost. The nature of the total calculation procedure is such that

many velocity calculations are,required; therefore, the additional effort to set up the smoothing procedure and calculate velocities at numerous body points causes a

dramatic increase in computation time. For this reason,

alternate smoothing techniques are considered.

The smoothing technique incorporated into the present

version of NOZVTX is one in which a single point vortex

is represented by a simple distribution of several point vortices. The smoothing calculation is carried out only

for vortices which lie within 10% of the local body radius

of the surface of the body, and it is used only for calcu-

lating pressures on the body surface. The vorticity is

distributed according to the procedure shown in Figures 5(a)

and (b). In Figure 5(a), vortex 2 is the only vortex which

lies within 10% of the local body radius of the surface.

The "distributed vorticity" model consists of nine smaller

vortices: one located at the actual position of vortex 2,

four located along the line joining vortices 1 and 2, and

four along the line joining vortices 2 and 3. Each vortex

has a strength equal to one-ninth of the actual vortex

strength. Figure 5(b) shows distributed vorticity models

for vortices which are end pointsofthe vortex cloud;

that is, for the first vortex and the most recently shed

vortex. In the case of the first shed vortex, rl, the

distributed vorticity model consists of five point vortices,

each vortex having a strength equal to one-fifth that of the

actual vortex. The model for the most recent shed vortex,

Page 29: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

- -

r3' is shown in Figure 5(b). The vorticity is distributed

along two separate lines. One line is defined by the

actual vortex position and its shed position at the previous axial station, indicated by 3' in Figure 5(b). The second line is defined as before, the end points being the locations of I'2 and r3.

The smoothing technique described above was investigated for a number of geometry and flow condition combinations, and it was found to smooth pressure spikes caused by locally high vortex-induced velocities or values of d$/dx. As expected, use of the smoothing technique increases execution time, but the actual execution time is determined by the number of vortices which lie close to the body surface.

This technique redistributes the vortices and tends to spread their effect over a larger area, but the model is still made up of discrete vortices, each of which has a singularity

at its origin. A viscous core model for the individual vortices is required to remove the singularity in the induced

velocity calculation. This model is described in the

following section.

Vortex core.- The diffusion core model (Ref. 2) for the point-vortex induced velocities removes the singularity at the vortex origin and effectively reduces the velocities near the vortex. The tangential velocity induced by a single point vortex is written as

(50)

21

Page 30: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

where r is the distance from the vortex to the field point

and x is a measure of the age of the vortex. The induced velocity from this core model is illustrated in the

following sketch.

Vortex Induced Velocity

The vortex core model represented by Equation (50)

has received considerable attention in the context of body vortex induced effects, and it has a number of shortcomings. Since the exponential term is a function of r, the flow

medium (v), and the age of the vortex (x), the core is constantly changing size as the vortex moves through the

field. Under certain conditions, the core radius, denoted

as r C

in the sketch, can become very small and the induced

22

Page 31: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

._. _..-__------ .__. ..- _..__. . _.._ I

velocity becomes unrealistically large. In an attempt to

further modify the core model to keep the induced velocities within physically realistic limits, the following modifica- tion was made. The location of the maximum induced velocity,

rc in the sketch, is fixed at a specific radius to be selected by the user. Given a core radius, the vortex induced velocity is

!$ = & [l - exp [-1.256 $11 (51)

The core model described by Equation (51) is included in the version of the code described in this report, and in

a later section, guidelines for the selection of an appro- priate core radius are presented. Results indicate that this

simple core model provides adaquate smoothing for the

necessary velocity calculations.

Other investigators of discrete vortex models must use a core model of some type. Although there are many different

core models, all serve the same purpose as those described

above, and nearly all are directed at eliminating the singularity and reducing the maximum induced velocity. The

code described in a later section is easily modified to

incorporate another core model if the user desires to do so.

PROGRAM

General Description

The computer code, NOZVTX, presented in this section

has application as an engineering prediction method for circular and noncircular bodies at high angles of attack in supersonic flow. The code is in effect a combination of

23

Page 32: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

two separate codes. The first is the subsonic body vortex

shedding method described in References 1 and 2, and the

second is the supersonic body model for bodies alone described in References 10, 11, and 12. The combined code provides

a means to predict the nonlinear aerodynamic characteristics

and flow fields for bodies with circular and noncircular cross sections. The effect of fins is not included.

The code consists of a main program, NOZVTX, and 50

subroutines. The overall flow map of the program is shown

in Figure 6 where the general relationship between the sub- routines and external references can be seen. An alpha-

betical listing of the subroutines is shown in Table I.

It was an objective of this effort to keep the two codes as distinct as possible to maintain their individual identity

so that modifications to either code could be carried out

without major changes in the other code. Note that the

main subroutine of the body vortex shedding calculation,

ELNOSE, includes the body panel code via the calls to

subroutines GEOM, VELCMP, and SOLVE. The line singularity

model for axisymmetric bodies is included through a call to

subroutine BDYGEN. The communication of information between

segments of the program is handled by name common blocks. A cross reference table for the calling relationship

between the program subroutines and the external references

is shown in Figure 7. A similar table for the common blocks

is shown in Figure 8.

The program is written in standard FORTRAN language.

Operation requires four (4) auxiliary files in addition to the usual input and output units. Core storage for

execution is approximately 230,000 octal on a CDC CYBER 760

computer. Execution times on the same computer can vary

from 10 to 400 or more seconds. Execution time depends on

many factors such as the number of panels required for the

24

Page 33: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

body r the integration interval (DX), the number of shed

vortices, the use of symmetry, and even the flow conditions.

Limitations

Program NOZVTX is applicable to bodies alone at high angles of attack in supersonic flow, with some limitations.

Certain of the limitations to follow are basically rules-of- thumb for the use of the program that have evolved through experience with the program and verification of the program

by comparison with data. The range of applicability of the program maybeextended by additional verification with appropriate data.

There is a Mach number/geometry limitation in the body model that requires the body surface to lie behind the Mach cone. This has greatest effect at high Mach numbers or on blunt noses at low Mach numbers, and a message is

printed if the geometry condition is violated. It has been the experience of the authors that, when this condition arises, the nose can generally be made slightly more pointed

so that it lies within the Mach cone. Often this modifica- tion is required only on the first few percent of body

length, and the effect on the total nose forces and moments

and shed vortex field is minimal.

An associated Mach number limitation involves the quality of the predicted surface pressure distribution at

high Mach numbers. As will be shown in comparisons of experi-

ment and theory, the predicted pressure coefficients on the windward side are much lower than those measured at body points which are near to the shock wave. This is a common

problem for linear body models like the axis singularities and the panels considered in NOZVTX, and it is possible that

the windward pressure can be corrected by use of nonlinear pressure prediction techniques.

25

Page 34: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Another less rigid limitation involves the Mach number/ angle of attack range. It is suggested that the crossflow Mach number (Masinac) not exceed unity. A stricter limita- tion is that the crossflow Mach number should not exceed the critical value: that is, the local Mach number in the cross- flow plane should not exceed unity at any point in the plane.

The root of this limit is the vortex shedding calculation

which uses an incompressible vortex model and an incompress-

ible separation criterion. Also, when the crossflow Mach number exceeds the critical value, a complex shock near the shoulder may contribute to separation. It is important that the user be aware of these limits, particularly when the

program is being used in that range. However, the author has used the program for flow conditions in which the crossflow

Mach number slightly exceeded unity, and the results were

quite resonable. Some of these results are presented in a later section.

Error Messages and STOPS

The program code has numerous internal error messages.

These are generally explicit and they will be described below only if an explanation will provide some insight into

the problem and its correction. There are several execution

terminations at numbered STOP locations within the program. These are described in the table below along with some

suggestions to correct the problem.

The most common message is "CONVERGENCE NOT OBTAINED IN

INTEGRATION." This message, along with the axial station,

XI, and the integration interval, H, is printed when the

trajectory calculation does not converge within the specified

tolerance, E5. One message will terminate execution at

STOP 40 described in the table to follow.

26

Page 35: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

The program contains several error messages pertaining to the number of panels used to describe the body. The message "ERROR - NUMBER OF ROWS OF PANELS IN BODY SECTION 1 EXCEEDS 30" is self explanatory and results in STOP 20. A similar message "ERROR - NUMBER OF ROWS OF SINGULARITY PANELS ON BODY EXCEEDS 30" results in STOP 50. The message "ERROR - NUMBER OF BODY PANELS EXCEEDS 600" results in STOP 60. The message "ERROR - BODY HAS MORE THAT 20 CIRCUMFERENTIAL PANELS" refers to the number of panels

describing the body cross section circumference. This error results in STOP 200. All of the errors associated with the body panels are caused by incorrect values being input in items 32 and 41 of the input list.

If a pivot element of the matrix of panel influence coefficients is zero, the message "ERROR - THE MATRIX IS SINGULAR" is printed and the program terminates execution at STOP 300. This is a very uncommon error and is not seen for normal body panel arrangements.

As mentioned in a previous section, the slope of any panel on a noncircular body must be less than the Mach angle. If a panel has a greater slope, the message

"ERROR - BODY PANEL SLOPE EXCEEDS MACH ANGLE" is printed

and execution terminates at STOP 210. A modification of the body geometry to decrease the panel slopes is required to correct this situation.

The surface of an axisymmetric body must lie inside

the Mach cone from the nose tip. If certain body points lie outside the Mach cone, subroutine BDYGEN will make an effort to correct the definition of the body and revise the radius

distribution. If the Mach number is too high to correct the body within its specified length, the message "BODY RADIUS TOO LARGE IN RELATION TO BODY LENGTH" is printed and execution terminates at a STOP. If, in the process of

27

Page 36: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

correcting the body points outside the Mach cone, the subroutine cannot locate an appropriate point, the message

"MACH CONE - BODY MERIDIAN INTERSECTION NOT FOUND AFTER 100 TRIALS" is printed and execution terminates at a STOP. These difficulties are corrected by modifying the body

shape or lowering the Mach number of the run.

The numerical conformal mapping procedure can generate

several error messages from subroutine CONFOR. The message "***ERROR IN SUM OF EXTERIOR ANGLES***" is printed if the

routine has difficulty calculating appropriate body angles within a specified tolerance. Another message "***COEFFICIENT

AN(l) = GREATER THAN +- .OOl AFTER ITERATIONS OUT - OF - ' is printed onrareoccasions when the mapping procedure is having difficulty converging on a solution. Both of the above messages are informational, and they do not result in

a program STOP. However, the user is advised to check the transformed shape carefully with the actual shape before

using the results. If there is a difficulty in the numerical

mapping calculation, refer to the Input Preparation section

for assistance.

Numbered STOP Locations

Termination Message Description

STOP Normal program stop or the axisymmetric body

lies inside the Mach cone from the nose tip.

STOP 20 More than 30 rows of panels on body. Revise

input values of NFORX and KFORX in input

items 32 and 41, respectively.

STOP 40 Vortex trajectory integration has failed to

converge at an axial station. This problem is

usually caused by (1) two or more vortices in

close proximity such that they are rotating

28

Page 37: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

about each other so rapidly that the integration

subroutine cannot converge on a solution, or (2) a vortex too near the body surface. These situations are often dependent on the body shape and the specific flow conditions, but the follow- ing steps should be tried to resolve the

problem. Increase the integration tolerance E5, or increase the size of the combination param- eter RGAM so that it is greater than the distance

between the troublesome vortices. It often helps to increase the integration interval DX and restart the calculation from a previous

station.

STOP 41 The vortex trajectory calculation has resulted in a vortex inside the body. This is a rare,

but serious, problem; and it signifies a major

problem with the solution. It usually means that the body paneling scheme is in error. If no obvious problem exists, change the paneling layout to increase the number of circumferential and axial panels.

STOP 44 Total number of shed vortices exceed 200. Combine some vortices and restart the calcula- tion and run to completion. An alternate

solution is to increase the integration interval DX so that fewer vortices are shed.

STOP 45 The number of positive or negative primary separation vortices exceeds 70. Use the same

remedy as for STOP 44.

STOP 46 The number of positive or negative secondary or reverse flow separation vortices exceeds 30. Combine the secondary vortices to reduce their total number and restart the calculation;

29

Page 38: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

STOP 50

STOP 60

STOP 200

STOP 202

STOP 210

<STOP 300

increase DX to reduce numbers of vortices shed,

or set NSEPR=O and eliminate the secondary

vortices from the calculation.

More than 30 rows of panels on body. See STOP 20.

More than 600 panels on body. Revise requested number of panels in input items 32 and 41.

More than 20 panels on the body circumference. Revise values of NRADX and KRADX in input items

32 and 41, respectively.

There is an error in the vortex tables in sub-

routine VTABLE. Check input values of NBLSEP, NSEPR, NVP, NVM, NVA, NVR, and RGAM in items

1 and 6.

A body panel has a slope greater than the Mach

angle.

There is a singularity in the panel influence

coefficient matrix. Check panel layout geometry

for errors.

An additional comment is required here about a situation which can occur which results in a fatal execution error and

termination at a TIME LIMIT with no other message. This is

not a usual occurrence, but it has been observed in certain special cases. The typical case is near the end of a very

long body from which a large number of vortices have been

shed. The difficulty is that two differential equations of motion must be integrated for each vortex and the derivatives

involve all vortices in the field. Solution by a Kutta-

Merson scheme can involve many derivative calculations. The

minimum time required for each axial step in the calculation is proportional to the square of the total number of

30

Page 39: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

vortices. As the number of vortices increases, convergence becomes more difficult and the time for each step can increase dramatically. If this situation should occur, the best approach is to combine adjacent vortices and restart the calculation with a larger convergence criterion E5. It is sometimes useful to increase the axial interval DX.

Input Description

The purpose of this section is to describe the input to program NOZVTX. The input formats are shown in Figure 9, and the definitions of the individual variables are provided in the followingparagraphs. The input to the body panel and axis singularity portion of the program is maintained nearly identical to the input requirements for program WDYBDY of Reference 10. The purpose for this was to minimize changes in WDYBDY; however, it leads to some redundancy in the preparation. The small amount of redundancy is acceptable in light of the simplification in the use of the current

program. If there is a question about the input in the panel portion of the program, the user is referred to Appendix K of Reference 10 for additional information.

The remainder of this section includes a description of each of the input variables and indices required for the use of program NOZVTX. The order follows that shown in Figure 9 where the input format for each item and the location of

each vafiable on each card is presented. Data input in I-format are right justified in the fields, data input in F-format may be placed anywhere in the field and must include

a decimal point, and data input in E-format are right justi- fied in the fields and must include the decimal point and

the complete exponent designation.

31

Page 40: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Note that all length parameters in the input list are

dimensional variables: therefore, special care must be taken

that all lengths and areas are input in a consistent set of units.

Item 1 is a single card containing sixteen integers,

each right justified in a five-column field. The variables

are defined as follows.

Item Variable

1 NCIR

NCF

ISYM

NBLSEP

NSEPR

Descriution

Cross section shape index.

=0, circular cross section =l, elliptic cross section

=2, arbitrary cross section

Numerical transformation index.

=0, mapping coefficients are calculated

based on body shape input

=l, mapping coefficients are input by user in items 18 through 22

Symmetry index.

=0, right-left flow symmetry

=1, no symmetry (required if $ # 0')

Body vortex separation index.

=0, no separation (required if ac = O"

in item 5)

=l, laminar separation =2, turbulent separation

Reverse flow separation index.

=0, no separation

=l, laminar separation in reverse flow region

32

Page 41: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

NSMOTH Vortex induced velocity smoothing index.

=0, no smoothing =l, smoothing of vortex-induced velocities

used in pressure calculation =2, smoothing of vortex-induced velocities

used in pressure calculation and smoothing of 3$/2x calculation

NDFUS Vortex core model index.

=0, potential vortex =l, diffusion core model; preferred (see

RCORE in item 5)

NDPHI Unsteady pressure term index.

=0, omit a$/ax from Cp calculation =l, include a$/ax term; preferred

INP Nose force index.

=0, slender body theory force on portion of nose ahead of starting point (XI)

=l, zero force on nose ahead of XI; preferred value for restart option

NXFV

NFV

Number of x-stations at which flow field

is calculated or special output generated. See item 23.

0 c NXFV 5 8 -

Number of field points for flow field

calculation. See item 24. 0 < NFV < 200 -. -

NVP Number of +r vortices on +y side of body to be input for restart calculation. See

item 26. 0 < NVP < 70 -

33

Page 42: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

NVR

NVM

NVA

NASYM

Number of -r reverse flow vortices on +y

side of body to be input for restart calculation. See item 27.

0 < NVR < 30

Number of -r vortices on -y side of body to

be input for restart calculation. See item 28. NVM = 0 if ISYM = 0.

O<NVM<70 - -

Number of +r reverse flow vortices on -y

side of body to be input for restart calculation. See item 29. NVA = 0 if

ISYM = 0. 0 < NVA < 30 - -

Asymmetric vortex shedding index. See

item 7.

=0, no forced asymmetry; preferred

=l, forced asymmetry

Item 2 is a single card defining seven integer output

option indices. Each index is right justified in

column field. The indices are defined as follows.

a five

Item Variable Description

2 NHEAD Number of title cards in item 3. NHEAD > 1 -

NPRNTP Pressure distribution print index.

=0, no pressureoutputexcept at special

x-stations specified by item 23 =l, pressure distribution output at each

x-station

34

Page 43: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

NPRNTS

NPRNTV

NPLOTV

NPLOTA

NPRTVL

Vortex separation print index. =0, no output =l, output at each x-station: preferred =2, detailed separation calculation

output; for debugging purposes only

Vortex cloud summary output index.

=0, no vortex cloud output =l, vortex cloud output: preferred

Vortex cloud printer-plot option. =0, no plot =l, plot full cross section on a constant

scale =2, plot upper half cross section on a

constant scale =3, plot full cross section on a variable

scale: preferred

Plot frequency index.

=0, no plots =l, plot vortex cloud at x-stations

specified by item 23 =2, plot vortex cloud at each x-station

Velocity calculation auxiliary output for debugging purposes only (Sub. VLOCTY).

=0, no output; preferred =l, print velocity components at field

points: see items 23 and 24 =2, print velocity components at body

control points during pressure calculations. This option can produce massive quantities of output (not

recommended).

35

Page 44: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Item 3 is a series of cards containing hollerith informa-

tion indentifying the run. The cards are reproduced in the output just as they are input.

Item Variable Description

3 TITLE NHEAD cards of identification. Information

to be printed at top of output sheets.

Item 4 is a single card containing reference information

used in forming aerodynamic coefficients. The variables are

defined as follows.

Item Variable

4 REFS

REFL

XM

SL

SD

Item 5 is a

Description

Reference area. REFS > 0

Reference length. REFL > 0

Moment center.

Body length (L).

Body maximum diameter, or equivalent non-

circular body diameter (D). Used in

definition of RE.

single card containing the flow condition

parameters. Each variable is input in a ten column field.

The flow parameters are:

Item Variable Description

5 ALPHAC Angle of incidence, degrees. O" 2 ac < 90"

If ac = O", NBLSEP = 0 in item 1.

PHI Angle of roll, degrees ($1.

RE Reynolds number (V03D/v).

36

Page 45: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

RCORE Ratio of the local vortex core radius to

the local body diameter. Default value is . 025, and maximum allowable value permitted in the code is .05*SD/ro.

XMACH Mach number, MOb;

Item 6 isa single card containing the specification of

the axial extent of the run and certain parameters associated

with the vortex wake. Typical values are shown with the

variables.

Item Variable

6 XI

XF

DX

EMKF

RGAM

Description

Initial x-station. XI > 0

Final x-station. XF > XI -

Increment in x for vortex shedding calcula-

tion. Typical value, DX " D/2 when FDX = 0.0. For variable DX, set DX = 0.0

and FDX > 0.0.

Minimum distance of shed vortex starting

position from body surface.

=l.O,

>l.O,

Vortex =o.o,

>o.o,

vortices positioned such that separation point is a stagnation point in the crossflow plane minimum radii away from body surface for shed vortices. Typical value,

EMKF = 1.05

combination factor. vortices not combined: preferred radial distance within which vortices are combined. Typical

value, RGAM = 0.05 D

37

Page 46: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

VRF Vortex reduction factor to account for observed decrease in vortex strength.

=0.6, for subsonic flow

=l.O, for closed bodies, or supersonic flow: preferred

FDX Factor for variable x-increments. When

FDX > 0.0, DX = FDX *(local body radius).

DX should be input as zero when this option

is used.

Item 7 contains only one variable that is of general

use in program NOZVTX, and that is the integration error

tolerance, E5. The variable XTABL is for diagnostic

purposes only. The next three variables concern the use of

forced asymmetry for bodies at very high angles of attack.

The variables are defined as follows.

Item Variable Description

7 E5 Error tolerance for vortex trajectory

calculation. (Relative error in vortex

position.) Typical range, E5 = 0.01 to

0.05.

XTABL x-location after which a table of corres-

ponding points between the real body and

the transformed circle is not printed. For diagnostic purposes on noncircular

shapes. Typical value, XTABL = 0.0.

XASYMI Initial x-location at which forced

asymmetry of separation points is used. Typical value, XASYMI = 0.0.

XASYMF Final x-location at which forced asymmetry

of separation points is used. Typical

value, XASYMF = 0.0.

38

Page 47: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

DBETA Amount of forced asymmetry for separation points on body, degrees. Typical value, DBETA = 0.0.

Items 8, 9, 10, and 11 provide a table of geometry characteristics that must be input for all bodies, circular

or noncircular in cross section.

Item Variable Description

8 NXR Number of entries in body geometry table (1 z,NXR < 50). -

x-stations for geometry table (NXR values, 8 per card).

9 XR

10 R rO’ circular body radius at x-stations, or radius of tranformed Circle (NXR values, 8 per card). For an ellipse,

rO = (a + b)/2.

11 DR dro/dx, body slope of transformed shape at x-stations (NXR values, 8 per card).

Items 12 and 13 are included only if NCIR = 1; that is, for elliptical bodies.

Item Variable Description

12 A.E a, horizontal half-axis of elliptic cross section (NXR values, 8 per card).

13 BE b, vertical half-axis of elliptic cross section (NXR values, 8 per card).

39

Page 48: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Items 14 through 22 are included only if NCIR=2; that

is, for a body with arbitrary cross section that must be handled with the numerical transformation and conformal

mapping procedures.

Item Variable Description

14 MNFC Number of coefficients describing trans-

formation of arbitrary body to a circle (1 5 MNFC < 25). -

MXFC Number of x-stations at which transforma-

tion coefficients are defined (I~MXFCL~O).

For a similar shape body at all cross sections, MXFC = 1.

15 XFC x-stations at which transformation coef-

ficients are defined. For a similar cross

section body, MXFC=l, XFC(l) 5 XI (MXFC values, 8 per card).

Items 16 and 17 are included when NCF = 0. This block

of cards is repeated MXFC times, once for each x-station input in Item 15.

Item Variable Description

16 NR Number of coordinate pairs defining the

body cross section at the axial station

defined by XFC(J) (2 I_ NR 5 30).

17 XRC(I,J) Coordinates of right-hand side of body. YRC(I,J) The convention for ordering the coordinates

from bottom to top in a counter-clockwise

fashion, as shown in Figure 10, is observed. Right/left body symmetry is required in

the numerical mapping. (NR cards with one

set of coordinates per card.)

40

Page 49: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

-

Items 18 through 22 are input in lieu of Items 16 and 17 when NCF > 0. The values of these variables must be obtained from a previous run of the numerical mapping portion of the code. The only purpose for providing the option to input the mapping parameters is to eliminate the need to recompute the numerical mapping in subsequent runs and save computation time. This set of items is repeated MXFC times, once for each x-station input in Item 15.

Item

18

19

20

21

22

Variable Description

ZZC(J) Axis shift and radius of mapped cross RZC(J) section (one card with two values).

NR Number of sets of body coordinates at a

particular axial station.

XRC,YRC Coordinates of right side of body defining cross section starting at f3 = O" and ending at B = 180" (NR cards with one set of coordinates per card). See Figure 10.

THC Angle of defined body points in circle

plane (NR values, 8 per card).

AFC Mapping coefficients (MNFC values, 6 per card).

Items 23 and 24 are included only if NXFV > 0. Item 23

specifies the axial stations at which additional output or plots are requested. Item 24 is included only if NFV > 0.

Each card of this item contains the nondimensionalized y,z-coordinates of a field point at which the velocity field is calculated at each axial station specified in Item 23.

41

Page 50: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Item Variable Description

23 XFV x-station at which field point velocities

are calculated or at which additional out- put is printed (NXFV values).

Omit Item 24 if NFV = 0.

24 YFV,ZFV Y/r0 I z/r0 -coordinates of field points at

which velocity field is calculated, expressed as a fraction of the local body radius (NFV cards with one set of coordi-

nates per card). It is important that the field points lie outside the body surface.

Items 25, 26, 27, 28, and 29 are included for a restart

calculation only, and the condition NVP + NVR + NVM + NVA# 0 must be satisfied. It is not necessary to input all four

types of vorticity in a restart calculation.

Item 25 is a single card containing the nose force and

moment coefficients at the restart point; that is, X = XI. These values may be set equal to zero, but the resulting

forces and moments from the current calculation will be in

error.

Item Variable

25 CN

CY

CM

CR

CSL

Description

Normal-force coefficient.

Side-force coefficient.

Pitching-moment coefficient.

Yawing-moment coefficient.

Rolling-moment coefficient.

42

Page 51: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Item 26 is a block of NVP cards to specify the positive separation vorticity on the right side of the body. Omit this item if NVP = 0. The variable XSHEDP associated with each vortex is used only to identify individual vortices and permit the user to follow individual vortices during the calculation.

Item Variable Description

26 GAMP VVm I positive separation vorticity on right side of body.

YP,ZP coordinates.of discrete vortices on right

side of body at starting point (XI).

XSHEDP x-location at which individual vortex was shed (may be 0.0).

(Item 26 consists of NVP cards.)

Item 27 is a block of NVR cards to specify the second- ary or additional vorticity on the right side of the body or at any other position in the field. This array is a con-

venient way to put an arbitrary cloud of additional vorticity which is to be maintained separately from the other body vorticity in the field. Omit this item if NVR = 0.

Item Variable Description

27 GAMR VVD3 I reverse flow or additional vorticity

on right side of body.

XR,ZR coordinates of discrete vortices on right

side of body at starting point (XI).

XSHEDR x-location at which individual vortex was shed (may be 0.0).

(Item 27 consists of NVR cards.)

43

Page 52: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Item 28 specifies the negative separation vorticity on the left side of the body, analogous to Item 26. Omit this item if NVM = 0 or if ISYM = 0. In the case of a symmetric flow field (ISYM=O), this block of vorticity is automatically defined as the mirror image of the positive vorticity input

in Item 26.

Item Variable

28 GAMM r/V- I negative

side of body.

YM,ZM Coordinates of discrete vortices on left

Description

separation vorticity on left

side of body at starting point (XI).

XSHEDM x-location at which individual vortex was

shed (may be 0.0).

(Item 28 consists of NVM cards.)

Item 29 specifies the secondary or additional vorticity

on the left side of the body or at any other position in the

field. This block of vorticity is analogous to Item 27, and it is omitted if NVA = 0 or if ISYM = 0. As with the previous

item, this block of vorticity is automatically defined as

the mirror image of the negative vorticity input in Item 27 if symmetry is required by ISYM = 0.

Item Variable Description

29 GAMA VV03 I reverse flow or additional vorticity on left side of body.

YA,ZA Coordinates of discrete vortices on left

side of body at starting point (XI).

XSHEDA x-location at which individual vortex was

shed (may be 0.0).

(Item 29 consists of NVA cards.)

44

Page 53: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

The above 29 items make up the body vortex shedding portion of the input deck.

Items 30 through 43 are associated with the paneling

of bodies with noncircular cross sections and are taken from the input specifications for program WDYBDY (Ref. lo).. Item 44 is used to describe bodies with circular cross sections. As described above, it was desired to keep the

panel code input as unchanged as possible from the original WDYBDY code; however, the resulting input deck requires the specification of several variables over which the user has

no control. The input deck considered herein contains only those variables which are optional to the user. Other nonoptional variables have been hard coded with their appropriate value, and these should not be changed by the user.

Omit Items 30 through 43 if NCIR = 0.

Item Variable DescriDtion

30 TITLE1 One card of identification information to be printed ahead of the paneling output.

Item 31_ is a single card containing two indices, each index is right justified in a three column field. The

purpose of IXZSYM is to define the manner in which the body paneling is carried out for different flow conditions. A symmetric body in a symmetric flow (0 = O") can benefit from the IXZSYM = 0 option, which panels only one half of the

body and then utilizes the symmetry characteristics to reduce computation time. The same symmetric body in an asymmetric

flow condition ($ # O") must be paneled in total, IXZSYM = 1, to pick up the nonsymmetry in the loading around the body. The body symmetry is used to reduce the input required as described later.

45

Page 54: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Item Variable Description . 31 IXZSYM Panel symmetry option.

=0, panel symmetric half of body for symmetric flow ($I = O")

ql, panel complete symmetric body using

+y side geometry for a symmetric body in asymmetric flow ($ # O")

=-1, panel complete configuration using

geometry of both sides

ITBSYM =O, configuration has top/bottom symmetry

=l, no top/bottom symmetry (e.g., see Fig. 10)

Item 32 contains indices to specify the body geometry.

Item Variable Description

32 J2

J6

Body geometry specification option. =0, no body (not recommended)

=l, geometry for arbitrary shaped body

=-1, circular body defined by cross- sectional area at XFUS stations (not

recommended)

=-2, circular body defined by radius at

XFUS stations =-3, elliptic body defined by both semi-

axes at XFUS stations

=0, cambered body - not available =l, body symmetrical with respect to

XY-plane (uncambered body)

=-1, circular or elliptic body with J2 # 0 (preferred value)

46

Page 55: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

NRADX Number of points used to represent the body segment about the circumference. If the configuration is symmetric (IXZSYM = 0, l), NRADX is input for the half section. If the entire configuration is input (IXZSYM = -l), NRADX is input for the full section. The half section or full section is divided into NRADX-1 equal

angles, and the y- and z-coordinates of the panel corner points are defined by the intersections of these meridian angles with the body surface (3 < NRADX < 20). - -

It is the experience of the authors that the best panel representation of the body is obtained when NRADX is an even number; that is, there should be an odd number of panels on the half-body. It is very important for the pressure calcula- tion that there be a panel control point

on the B = 90° meridian.

NFORX Number of axial body stations used to define geometry (2 5 NFORX 5 30).

The next block of input specifies the geometry of the body for purposes of laying out the panels. This input is

somewhat redundant with the input in Items 8 through 13; however, it is important that the paneling geometry be separate from the previous geometry but consistent with it. In many cases, the paneling geometry may be specified in a

more coarse grid than that required by the separation portion of the program.

47

Page 56: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Item 33 is a block of cards containing the axial stations

at which body geometry is input for paneling purposes. The values are input ten to a card in seven column fields with a

decimal point required.

Item Variable Description

33 XFUS x-stations at which body paneling geometry

is input (NFORX values).

Item 34 is inlcuded only if 52 = -1 (Item 32). The

circular body cross-sectional areas are specified at the XFUS stations defined in Item 33.

Item Variable Description

34 FUSARD Circular body cross-sectional areas at XFUS stations (NFORX values).

Item 35 is included only if J2 = -2 (Item 32). The

circular body radii are specified at the XFUS stations

defined in Item 33.

Item Variable Description

35 FUSRAD R, circular body radii at XFUS stations

(NFORX values).

Items 36 and 37 are included only if J2 = -3 (Item 32).

The elliptic body horizontal and vertical semi-axes are

specified at the XFUS stations defined in Item 33.

48

Page 57: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Item Variable Description

36 FUSBY Elliptic body horizontal semi-axes at XFUS stations (NFORX values).

37 FUSAZ Elliptic body vertical semi-axes at XFUS stations (NFORX values).

Item 38 is included only if 52 = 1 (Item 32). The

y,z-coordinates of points on an arbitrary cross section body are specified in Item 38, and there is one set of Item 38 for each of the axial stations defined by XFUS in

Item 33. The convention for ordering the coordinates from bottom to top is observed (e.g., Fig. 10). If the full

cross section is to be specified (IXZSYM = -1, Item 31) the ordering continues counter-clockwise from the top of the body back to and including the bottom point to close the cross section.

Item Variable Description

38 YJ,ZJ y,z-coordinates of arbitrary body at XFUS

stations (NRADX cards).

Item 38 is repeated NFORXtimes, once for each XFUS station.

The following portion of the input deck is described as

Auxiliary Input Cards in Appendix K of Reference 10. The

purpose of this input is to provide a simple means to adjust the actual panel layout keeping the geometry specified above unchanged.

Item Variable Description

39 TITLE2 One card of identification information for paneling geometry.-

49

Page 58: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Item 40 contains an index to specify the output for the

body panel portion of the program. Because of the quantity

or output possible, it is recommended that [IPRINT/ f 1 be the highest level of output specified. Note that the

values of the first two indices on this card are fixed.

Item Variable Description

40 IPRINT Panel output option.

=0, minimum output (recommended)

=l, output panel corner coordinates, final source strengths, and velocities at

panel control points (recommended)

=2, same as IPRINT=l and source strengths from previous iteration (not recommended)

=3, print source strength for each itera- tion (not recommended)

=4, same as IPRINT= and complete aero-

dynamic influence matrix (not

recommended).

If IPRINT < 0, the panel geometry is included with the output

specified by [IPRINT]. This option provides a useful means

to check the paneling arrangement.

Item 41 is a single card containing two indices in three

column fields. These indices provide a conventional means to

change the panel layout without changing the geometry input.

Item Variable Description

41 KRADX Number of meridian lines used to define

panel edges on the body segment (see note for NRADX in Item 32).

50

Page 59: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

KRADX =0, meridian lines are defined by NRADX

in Item 32

'0, meridian lines are calculated at KRADX equally spaced points

(3 c KRADX < 20) - - co, meridian lines are calculated at

specified values of PHIK in Item 42

(3 5 IKRADX] 5 20)

For symmetric configurations (IXZSYM= O,l), KRADX is the number of meridians on the half section. For full configurations (IXZSYM = -l), KRADX is the number of

merdians on the full section including

meridians at 0" and 360°.

KFORX Number of axial stations used to define leading and trailing edges of panels on

the body. =0, the panel edges are defined by NFORX

and XFUS in Items 32 and 33,

respectively

'0, the panel edges are defined by XFUSK in Item 43 (2 < KFORX 5 30) -

Item 42 is included if KRADX < -3 in Item 41. This - item provides a means to easily modify the panels by changing the body merdian angles which specify the panel corner

points. The purpose of this option is to allow the user to pack additional panels into a region of the body which is changing rapidly.

Item Variable Description

42 PHIK Body merdian angles (degrees) with PHIK = 0' at the bottom of the body and PHIK = 180° at the top (IKRADXI values).

51

Page 60: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Item 43 is included,only if KFORX is nonzero. The variable XFUSK defines the axial positions of the panel edges.

If this item is not included, the panels are specified by XFUS in Item 33. The purpose of this item is to simplify the changing of a panel layout without changing the entire geometry input deck.

Item Variable Description

43 XFUSK Axial stations of leading and trailing

edges of body panels (KFORX values).

Item 44 is included only if NCIR = 0; that is, for bodies with circular cross sections.

Item Variable Description

44 NXBODY Number of line sources/sinks and line

doublet singularities distributed along

body centerline (1 5 NXBODY < 100). - Default value is NXBODY = 51.

NCODE

XNOSE

XLBODY

Integer control index for specifying fore-

body shape over length of XNOSE.

NCODE LO, Parabolic =l, Sears-Haack

=2, Tangent ogive

=3, Ellipsoidal =4, Conical

Length of nose part of body, measured from

nose tip.

Length of body.

52

Page 61: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

This concludes the input deck for a single run of program NOZVTX. The program is not set up to stack input for multiple cases because of the sometimes long and generally unpredictable. run times.

Input Preparation

In this section, some additional information is provided to assist the user in the preparation of input for certain

selected problems. The previous sectiononthe input description must be used to understand the individual vari- ables which go into NOZVTX, and this section will permit the

user to select the appropriate input to get optimum results

from the code.

Panel layouts.- The choice of panel arrangement to represent the noncircular body shape is perhaps the most important part of the input selection as the quality of the panel layout can determine the quality of the predicted results. Simply using the largest possible number of panels is one solution: however, this will not guarantee an optimum panel layout, nor will it guarantee the best results.

In the following paragraphs, some guidelines are presented

for various situations to optimize both results and computa- tion time whenever possible.

The elliptic cross section will be considered first

because the code has been checked out for a number of different elliptic bodies. In each case to follow, right/

left symmetry of the panels (IXZSYM = 0 or 1 in Item 31) is

assumed: therefore, only one side of the body will‘be shown to illustrate the panel layout.

A 2:l elliptic cross section is shown in Figure'11 where

several different panel arrangements have been selected. In Figure 11(a), nine program-determined panels (KRADX = 10

53

Page 62: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

in Item 41), each specified by a 20' central angle, are shown.

The only problem area is near the shoulder of the ellipse

where the outer three panels miss the actual surface by a considerable amount. Increasing the number of panels to lo (KKADx = 11) produces the arrangement shown in

Figure 11(b). Even though an additional panel has been included, the region near the shoulder is not modeled

better than before. In fact, this layout is missing an

important physical effect because no panel has the same orientation as the shoulder (dz/dy = a), and the entire

effect of the shoulder is lost.

An improved panel layout is shown in Figure 11(c) where

nine panels are specified by their meridian angles (KRADX = -10). In this layout, the panels are concentrated

in the region of highest curvature near the shoulder and

spread out over the lessor curved region. Note that an odd number of panels is specified so that the outer panel

nearest the shoulder has the proper slope. Top and bottom

symmetry of the panels is shown, and this is a recommended

arrangement for cross sections with top/bottom symmetry. For this particular cross section, additional panels can

be specified for better resolution at the cost of increased execution time. It is important that the user check the

panel layout used by the code to ensure reasonable modeling

of the actual surface.

Different panel arrangements on a 3:l elliptic cross section body are shown in Figure 12. The sharper curvature

of the shoulder of this shape creates a bigger modeling

problem than the 2:l ellipse shown previously. In Figure 12(a), a 13-panel arrangement (KKADX = 14) with equal

spacing is shown, and it is obvious that a large portion

of the shoulder region is not modeled properly for the prediction of flow field characteristics near to the body.

54

Page 63: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

For this particular shape, more panels are required for

better resolution. Additional panels are added in the

region 69O < B < lll" to produce the.19-panel layout (KRADX = -20) shown in Figure 12(b).

An example of reasonable panel arrangements on a lobed

cross section body without top/bottom symmetry is shown in Figure 13. The shape shown in this figure is that described in References 17 and 18. The panel edges do not

lie precisely on the actual body shape, a problem which is discussed in the numerical mapping section to follow. The

g-panel layout in Figure 13(a) is a resonable representation for preliminary calculations; however, certain detail is missing in the regions of greatest curvature. Additional panels are included in these regions, and the resulting layout

is shown in Figure 13(b). Custom panel layouts are shown

for both lobed-body examples to take advantage of the fewer panels required on the flat portion of body.

It is difficult to specify rigid guidelines for panel

layout on arbitrary cross sections. The examples shown

above were determined by this author after several trials, and proper panel selection becomes easier as the user gains experience with the code. The user should remember that

linear interpolation of panel characteristics is used between panel control points in the current version of the code.

Based on the experience of the authors, it is always useful to compare the paneling layout with the actual body shape, and generally, good engineering judgement will allow the

user to select a reasonable panel layout.

Nothing has been said about axial panel layout (NFORX or KFORX) in the above discussion. Axial spacing can be

critical to the predicted results, and as mentioned above,

good engineering judgement will usually produce an adequate

55

Page 64: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

layout. Linear interpolation is also used in the axial

direction to determine panel characteristics between panel

control points. This procedure can be used to great advantage for a specific class of body, the cone. Since the predicted linear results on a cone are the same at each

axial cross section, fewer panels are required in the axial direction. The major requirements are the following.

1. There should be one row of panels sufficiently

close to the nose tip or starting point (XI) for the

calculation that a control point can fall between the starting point and the nose tip.

2. There should be a row of panels with control points

located just aft of the last axial station of the calcula-

tion (XF).

3. If a conical nose is attached to the cylindrical

afterbody, there should be enough axial stations specified

near the junction of the nose and afterbody that adequate body characteristics are available for interpolation

purposes.

An example of a panel arrangement for a cone forebody

is presented in the sample cases.

Numerical mapping.- The specification of the appropriate

numerical mapping parameters (Items 14 through 22) depends on

the shape of the cross section. In the interest of optimum

computation time, the fewest possible terms in the transforma-

tion series (MNFC in Item 14) should be used which will

produce an adequate mapping. Each different shape should be

checked by the user to determine the proper number of

coefficients. For example, a simple cross section which is

similar to a circle may require as few as 10 coefficients. The shape shown in Figure 13 required 20 coefficients for

an excellent mapping. If a large number of calculations are

56

Page 65: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

to be made for a noncircular shape, it is worthwhile for the user to try different numbers of coefficients in an effort to find an optimum number. Not only should the shapes be compared carefully, the unseparated flow pressure coefficients should be compared to evaluate the quality of the mapping.

The numerical mapping now included in NOZVTX has been used for a variety of cross section shapes, and very few problems have been observed. One general problem area is

bodies with concave sides. The lobed body in Figure 13 has a moderate concave section on each side, and the mapping procedure had difficulty converging on a set of coefficients.

When the body shape was modified slightly, as shown in Figure 13(a), to give the concave region a flat or slightly convex shape, the mapping converged easily. This small

change in the shape probably has very little effect on the predicted pressure distribution. This is an example of the

type of problems to which the user should be alert.

Integration interval.- Choice of the appropriate

integration interval (DX in Item 6) depends to a large extent on the type of results of interest. The code permits the

interval to be a constant (FDX = 0 in Item 6) or a function

of the local radius (FDX > 0). If the user is,interested

in detailed nose loads and separation on the nose, where the radius is changing rapidly, the latter option should be

used with 0.5 < FDX < 1.0. This option can lead to a wide - - range of vortex strengths which, on occasion, has been

determined to be the cause of certain vortex tracking difficulties. The user should be alert to this possibility.

The constant interval option (DX = constant) is the best

choice when the results of a major interest are the vortex clouds near the end of the body.

57

Page 66: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

.-

Vortex core.- The core size specification is referenced'

to the local body diameter (RCORE in Item 5). The default

value is 0.025, and this value is adequate for most cases. The larger the core radius specified, the more the vortex

effects are reduced. To eliminate the possibility of

negating the vortex effect entirely, a maximum vortex core

of . 05 times the maximum body diameter is built into the

code. Except in unusual situations, the default value is

recommended, and this is the value used in the comparisons with data shown in a later section.

Sample Cases

In this section, 11 sample input decks are described

to illustrate the input preparation and use of the program

for a wide range of configurations and flow conditions.

Insofar as possible, each major option in the program is

illustrated in the set of sample cases. The major features

of each sample case are identified in Table II to assist the

user in finding an appropriate example to suit a specific

need.

Sample Cases 1 through 11 shown in Table II are designed

to exercise the most common options of program NOZVTX, and Sample Case 1 iS computer run for

sample cases are sample cases are

included specifically to provide a short

testing purposes. The input decks for the

shown in Figures 14(a) through (k). The

based on typical bodies used in the data

comparisons to follow in a later section, and the reference

in which the configuration is defined is noted on each

sample case.

Sample Case 1 is a test case based on the 3:l elliptic

missile body in Reference 19; however, only a portion of

the nose is considered to keep the execution time and output at a minimum. The purpose of this run is to provide the

58

Page 67: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

user with a short run to check out the code. The output from this case is described in the next section. Sample Case 2 in Figure 14(b) is a restart of the previous run, and it

illustrates the continuation of a calculation. Sample Case 3 in Figure 14(c) is the input deck for a complete run of this 3:l elliptic missile. The first three sample cases

do not necessarily use the optimum panel arrangement in an effort to minimize execution time. For production runs, the authors recommend a panel layout similar to that shown

in Figure 12(b).

Sample Case 4, Figure 14(d), illustrates the missile body in a rolled condition (4 = 45"). The lack of flow

symmetry and consequently the lack of right/left panel symmetry dictate the use of a smaller number of panels because the entire cross section must be paneled. This

run is typical of any noncircular body in a rolled flow

condition.

Sample Cases 5 and 6, Figures 14(e) and (f), illustrate

input decks for circular cross section bodies (Refs. 20 and 21). Since axis singularities are used in place of

panels, the input is shorter and easier to prepare. The

primary objective of Sample Case 6, an axisymmetric body atcx =O",

C is the prediction of the surface pressure

distribution with no separation effects included.

Sample Cases 7 and 8, Figures 14(g) and (h), are input

decks for a 2:l elliptic cross section forebody from Reference 18. The first case is for a standard panel layout determined by the code. The panels for the second

case are tailored to the cross section shape by specifica- tion of the central angles of the panel edges.

Sample Case 9 is a 3:l elliptic cross section conical

forebody (Ref. 17). The input specifies a variable axial

59

Page 68: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

integration interval, and the axial panel distribution is determined by the conical shape. Because of the character of conical flow, a very small number of axial panels is required as discussed in a previous section on input preparation.

Sample Case 10, Figure 14(j), is a lobed cross section forebody from Reference 18. This is an arbitrary noncircular body and numerical mapping is required for solution as indicated in the input. Since the cross section is changing at each x-station, the cross section shape must be input at a number of stations thus accounting for the large quantity of input. The number of axial stations must be sufficient

to provide acceptable accuracy in the body shape using linear

interpolation between input stations.

Sample Case 11, Figure 14(k), is set up for the 2:l

elliptic cross section missile body in Reference 22. The panel layout for this body is the same as that shown in

Figure 11(c).

output

A typical set of output from program NOZVTX is described

in this section. In general, the output quantities are labeled and each page is headed with appropriate descriptive

information. The actual output obtained is determined by the output options selected by the user. For purposes of this description, representative pages from Sample Case 1,

described in a previous section, are presented in Figure 15.

The total output from Sample Case 1 is contained on 30

pages I including pages which are continuations of another

page - The first page shown in Figure 15(a) is headed by

the title cards input as Item 3. The remainder of this

60

Page 69: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

page t the following two pages shown in Figures 15(b) and (c),

and the top of the fourth page shown in Figure 15(d) contain all the input data with appropriate labels. Body source panel geometry is shown on pages 5 through 13, Figures 15(e) through (m). Page 5, shown in Figure 15(e) and the following two pages shown in Figures 15(f) and (g) indicate the panel corner coordinates. Pages 8, 9, and 10, shown in Figures 15(h),.(i), and (j), contain a table of the body panel centroid coordinates. This is followedbya table of body panel areas and inclination angles. The inclination angles DELTA and THETA orient the panels in the body coordinate system. Detailed descriptions of these angles are given in Reference 10. This table continues onto page 12 and the top of page 13, shown in Figures 15(L) and (m). The next item on page 13, GB(N), is the list of source strengths for the body at angle of attack. This is followed by a table of velocity components at the control point of each panel. Each component is labeled, and the table continues onto pages 14 and 15 shown in Figures 15(n) and (0). The last item on

page 15, under the heading MODIFIED SOURCE STRENGTH, is the source strength on each panel of the body with no cross- flow influence. This panel strength represents the volume

solution of the body for purposes of tracking vortices. This list of source strengths continues onto page 16 shown in Figure 15(p).

The next two pages, shown in Figures 15(q) and (r),

contain the predicted pressure distribution around the body at the first axial station. A summary of the geometric characteristics and the Mach number is printed at the top

of page 17, followed by the pressure distribution. The'

columns are labeled, but a brief explanation of the printed

items follow. The first three columns, Y, Z, and BETA,

locate the specific points on the body cross section. u/v0

is the local axial velocity referenced to the free-stream

61

Page 70: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

velocity. V/V0 and W/V0 are the local lateral and. vertical velocities, respectively. These velocities include all perturbation effects including vortex induced velocity com-

ponents. The column VT/V0 is the total velocity in the crossflow plane given as the vector sum of the V/V0 and W/V0 velocities. A positive VT/V0 represents flow in a counter-

clockwise direction when viewed from the rear. CP(M) is the compressible pressure coefficient as calculated from

Equation (29). DPHI/DT is the unsteady part of the incompressible pressure relation as represented by the last

term in Equation (31). CPZ is the steady part of Equation (31), and CP(1) is given by Equation (31) in its

entirety. VCP/VO is the local two-dimensional crossflow

plane velocity whose positive sense is the same as that for

VT/VO.

The local force and moment coefficients are printed at

the middle of page 18. CN(X) and CY(X) are local force coefficients calculated by Equations (39) and (43),

respectively. The remainder of the forces and moments

represent total quantities on the nose between the origin and the local axial station. The normal force and pitching moment coefficients, CN and CM, are calculated with

Equations (40) and (41), and the axial center of pressure of the normal force, XCPN, is given by Equation (42). XCPN is not normalized by the reference length on page 7. The

corresponding side force and yawing-moment coefficients and center of pressure of the side force are given by

Equations (44), (45), and (46), respectively. The rolling-

moment coefficient, CSL, is positive in a counterclockwise

sense when viewed from the rear of the body. The small value shown in this output is due to numerical round-off

error during the calculation. The same is true for all

lateral coefficients which appear as very small, nonzero,

62

Page 71: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

values when a symmetric body and symmetric flow conditions

dictate that they are identically zero.

Page 19 of the output from Sample Case 1, Figure 15(s), summarizes the important points in the pressure distribution and the separation calculation. The last two lines of output

contain specific information on the vortices shed at this station. The vortex numbers, NV, assigned here are the

cumulative numbers of vortices in the flow field. The

vortex strength, GAM/V, is obtained from Equation (38) where the boundary layer edge velocity ue/Va is shown as VT/V in this line of output. M(K) is the actual distance of the

vortex from the body surface. The position of the vortex in the body plane is given by Y, Z, and BETA. The position

of the vortex in the circle plane is given by the coordinates

YC, zc. The radial position of the vortex in the transformed circle plane is RG/R. The latter quantity is useful in

providing a quick estimate of the relative positions of new

vortices being shed into the wake.

Page 20, shown in Figure 15(t), summarizes the vortex field after the trajectories have been calculated over one axial interval. The x-station at the top of this page is

exactly DX downstream of the previous x-station. Information

to locate each individual vortex in both the body plane and the circle plane is provided. One additional piece of

information for each vortex is XSHED, the x-station at which the individual vortex originated. This is printed to allow

the user to keep track of any.individual vortex throughout the trajectory calculation. Each vortex maintains its

individual identity and the right and left side vortices are grouped together on this page. Centroids of the individual

groups of vorticity also show on page 20. The only exception

to the above discussion of individual vortices occurs when vortices are allowed to combine through use of the parameter

63

Page 72: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

RGAM in Item 6 of the input list. When vortices are combined, the particular vortices are identified in a special line of

output.

This completes one cycle of output. The next page of output is the pressure distribution at the new axial station, and the format is the same as page 17 shown in Figure 15(q).

At each axial station, the output repeats through the cycle shown in Figures 15(q), (r), (s), and (t). At specified axial stations, certain additional output is available. A simple plot of the body cross section and the vortex field

at x = 4.2 is shown in Figure 15(u). This particular output is on page 23 of the actual output from Sample case 1. Each type of vortex is shown with a different symbol in this figure.

Postive body vorticity shed from the right side of the body is shown as an X, and negative vorticity from the left side

is represented by an 0. If it is requested, the calculated

velocity field appears as shown in Figure 15(u). This output appears on page 24 of the actual output. The coordinates and velocities shown on this page are in the

body plane. The normalizing diameter, D, in the last two columns is the equivalent diameter of the noncircular body.

The last page of output is shown in Figure 15(w). The

top portion of the output is the summary page for the separa-

tion calculation at the last x-station, X = XF. This part of the output is similar to that shown in Figure 15(s).

The lower part of the page is printed only at the completion

of the calculation, and it contains a summary of the forces and moments and the vortex strengths and centroids at the

end of the body.

64

Page 73: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

RESULTS

For purposes of evaluating the accuracy and range of

applicability of the engineering prediction method and associated program code NOZVTX described above, comparisons of measured and predicted aerodynamic characteristics of

various configurations have been made. The objective of

the method is to predict the characteristics for noncircular

cross section bodies, but selected data for bodies of revolu-

tion will also be considered to illustrate certain features of the prediction method. Typical results from the predic-

tion method are presented in the following sections.

Circular Bodies

The prediction method was applied to an ogive-cylinder model (Ref. 21) in supersonic flow to evaluate the ability

of the prediction method to calculate pressure distributions. The configuration has a circular cross section and a three caliber ogive nose followed by 3.67-caliber cylindrical

afterbody. Circumferential pressure distributions at a large number of axial stations are available for a range of angles of attack and supersonic Mach numbers. The free-stream

Reynolds number, based on diameter, is 0.5~ lo6 for the

results to follow.

The model is represented by 51 line sources on the

body body axis for the calculation at cc = O". The measured

and predicted pressure distributions at three Mach numbers are compared in Figure 16 where the multiple data symbols

at each axial station represent the range of scatter in the data. The purpose of this comparison is to verify the body model and the pressure calculation technique under conditions

in which there are neither crossflow nor separation effects.

65

Page 74: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

In Figure 16(a), the agreement is very good at M, = 1.6 except in the region very near the nose. As seen in Figures 16(b) and (c), the agreement between measured and predicted pressures on the nose gets progressively poorer as the Mach number increases. It is possible that nonlinear effects caused by the close proximity of the shock wave are responsible for this disagreement. For purposes of this investigation, a small error in the pressure very near the

nose will have very little effect on the vortex shedding from the remainder of the body. As a further check on the body model, a panel distribution of 13 rings of 14 equally

spaced circumferential panels was used for the same calcula-

tion. The pressure results are virtually identical to those

obtained from the line singularity model.

The prediction method was next applied to the same model

at UC = 20" angle of attack and Mm = 1.6. At this angle of

incidence, the separation vortex wake on the lee side of the

body is well developed. Measured and predicted pressure distributions at two axial stations on the nose and one

station on the cylinder are compared in Figure 17. The

agreement between experiment and theory at x/D = 0.8 is very good except on the windward side of the body upstream of

the minimum pressure point. Similar results are illustrated

in the lower portion of Figure 17(a) for a station near the end of the nose (x/D = 2.8). The predicted minimum pressure point is upstream of the measured value, but the general

trend of the predicted pressure distribution is correct. The

slightly irregular behavior of the predicted curve near

B = 130° is caused by local interference of the lee side

separation vortices.

Measured and predicted pressures on the cylindrical

portion of the body (x/D = 5.1) are shown in Figure 17(b).

A large vortex wake, also shown in the figure, has developed

66

Page 75: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

on the lee side, and it has a dominant effect on the pressure distribution. The solid curve, representing the predicted pressure distribution in the presence of the vortex wake, is in good agreement with the measured results near the mini- mum pressure point and on the lee side. The predicted pressures are lower than those measured on the windward side of the body. There is also some disagreement between experiment and theory near B = 130" where it appears that some of the vortex induced effects are missing from the predictions. Contrast the solid curve with the dashed curve representing a predicted pressure distribution with no

separation effects included.

The predictionmethod was next applied to an ogive- cylinder model for which detailed lee side flow field measurements are available (Ref. 20). This model is an ogive-cylinder with a two-caliber nose and a thirteen-caliber

cylindrical afterbody. The tests were conducted at Mach numbers of 2 and 3 at a free-stream Reynolds number, based on diameter, of approximately 2x 106. The data consist of

lee side velocity components and separation vortex strengths and positions. Neither pressure nor force and moment data are available from these tests.

The model is represented by 51 line source and doublet singularities on the body axis. The predicted vortex cloud pattern at x/D = 10 is shown in Figure 18 for Mco = 2 and a = 15".

C The vortex shedding is symmetric on both sides of

the body. Also shown in this figure are the separation

points located at approximately 86 degrees measured from the windward stagnation point. The measured and predicted vortex strength and centroid of vorticity are shown to be in

reasonable agreement in this figure. The predicted vortex wake is approximately 9 percent stronger than the measured value, and the centroid of the predicted vortex cloud is

67

Page 76: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

--

slightly lower and more outboard than the measured results.

Again, as a further check on the body model, the body was

represented by 15 rings of 14 equally-spaced circumferential panels. The predicted results were nearly identical in each

case; however, the execution time for the. line singularity

model was only 20 percent of that required for the panel solution.

Measured and predicted body vortex strengths on the

same ogive cylinder at Mach numbers 2 and 3 and angles of

attack 10, 15, and 20 degrees are compared in Figure 19.

At Mco = 2, the predicted results are slightly higher than

those measured. At Mm = 3, the predicted results are lower

than those measured on the forward portion of the body and in good agreement on the rear portion. The slopes of the

predicted curves are in good agreement with the experimental

results, an indication that the predicted shedding rate and strengths of the shed vortices are correct. The difference

in magnitude between the measured and predicted vortex

strength in Figure 19 is attributable in part to the location of the onset of separation. If separation is predicted to

start further aft on the body than the actual start of

separation, the predicted vortex strength will be less than

measured. The maximum error in vortex strength exhibited

in Figure 19 represents an error in the predicted axial

position of onset of separation of less than one body diameter

except at the highest angles of attack.

Measured and predicted downwash velocity fields in the

plane of symmetry of the model at Mm = 2 and ~1~ = 15' are

shown in Figure 20 for three axial stations. The results

are generally in good agreement, and the predicted velocity

distribution exhibits the correct trend in every case.

The vortex field used to calculate the induced velocities at x/D = 10 is the distribution shown in Figure 18.

68

Page 77: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Additional comparisons of measured and predicted down- wash velocities on the lee side of the body at x/D = 10 are

shown in Figure 21. In Figure 21(a), the velocities are calculated along a line at z/D = .75 which passes through the predicted centroid of vorticity. The agreement is only fair

in the vicinity of the centroid (y/D : 0.4), an indication that the present discrete vortex cloud model is not completely reliable inside the cloud. In Figure 21(b), the measured and predicted velocities are compared along a line at

z/D = 1.05 which passes above both the measured and predicted centroid of vorticity. These results indicate the correct trend in the predicted velcoity distribution; however, since

the strength of the wake vorticity is nearly correct, it appears that a cloud model that is higher off the body is required to bring the predicted velocities into better agree-

ment with measurements. The need for a higher cloud is verified in Figure 18 where it is shown that the actual centroid of vorticity is approximately .15D above the pre-

dicted centroid. As shown in Figure 19, the strength of the vortex cloud is in good agreement with experiment.

Similar comparisons of measured and predicted downwash

velocity fields on the lee side of the ogive cylinder at

MO3 = 3, cLc = 15' are shown in Figures 22 and 23. The results on the plane of symmetry on the model lee side are shown in Figure 22 where it is obvious that the comparisons are not as good as those shown in Figure 20 for MW = 2; The general trends are correct, but the magnitude of the velocity components is in error. This is likely due to a combination

of circumstances. For example, in Figure 19, the predicted

vortex strength corresponding to M, = 3, CL~ = 15' is less than that measured at x/D = 7 and in good agreement with

measurements at x/D = 13. As seen in Figure 22, the vortex

induced velocity is less than that.measured at x/D = 7 and nearly correct at x/D = 13. The fact that the predicted

69

Page 78: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

velocity profiles are not in agreement may be due, in part, to the problem discussed previously, the error in the predicted centroid of vorticity. The velocity profiles

indicate that the predicted centroid of the separation vorticity may be too low, a possible problem at higher Mach numbers.

Analogous to the Moo = 2 results in Figure 21, comparisons

of measured and predicted velocity profiles on the lee side of the body at x/D = 10 are shown in Figure 23 for Mm = 3.

The results look very good in Figure 23(a) at z/D = .75 where

the region of comparison is in the vortex cloud and near the vertical centroid of vorticity. In Figure 23(b), the agree-

ment between the velocity profiles is poor -with the predicted

velocities being much less than those measured.

Elliptic Bodies

The prediction method has been applied to a number of

different elliptic cross section bodies. A variety of

results are presented for several configurations under a range of flow conditions, the major objective being to

examine a large number of configurations to identify the

strengths and weaknesses of the code.

The 3:l elliptic cross section missile of primary

interest in these comparisons is the sharp-nose body described

in References 19, 23, and 24. The tests were conducted at

MC0 = 2.5 and a free-stream Reynolds number of 2x lo6 per foot.

The sharp-nose body considered in the comparisons to follow

was modeled with 18 circumferential panels around the cross

section and 29 axial rings of panels. Sample Cases 3 and 4

describedinTable II and Figures 14(c) and (d), respectively,

produce the results to follow.

70

Page 79: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Flow visualization via vapor-screen photographs (Ref. 23) and pressure data (Ref. 24) are available for

comparison with the theoretical results. For better visualization of the vortex development along the body, the photographs were digitized. These results are presented in the upper left corner of Figure 24 for the missile at

MC0 = 2.5, ~1~ = 20°, and 4 = O" and 45O. Cross sections through the body at three axial stations are shown. The extent of the vortices from the vapor screen photographs

are shown by the solid curve, and the predicted discrete vortex wake is shown by the individual vortices connected by a dashed line. The unrolled flow condition ($ = 0') shown in Figure 24(a) illustrates very good agreement between the predicted vortex cloud and the vapor screen results. The strength of the predicted vortex cloud is shown at each axial station, and because of symmetry, the left and right vortices are of equal magnitude and opposite sign.

The rolled flow condition (a = 45O) is shown in Figure 24(b). To be consistent with the output from the code, the body is shown unrolled with the flow angle rolled

45 degrees. The general character of the predicted vortices is in fair agreement with the experimental results: however, there are certain areas of disagreement. The theoretical vortex on the right side has rolled up much tighter than the vapor screen indicates, and the left theoretical vortex has not moved out away from the body as far as the actual

vortex, nor has it rolled up as tightly as the actual vortex.

Comparison of measured and predicted pressure distri-

butions at x/L = 0.60 on the body are shown in Figure 25 for

the unrolled and rolled condition. The unrolled results shown in Figure 25(a) illustrate some of the same problem areas discussed for circular bodies. The predicted

71

Page 80: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

stagnation pressure on the windward side is in good agree-

ment with experiment, but the predicted pressure around the shoulder region of the cross section is much lower than the measurements. The pressure on the lee side is also under- predicted, possibly due to vortex interference effects. As

shown in Figure 24(a), there is a strong concentrated vortex field developed on the lee side at this axial station

(x/L = 0.60). The irregularities in the predicted pressures near the shoulder region are caused by local vortex inter-

ference effects. As noted in the discussion for the circular

bodies, the discrepancy in the pressure comparisons on the windward side of the body near the shoulders may be caused

by nonlinear effects induced by the close proximity of the

shock wave.

The measured and predicted pressures on the 3:l elliptic body in a rolled flow condition are compared in Figure 25(b).

The qualitative agreement is very good, but a problem on the

windward side of the body is in evidence. The vortex induced effects cause the irregularities in the predicted pressures,

and it appears that the induced effects are too large on the

positive lee side (0 = 320'). In Figure 24(b) it is obvious that the close proximity of the predicted wake will have a

large effect on the pressure distributions, and it is likely

that the predicted wake is causing the lack of agreement in

this region.

NOZVTX was also applied to a conical forebody with a

3:l elliptic cross section shape (Ref. 17). The major axis, in planform, is defined by a 20-degree half angle, and the total length of the forebody is 14 inches. The test was conducted at a free-stream Reynolds number of 2x lo6 per foot.

The panel model representation consists of 17 circumferential panels on the half body (34 panels on the total cross section)

and four axial rings of panels. The limited number of axial

72

Page 81: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

panels is permissible because of the similar characteristics

on a conical configuration in supersonic flow described in the previous section on input preparation. The detailed

panel layout is described in Sample Case 9.

Comparisons of measured and predicted pressure distri-

butions on the conical forebody are shown in Figure 26 for two axial stations. Except for small differences on the lee side of the body, the measured pressure distributions are

nearly identical at the two axial stations. In Figure 26(a), the theoretical pressure distribution is not in good agree- ment with experiment on the windward side of the body,

particularly near the shoulders. On the lee side, two pre- diced curves are shown; the dashed curve represents no separation vortex effects, the solid curve has vortex effects . included. There is considerable difference in these results,

all of the difference attributable to the vortex induced effects. The vortex effects improve the predicted pressures

in the region around B = 120' on the body, but they detract from the agreement near the lee side stagnation point, 150° < B < 180". This may be an indication that the actual

lee side vorticity is rolled up tightly around f3 = 120°,

whereas the predicted vortex cloud is distributed over the entire lee side of the body as illustrated in Figure 27.

The prediction method has been applied to the elliptic

cross section body described in Reference 22 and illustrated in Figure 28. The major axis of the cross section is specified by an ogive distribution on the nose, and the cross section is a 2:l ellipse over the entire body length. The equivalent base diameter of this body is 1.125 inches. Circumferential pressure measurements at numerous axial

stations are available at M, = 1.5 and a range of angles of

incidence and angles of roll. The tests were conducted at a

free-stream Reynolds number, based on the equivalent

diameter, of approximately 0.3x 106.

73

Page 82: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

This 2:l elliptic cross section body is modeled with 18 circumferential panels around the complete cross section

and 15 axial rings of panels. No smoothing is used in any of the calculations to follow. The general layout of the geometry is illustrated in Sample Case 11 in Figure 14(k).

Measured and predicted pressure distributions on the

elliptic cross section body at M, = 1.5, ~1~ = lS", and several roll angles are compared in Figure 29 at two axial

stations on the nose. The agreement between experiment

and theory for $ = O" is better away from the tip of the nose as shown in Figure 29(a). This is consistent with the circular body results described previously. The sparse nature of the measurements make it difficult to fully

evaluate the prediction method other than to observe that the basic trends of the pressure distribution are predicted.

At x/D = 2.1, the separation vorticity has grown in strength

and scope, and the major region of vortex wake influence covers the region between B = 90' and 13OO.

The predicted pressure distributions on the same body

at roll angles of 22.5O and 45O are shown in Figures 29(b)

and 29(c), respectively. The predicted results are generally

in good agreement with experiment, and the correct trends of

the data are modeled by the theory in each case. The local irregularities in the predicted curves are due to the

influence of the separation vortices.

NOZVTX was next applied to a 2:l elliptic cross section cone (forebody 4 in Ref. 17) in an unrolled flow condition.

The pressure results for Mm = 1.7 and ac = 20.35O are shown

in Figure 30 where it is obvious that agreement is poor over much of the surface. The lack of agreement on the wind-

ward side and near the body shoulder is typical of previous

results on elliptical cross section bodies. On the lee side,

there is a large effect of the predicted vortex field which

74

Page 83: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

I I-

is spread out over much of the lee side. The effects of the

vortices on the measured pressures appear to be more limited in scope. These results are the same as those shown on the 3:l elliptic cone forebody in Figure 26(a).

The final 2:l elliptic cross section body considered

in these comparisons is forebody 2 from Reference 18, and the predicted results are from Sample Case 8 in Figure 14(f). The comparison.of measured and predicted pressure distribu- tions in Figure 31 are in good agreement over the entire

body surface, even on the windward side. The pressure

distribution on the body is such that separation does not occur over most of the length of the forebody. Separation

begins at approximately x/L = 0.8, but in contrast to the elliptic cross section bodies with their major axis horizontal, the vortices are very weak and located near

the lee side stagnation point.

Arbitrary Bodies

The arbitrary noncircular body option in NOZVTX has been checked out for a number of different cross section shapes to verify the numerical transformation. Some of the shapes

considered are a square cross section with rounded corners,

a diamond cross section with rounded corners, and a lobed or pear shape cross section. The latter cross section is the

only shape for which pressure data are available, therefore, results on this configuration are described as follows.

The configuration selected for these comparisons is the

lobed cross section body, forebody 3 from Reference 18, shown

in Figure 13. The panel arrangement shown in Figure 13(b)

is used for the predicted results included herein, and the

specific calculations were made using Sample Case 10. Comparison of measured and predicted pressure distributions

75

Page 84: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

at two axial stations are shown in Figure 32. At x/L'= .14

in Figure 32 (a), the agreement is very good on the windward

side of the body, only fair in the region of minimum

pressure, and poor near the lee side stagnation point. This

particular location near the nose of the body has minimal

vortex interference effects. At the mid-point of the

forebody length, x/L = 0.5, shown in Figure 32(b), the agree-

ment is only fair over the entire circumference even though

,thetrendof the data is predicted well. One unusual result in Figure 32(b) is the overpredicted pressure on the wind-

ward side of the body, a situtation which has not occurred

on any other configuration. The roughness in the predicted pressure distribution on the lee side of the body is caused

by local vortex interference effects. The vortices are

distributed along the body surface, and they have not started

to roll up.' A sketch of actual predicted vortex positions is

shown in Figure 33.

CONCLUSIONS

An engineering method and the program code NOZVTX to

predict the vortex shedding from circular and noncircular

bodies in supersonic flow at angles of attack and roll are described. The coupling of a supersonic panel method, an

axisymmetric source and doublet model and a two-dimensional

crossflow vortex shedding method has proved to be a successful

means to predict the general flow characteristics about slender, circular and noncircular bodies at large angles of

incidence and moderate Mach numbers. Comparisons of

measured and predicted pressure distributions and associated flow fields on a variety of bodies indicate that the

principal features of the flow phenomena are modeled. The

predicted vorticity distributions in the wake of a body of

76

Page 85: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

revolution in supersonic flow are in reasonable agreement

with experiment. This.also results in reasonable agreement between measured and predicted velocity components in the flow field of the body. The ability to model the correct

flow field near the body leads to the capability to calculate wake induced interference effects on fins and other control surfaces as well as surface pressure distributions. The vortex shedding into an overall

analysis described herein can be incorporated computation method for missiles and aircraft.

RECOMMENDATIONS

In the course of development of the program code NOZVTX, several specific areas for needed improvements to the method

were discovered. These improvements were beyond the scope of the present study, but they are noted here as specific recommendations for future work.

The first, and possibly the most important, recommenda-

tion involves a thorough testing of program NOZVTX. Limited numbers of comparisons with experimental results on a

variety of bodies are included herein, but many other comparisons are needed. The program should be tested over a wide range of angles of attack and roll and Mach numbers to better define the operational limits of the method. The

program should also be applied to a wide range of noncircular body shapes for which data are available.

A critical weakness in the prediction method appears to be the difficulty in calculating accurate pressure

distributions on the windward side of certain bodies. For

example, from the comparisons with experiment described in

a previous section, the method has problems with conical

77

Page 86: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

forebodies at all Mach numbers and most shapes at high Mach

numbers. These difficulties may be caused by nonlinear

,.effects induced by the shock wave when it is relatively near

to the windward body surface. Further investigation into

this problem is recommended.

Comparisons of measured and predicted velocity components on the lee side of an axisymmetric body at high angle of

attack indicate the method has a potential capability to

handle this problem. However, some additional work on the details of the vortex cloud are required. This may involve

a different procedure to blend the discrete vortices when

velocities in the midst of the cloud are to be calculated. With regard to the cloud itself, qualitative results on a

3:l missile body are in excellent agreement with experiment;

but based on one set of experimental results, predicted vortex clouds on an axisymmetric body are typically lower

than those measured. Additional investigation into the

mechanics of the vortex tracking procedure may explain this disagreement.

The final set of recommendations involve improvements

to various parts of the program. The Stratford separation

criteria have proved to work very well even though they are based on incompressible flow; however, similar criteria

or corrections to the existing criteria should be developed

for compressible flow. In this same area, it has been

observed in surface flow visualization studies that the

separation line on a body exhibits characteristics of laminar,

turbulent, and transitional flow. At the present time, the

crossflow plane separation may be either laminar or turbulent but not transitional or a combination of laminar and turbu-

lent. It may be possible to use surface flow visualization information to correlate the three separation regions on the

body and build this feature into the prediction method.

78

Page 87: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

REFERENCES

1. Spangler, S. B. and Mendenhall, M. R.: Further Studies of Aerodynamic Loads at Spin Entry. Report ONR CR212- 225-3, U.S. Navy, June 30, 1977.

2. Mendenhall, M. R., Spangler, S. B., and Perkins, S. C., Jr.: Vortex Shedding from Circular and Noncircular Bodies at High Angles of Attack. AIAA Paper 79-0026, Jan. 1979.

3. Mendenhall, M. R.: Predicted Vortex Shedding from Noncircular Bodies in Supersonic Flow. J. Spacecraft & Rockets, Vol. 18, No. 5, Sept.-Oct. 1981, pp. 385-392.

4. Marshall, F. J. and Deffenbaugh, F. D.: Separated Flow Over Bodies of Revolution Using an Unsteady Discrete- Vorticity Cross Wake. NASA CR-2414, June 1974.

5. Deffenbaugh, F. D. and Koerner, W. G.: Asymmetric Wake Development and Associated Side Force on Missiles at High Angles of Attack. AIAA Paper 76-364, July 1976.

6. Mendenhall, M. R. and Nielsen, J. N.: Effect of Symmetrical Vortex Shedding on the Longitudinal Aerodynamic Characteristics of Wing-Body-Tail Combina- tions. NASA CR-2473, Jan. 1975.

7. Nielsen, J. N.: Missile Aerodynamics. McGraw-Hill Book Co., Inc., 1960.

8. Skulsky, R. S.: A Conformal Mapping Method to Predict Low-Speed Aerodynamic Characteristics of Arbitrary Slender Re-Entry Shapes. J. of Spacecaft, Vol. 3, No. 2, Feb. 1966.

9. Dillenius, M. F. E., Goodwin, F. K., and Nielsen, J. N.: Prediction of Supersonic Store Separation Character- istics. Vol. I - Theoretical Methods and Comparisons with Experiment. AFFDL-TR-76-41, Vol. I, May 1976.

10. Dillenius, M.. F. E. and Nielsen, J. N.: Computer Programs for Calculating Pressure Distributions Includ- ing Vortex Effects on Supersonic Monoplane or Cruciform Wing-Body-Tail Combinations With Round or Elliptical Bodies. NASA CR-3122, Apr. 1979.

79

Page 88: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

--- -

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Woodward, F. A.: An Improved Method for the Aerodynamic Analysis of Wing-Body-Tail Configurations in Subsonic and Supersonic Flow. Part I - Theory and Application. NASA CR-2228, Part I, May 1973.

Woodward, F. A.: An Improved Method for the Aerodynamic Analysis of Wing-Body Tail Configurations in Subsonic and Supersonic Flow. Part II - Computer Program Description. NASA CR-2228, Part II, May 1973.

Cebeci, T., Mosinskis, G. J., and Smith, A. M. 0.: Calculation of Viscous Drag and Turbulent Boundary- Layer Separation on Two-Dimensional and Axisymmetric Bodies in Incompressible Flow. McDonnell Douglas Rept. MDC JO 973-01 (Contract N00014-70-C-0099), Nov. 1970.

Stratford, B. S.: The Prediction of Separation of the Turbulent Boundary Layer. J. of Fluid Mech., Vol. 5, 1959, pp. l-16.

Keener, E.: Oil-Flow Separation Patterns on an Ogive Forebody. NASA TM-81314, Oct. 1981.

Barger, R. L.: A Distributed Vortex Method for Computing the Vortex Field of a Missile. NASA TP-1183, June 1978.

Townsend, J. C., Collins, I. K., Howell, D. T., and Hayes, C.: Surface Pressure Data on a Series of Conical Forebodies at Mach Numbers From 1.70 to 4.50 and Combined Angles of Attack and Sideslip. NASA TM-78808, Mar. 1979.

Townsend, J. C., Howell, D. T., Collins, I. K., and Hayes, C.: Surface Pressure Data on a Series of Analytic Forebodies at Mach Numbers from 1.70 to 4.50 and Combined Angles of Attack and Sideslip. NASA TM-80062, June 1979.

Graves, E. B.: Aerodynamic Characteristics of a Mono- planar Missile Concept With Bodies of Circular and Elliptical Cross Sections. NASA TM-74079, Dec. 1977.

Oberkampf,.W. L. and Bartell, T. J.: Supersonic Flow Measurements in the Body Vortex Wake of an Ogive Nose Cylinder. AFATL-TR-78-127, Nov. 1978,

Landrum E. J.: Wind-Tunnel Pressure Data at Mach Numbers from 1.6 to 4.63 for a Series of Bodies of Revolution at Angles of Attack From -4' to 60'. NASA TM X-3558, Oct. 1977.

80

Page 89: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

22. Goodwin, F. K. and Dyer, C. L.: Data Report for an Extensive Store Separation Test Program Conducted at Supersonic Speeds. AFFDL-TR-79-3130, U.S. Air Force, Dec. 1979.

23. Allen, J. M. and Pittman, J.L..: Analysis of Surface Pressure Distributions on Two Elliptic Missile Configurations. AIAA Paper 83-1841, July 13-15, 1983.

24. Allen, J. M., Hernandez, G., and Lamb, M.: Body- Surface Pressure Data on Two Monoplane-Wing Missile Configurations With Elliptical Cross Sections at Mach 2.50. NASA TM-85645, 1983.

81

Page 90: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

TABLE I - NOZVTX SUBROUTINE LIST

Subroutines

NOZVTX" AMAP

ASUM

BDYGEN

BMAP

BODPAN

BODVEL

BODYR

CMAP

COMBIN CONFIG

CONFOR

DFEQKM DIAGIN

DOUBLT DPHIDT

DTABLE

DZDNU

ELNOSE

F

FLDV-EL

FORCEP

FPVEL

GEOM

INPT

INVERT

Subroutines

ITRATE

NEWRAD PANEL

PARTIN

PLOTA

PLOTAS

PLOTA

PLOTA

PLOTA

PLOTV

SEPRAT SHAPE SMOOTH

SOLVE

SORPAN

SOURCE SRFVEL

SUM

VCENTR

VELCAL

VELCMP

VLOCTY

VOLUME

VTABLE

Z

* Main program.

82

Page 91: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

TABL

E II

- SA

MPL

E C

ASES

FO

R

PRO

GR

AM NO

ZVTX

~-

Sam

plei

R

ef.

Cas

e /

1 :

19

Fig.

14 (a

)

14(b

)

14 (c

l

14(d

)

14(e

)

--

Body

M

_ :

ac

' $

( G

ener

al

Com

men

ts

Exec

utio

n C

ross

I

Tim

e Se

ctio

n ~

(CD

C-C

YBER

3:l

; 2.

5 El

lipse

3:l

Ellip

se

3:l

Ellip

se

3:l

Ellip

se

Circ

le

2.5

2.5

2.5

2.0

I 20

° 1

o"

20°

2o"

2o"

15O

O0

O0

4s" O0 -c

I I I

An

ellip

tic

mis

sile

bo

dy

case

w

ith

flow

sy

mm

etry

, pa

nel

sym

met

ry:

surfa

ce

pres

sure

ca

lcul

atio

n,

vorte

x fie

ld

plot

s at

ea

ch

axia

l st

atio

n,

and

velo

city

fie

ld

calc

ula-

tio

n at

se

lect

ed

axia

l st

atio

ns

(TES

T C

ASE)

.

Res

tart

of

Sam

ple

Cas

e 1

Full

run

for

mis

sile

bo

dy

in

Sam

ple

Cas

e 1

Sam

e el

liptic

m

issi

le

body

fro

m

Sam

ple

Cas

e 1;

no

flo

w

sym

met

ry,

surfa

ce

pres

sure

ca

lcul

atio

n an

d vo

rtex

field

pl

ots

at

each

ax

ial

stat

ion.

An

oyiv

e cy

linde

r bo

dy

case

w

ith

line

sour

ces

and

doub

lets

, flo

w

sym

met

ry:

surfa

ce

pres

sure

ca

lcul

atio

n an

d vo

rtex

field

pl

ots

at

each

ax

ial

stat

ion,

flo

w

field

ca

lcul

atio

n at

se

lect

ed

axia

l st

atio

ns.

760)

.i

8.6

sec.

N/A

-- N/A

15.5

se

c.

al

W

Page 92: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

a3

P

Tabl

e II

- C

ontin

ued

Sam

ple

Cas

e :e

f.

18

18

Fig.

14 (f

)

14 (9

)

14 (h

)

14(i)

Body

C

ross

Se

ctio

n

Circ

le

2:l

Ellip

se

2:l

Ellip

se

3:l

Ellip

se

1.6

1.7

1.7

1.

l-t C

O0

20.3

6'

20.3

6"

20.3

5'

$ O0

O0

0"

O0

Gen

eral

C

omm

ents

An

ogiv

e cy

linde

r bo

dy

case

w

ith

line

sour

ces

and

doub

lets

an

d va

riabl

e D

X;

surfa

ce

pres

sure

ca

lcul

atio

n an

d no

se

para

tion.

An

ellip

tic

cros

s se

ctio

n fo

rebo

dy

with

pa

nel

sym

me-

try

; su

rface

pr

essu

re

calc

ulat

ion

and

vorte

x fie

ld

plot

s at

ea

ch

axia

l st

atio

n.

Sam

e as

Sa

mpl

e C

ase

6 w

ith

body

pa

nels

ta

ilore

d to

th

e sh

ape

by

spec

ifica

tion

of

the

cent

ral

anql

es

of

the

pane

l ed

ges.

An

ellip

tic

cros

s se

ctio

n co

nica

l fo

rcho

dy

with

pa

nel

sym

met

ry,

Flow

sy

mm

etry

, an

d va

riabl

e in

tegr

atio

n in

terv

al;

surE

ace

pres

sure

ca

lcul

atio

n w

ith

vorte

x sm

ooth

ing.

:xec

utio

n Ti

me

CD

C-C

YBER

76

0)

6.0

set

28.1

se

t

28.1

se

t

61.8

se

t

Page 93: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Tabl

e II

- C

oncl

uded

Sam

ple

Cas

e

10

11

Ref

. Fi

g.

18

14(j)

22

14 (

kl

Body

C

ross

Se

ctio

n

Lobe

d

2:l

Ellip

se

1.7

1.5

20.3

6O

15O

* G

ener

al

Com

men

ts

O0

O0

A lo

bed

cros

s se

ctio

n fo

re-

body

ca

se

with

le

ft/rig

ht

pane

l sy

mm

etry

, flo

w

sym

me-

try

, va

riabl

e D

X,

and

num

eric

al

map

ping

: su

rface

pr

essu

re

calc

ulat

ion

with

vo

rtex

smoo

thin

g.

An

ellip

tic

cros

s se

ctio

n m

issi

le

body

w

ith

pane

l sy

mm

etry

, flo

w

sym

met

ry;

surfa

ce

pres

sure

ca

lcul

a-

tion,

pe

riodi

c vo

rtex

field

pl

ots.

Exec

utio

n Ti

me

(CBC

-cYB

EI

760)

47.0

se

c.

N/A

Page 94: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

, z

o=y+iz

REAL PLANE

W=T+ii

CIRCLE PLANE

(a) Analytical transformation procedure

Z

u=y+ iz v= T+ iX

T

(b) Numerical transformation procedure

Figure 2.- Conformal mapping nomenclature.

87

Page 95: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Secondary separatibri

point

- Primary separation

point

t’ ‘l&sin cxc

Figure 3. - Sketch of crossflow plane separation points.

88

Page 96: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Z

t t

C n 3 0 +r

Figure 4. - Body crossflow plane nomenclature.

89

Page 97: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

. ---. - i----Y

i I I i

(a) Single vortex

(b) Multiple vortices

Figure 5.- Vortex smoothing procedure.

90

Page 98: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

PROGRAM NOZVTX

I-- INPUT I-- OUTPUT I-- TAPE10 I-- TAPE5 I-- TAPE6 I-- TAPE7 I-- TAPE8 I-- TAPE9 I-- INPT ---- TAPES

I I-- TAPE6 I-- EOF

I I-- CONFOR ---- TAPE6 I 2 ---- CABS

I 1:: SORT

I I I-- AlANE

I f I-- cos I-- CEXP

1 I I-- CLOG

-- SIN I I-- cos I

t -- ASIN

I -- SORT I-- ELNOSE ---- TAPE6

I -- F ---- SHAPE

I I-- BHAP OS-- AMAp --s- 2 ---- CABS I I I-- cos

I I I-- SIN

I I I I-- ATAN I-- SPRT

I I-- ATAN I I-- CHAP ---- OZONU ---- CABS I I I-- 2 ---- CABS

I f I-- CSQRT I-- SORT

I I I-- ATAN

I I I-- CEXP I-- CABS

I I-- VELCAL ---- SQRT

I t I-- ATAh I-- SOURCE ---- TAPE6

I I I I-- SORT

I I I-- ALOG I-- OOUBLT ---- TAPE6

I I I-- SQRT

I I I-- ALOG I-- cos

I I-- SIN I-- FLDVEL ---- TAN

I I-- cos I-- SIN I-- SORPAN ---- TAPE6

(a) Page 1

Figure 6.- Flow map of pr‘ogram NOZVTX.

91

Page 99: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

0 B I I-- SQRT I I-- ATAN I I-- ALOG I I-- ACOS I-- VLOCTY ---- TAPE4

I-- SUM ---- DtDNU ---- CABS I-- SQRT I-- EXP I-- ATiN I-- SMOOTH ---- ATAN I I-- SQRT

I I-- SIN I I-- cos

I I-- SIN I-- cos I-- SORT I-- SHAPE I-- BHAP ---- AMAP I I I I I 1 I-- SORT I-- ATAN I-- CMAP ---- DZDNU

I I-- z I-- CSQRT

I I-- SQRT

1 I-- ATANE I-- CEXP

I I-- CABS

-- BDYGEN ---- TAPES

I I-- EXP

-- ASUW ---- CABS

-0-o z ---- CABS I-- cos I-- SIN I-- ATAN

---- CABS ---- CABS

I I I I I I I I-- GEOH

I-- TAPE6 I-- SIN I-- SQRT I-- ASIN I-- BDDYR ---o. SmT I-- SOURCE ---- TAPE6 I I-- SQRT I I-- ALOG I-- DOUBLT ---- TAPE6

I-- SORT I-- ALOG

---- TAPE10 I-- TAPES I-- TAPE6 I-- TAPE7 I-- EOF I-- CONFIG ---- TAPES I I-- TAPE6 I I-- TAPE9 I I-- SORT I-- NEYRAD ---- TAPE10 I I-- TAPE5 I I-- TAPEb

I I-- SIN I-- cos

I I-- SQRT I

0 D I-- ATAtit

(b) Page 2

Figure 6.- Continued.

92

Page 100: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

0 C I I

I I I I-- l I I I

f I

I I

I I

I

0 D

I-- BODPAN ---- TAPE10 I-- TAPES I-- TAPE6 I -- TAPE7 I-- PANEL ---- SORT

I-- ATAN VELCMP ---- TAPE10

I-- TAPE6 I-- tAPE7 I-- ~APEB I-- TAPE9 I-- BODVEL ---- TAPE10

I-- TAPE6

I I-- SOLVE ---- TAPE10 I I-- tAPE6

I-- TAPE7 I-- CAPES I-- SIN I-- cos I-- ASIN

I I I

I I

I I-- l-- I-- l

t I

I

I

I I-- l I I

I

6 E

I-- l

I l--

I I-- l I-0.

BODrR ---- SRFVEL ---- VLOCTY ----

l-- I-- l-- l-- l--

I

I I--

VELCAL ---- I-- l--

I I--

I-- TAPE8 I-- TAPE9 I-- SIN I-- cos I-- TAN I-- SORPAN ---- TAPE6

I-- SORT I-- ATANE I-- ALOG I-- ACOS

DIAGIN ---- I -0 I-- l--

I TRITE .----

1::: PARTIN ----

l-- VOLUME ---- SQRT ATANL TAPE6 SUM ---- SQRT EXP ATAN SMOOTH ----

;::

1:: ASUM ---- SORT ATAN SOURCE ----

l-- I--

DOUBLT ---- I-0

0 G

TAPE 10 TAl’E7 TAPE9 INVERT ---- TAPE6 TAPE10 TAPE6 TAPE9 TAl’E9 INVERT ---- TAPE6 TAPE6

DZDNU ---- CABS

ATANL SORT SIN CDS EXP CABS

TAPE6 SORT ALOG TAPE6 SORT

(12) Page 3

Figure 6.- Continued.

93

Page 101: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

0 E I I

I-- l I

I

I-- l -0 I I

F Q 0 G I-- ALOG

I-- cos I-- SIN

DPHIDT ---- ATAY2 I-- SMOOTH ----

l-- I-- l-- l--

FORCEP PLOTV o-o- pLoTA OS--

l--

I--

ATAN SORT SIN’ cos EXP

TAPE6 PLOTAB ---- PLOTA ---- ALOGlO

I-- PLOTAS PLOTA

I-- FPVEL ---- TAPE6

I I-- ATANE I-- CHAP ---- DZDNU ---- CABS

I I I

I-- 2 ---- CABS I -- CSQRT

I I I-- SQRT

I I I -- ATANt I I-- CEXP

I I I-- CABS

I I-- VELCAL ---- SORT

-- ATANE I I I -- SOURCE ---- TAPE6

I I I I -- SQRT I I-- ALOG

I I I-- DOUBLT ---- TAPE6 I I I I-- SQRT

I I I I-- ALOG

-- cos

I I I-- SIN I--, FLDVEL ---- TAN

I I I-- cos

I I I-- SIN I-- SORPAN ---- TAPE6

I I I-- SORT I I-- ATAN I I -- ALOC I I I -- ACOS

; I-- VLOCTY ---- TAPE4

I I I -- SUA ---- OZONU ---- CABS I-- SQRT

I I I-- EXP I I I-- ATAN I I I-- SMOOTH ---- ATAN I I -- SQRT

I I I I-- SIN I I I-- cos

I I I

I -- EXP I -- ASUM ---- CABS I I-- SORT I-- SEPRAT ---- TAPE6 I I-- SQRT I-- VTABLE I-- DFEQKH ---- TAPE6

I-- F ---- SHAPE I-- BHAP o--o AMAP -o-o 2 ---- CABS

(d) Page 4

Figure 6.- Continued.

94

Page 102: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

PROGRAM EN0

I

I

l-- I--

OTABLE VCENTR COHBIN

Q 1 Q 3'

I

I -- ATAN I-- CHAP

I I

Q K -- SIN

I I-- ATAN I-- SQRT

I-- VELCAL I

I

I

I I-- FLDVEL I I

---- DZDNU ---- CABS I-- 2 ---- CABS I-- CSQRT I-- SQRT I-- AfAN I-- CEXP I -- CABS

---- SQRT I-- ATAN I -- SOURCE ---- TAPE6

; I -- SQW I-- ALOG

I-- OOUBLT ---- TAPE6 I I-- SQRT I I-- ALOG I-- cos I-- SIN

-c-w T&N I-- cos I-- SIN I-- SORPAN ---- TAPE6

I -- SQRT I-- ATAN

I -- ALOG -- ACOS

---- TAPE6 I I-- VLOCTY

I-- SUM ---- DZONU ---- CABS I-- SQRT i -- EXP I-- ATAN I-- SMOOTH ---- ATAN I I-- SQRT I I-- SIN t I-- cos I I-- EXP I-- ASUM ---- CABS

---- TAPE6 I-- SORT

(e) Page 5

Figure 6.- Concluded.

95

Page 103: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

SUBR

OU

TIN

E N

AME

----

----

--

EXTE

RN

AL

- R

EFER

ENC

ES

-

-r--r-

-----*

------

-----*

------

------

-.----

------

-+---

------

--.---

------

--

AABG

G1B

BCC

ClC

000D

1DD

EFFl

FFG

IIlIN

NPP

H

SDH

0l00

MO

0l0F

10Pl

TZLL

OlP

EN

NIT

EOAA

AU

YAD

IDD

AHN

1NEA

UH

lAD

ND

RlV

O

PVIR

YZN

R

PHG

PPlV

YPEl

FlFO

GBI

lGN

OVC

lE

HTE

IAR

VET

E

A

IER

IIl

OKI

LDlL

USE

ElL

RlT

ATLi

N

N

I

L N

GIR

MN

TTIE

EL

P l

TIED

X N

I I

I

.-----

r----~

----r-

r----*

PPPP

PIPS

SSSI

LL

LLLI

LEH

WO

I O

OdO

dlO

PAO

Ll

TTTT

TlTR

RO

Vl

JAAA

AIvA

ETEI

25

6781

1

H

I I I

ACO

S AL

OG

I 0

ALO

G

AHAP

AS

IN

ASU

M

ATAN

BD

YGEN

BH

AP

BOO

PAN

EOD

VEL

BOD

YR

CAB

S C

EXP

CLO

G

CM

AP

CO

WIN

C

ON

FIG

C

ON

FOR

co

s

CSQ

RT

DFE

OKM

D

IAG

IN

DO

UBL

1

OPH

IDT

DTA

BLE

DZD

NU

EL

NO

SE

EOF

EX

P

(a)

Page

1

Figu

re

7,-

Subr

outin

e C

ross

R

efer

ence

Ta

ble

for

Prog

ram

N

OZV

TX.

Page 104: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

.-----

------

.-----

------

~----

------

-.----

------

-.----

------

-*---

-- ---

-r,*-

r--r-r

-r-r+

-rr-r-

rrrrr+

lAAB

BBl9

BCC

ClC

DD

DD

lDD

EFFl

FFG

IIlIN

NPP

lPPP

PPlP

SSSS

t lM

SOM

OIO

OW

00l0

FIO

PlTZ

LLO

lT’

ENN

lTEO

AAlL

iLLi

lLEH

MO

l SU

BRO

UTI

NE

I A

U

Y

A

D

I

D

D

A

H

N

I N

E

A

U

H

I

A

0 N

D

R

I

V

OPV

lRW

ZNR

lOO

dGdl

OPA

OLl

N

IHE

lPYG

PPlV

YPf3

FlFO

GBI

lBN

OVC

lE

MTE

lAR

VETl

TTTT

TlTR

POVl

I

E

AIER

Ill

OKI

LDlL

USE

ElL

RIT

ATLi

liAAA

AIVA

ETEl

--

----

----

1

N

N

I L

NG

lRM

NTT

lE

ELPI

1

I ED

X N

l256

7Bl

1 H

l

EXTE

RN

AL

- I

I R

EFER

ENC

ES

-I 1

I ---

------

---+-

-l-l-l

-1--*

--1-1

-1-1

--*--1

FL

DVE

L FO

RC

EP

FPVE

L

iE0”

INPT

IN

PUT

INVE

RT

ITR

ATE

NEY

RAO

OU

TPU

T PA

NLL

PA

RTI

N

PLO

TA

PLO

TAS

PLO

TA

PLO

TA

PLO

TAB

PLO

TV

SEPR

AT

SHAP

E SI

N

SMO

OTH

SO

LVE

SOR

PIN

SOU

RC

E SO

RT

SRFV

EL

SUM

TA

N

(b)

Page

2

Figu

re

7.-

Con

tinue

d.

Page 105: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

l ---

------

--*---

------

--+---

-----*

----*

---

------

--*---

------

--*-

------

----*

------

-----*

--r--r

rr---+

lAAG

G6I

9BC

CC

lC0D

DD

l0O

EFFl

FFG

lIl~N

NPP

lPPP

PPlP

SSSS

l lM

SOH

OlO

OM

OO

lOFI

OPl

TZLL

OlP

EN

NlT

EOAA

lLLL

iLlL

EHM

Ol

SUBR

OU

TIN

E IA

UYA

DID

DAM

NIN

EAU

HlA

DN

DR

lV

OPV

lRU

ZNR

lOO

GG

OlO

PAO

Lt

NAM

E lP

MG

PPlV

YPBF

lFG

GBI

lGN

OVC

lE

MTE

lAR

VETl

TTTT

TlTR

POVl

I

E

A

I ER

IIl

OKI

LDlL

USE

ElL

R~T

ATL~

~AAA

AA~V

AETE

~ -s

-M

----

--

1 N

N

I

L N

GIR

HN

TTIE

EL

PI

1 IE

DX

NI2

5678

I 1

H

EXTE

RN

AL

- I

REF

EREN

CES

-I

I I

I I

I I

t I

----~

------

~*--~

-~-~

-~--*

--~~~

~~~~

--+--~

~~~~

~~~~

~~~

~-)-~

~~--.

--~-~

-~-~

--*-~

~~,~

~~~-

-!--~

~~-,~

~~~*

~~~~

.,~~~

~~~!

TA

PE10

I

x I

x I

X

X

lxxx

x

I TA

PE5

X

x I

x I

I I

xx

I xx

t

I TA

PE6

I X

x

I x

XXIX

X x

I X

I

x XX

XIXX

X I

x TA

PE7

I x

I I

X

I I

X

I X

I

I X

X

l x I

TAPE

R

I I

x I

I X

I

I x

I ~-

------

----*

--r---

-----*

------

-----*

------

-----*

------

-----+

------

-----*

------

-----.

------

-----~

TA

PE9

I I

X

x I

X

I I

VCEN

TR

I I

I X

I

I” x

xI

I I

I VE

LC4L

I

I I

I X

IX

X I

VELC

HP

I I

X

! I

I VL

OC

TY

I I

X

Ixx

I I

I I

.-----

---r--

.---r-

------

~----

------

-*---

------

--.---

------

--*---

------

--*---

------

--~---

------

--*

VOLU

ME

1 I

I I

I I

I I

x I

VTAB

LE

I I

X

I Z

I X

t

X

I x

I I

I I

I I

.---r-

---r--

*----

------

-*--,

--r---

*----

---~-

------

----+

------

-----+

------

-----+

------

-----+

------

-----+

(c)

Page

3

Figu

re

7.-

Con

tinue

d.

Page 106: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

l --a

------

--*a

------

----+

------

-----*

------

-----*

------

-----~

------

-----.

------

-----*

------

-----.

(sss

svlv

vvvv

I2

I I

I I

I I

lOO

RU

ClE

ELO

Tl

I I

SUBR

OU

TIN

E IR

UFH

E IL

LOLA

I

I I

I N

AME

IPR

V N

ICC

CU

BI

I I

I I

I I

ACE

TIAM

TMLI

w

--m

----

m-

INEL

R

ILPY

EEI

I I

I I

I I

EXTE

RN

AL

- I

REF

EREN

CES

-I

I I

I I ‘l-

l-l-l

I I

I I

1

------

------

*-~1

~1-1

-~--1

-1-1

-1--’

--1-~

-~-~

--4--

-~+~

~~-~

-~~~

-~.~

~~-)-

~~~~

-+~~

~~~~

.~~.

~ AC

OS

ALO

G

ALO

G

AM

AP

AS

IN

ASU

M

ATAN

Z BD

YGEN

B

MA

P

BOD

PAN

BOD

VEL

RO

DYR

C

ABS

CEX

P C

LOG

CM

AP

CO

MBI

N

CO

NFI

G

CO

NFO

R

cos

CSO

RT

DFE

QKM

D

IAG

IN

DO

UBL

T

DPH

IDT

DTA

BLE

OZD

NU

EL

NO

SE

EOF

EX

P

Ix..-

‘ I

-- I

I I

I I

I I

I I

I I

I I

lxx

I I

I I

I

f I

I I

I I

I I

I I

I I

*w--m

- -a

.----+

--w-r-

-----*

---

------

--*---

------

--*---

------

--*---

------

----*

------

-----+

------

-----~

.

I I

X

I I

I I

I I

I IX

X

IX

X

I

I I

I

t I

I

I I

I I

I

I I

I I

I I

I I

I I

I I

+----

------

-+---

------

--*

------

-----+

------

-----*

------

-----+

------

------

--*---

---~-

---+-

------

----*

t I

X

I I

I I

I I

I

I I

I x

I I

I I

I

I I

I I

I I

I I

I I

I I

+----

-r-r--

-+---

------

--+---

-----

---.--

------

---+-

------

----*

------

-----*

------

-----~

------

-----+

I I

I I

I I

I I

I I

I I

I I

I I

I I

I

f x

I I

I I

I I

t I

I I

I *-

a--..

---

---+-

------

----*

------

-----,

---

------

--+---

------

--*---

---+-

--r---

----+

------

-----~

I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

x I

I I

I I

I I

I I

.,----

------

*----

------

-*---

------

--*---

------

--+---

------

--~---

------

--+---

------

--+---

------

--*

I I

I I

I I

I I

x I

I I

I I

I I

I I

I I

I I

I

I I

I I

I X

t

I I

I I

I t

.-----

------

+----

------

-*

------

-----*

------

-----+

------

-----*

------

-----.

------

-----~

------

-----*

(d)

Page

4

Figu

re

7.-

Con

tinue

d.

Page 107: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

.-----

------

,-----

------

4----

------

-*----

------

-+---

------

--4---

------

--.---

------

--*---

------

--

ISSS

SVIV

VVVV

lz

I I

I IO

OR

UC

IEEL

OTI

I

I I

I I

SUR

RO

UTI

NE

IRU

FHEI

LLO

LAI

I N

AME

IPR

J N

ICC

CU

BI

I I

I I I

; IA

CE

TlAW

TMLl

I

I --

---s

----

IN

EL

RIL

PYEE

I I

I I

EXTE

RN

AL

- I

I I

1 I

I R

EFER

ENC

ES

-I I

-~---

-~---

--+--~

~I-I-

~--4

--~~~

~~~~

--!--~

I

I I

I I

-~-~

-~--

*--~

-~-~

-~--

*-~~

-~-~

-~--

+--~

-~.~

-~--

4--~

-~-~

-~--

4-~~

-~-~

~~~~

I I

I I

I I

I I

FLD

VEL

FOR

CEP

FP

VEL

F GEO

M

I I

I I

I I

I I

I

I I I

I I

I I

I I

I I

I I

I I

I I

I I

4----

------

-4---

------

--*---

------

----4

------

-----4

------

-----*

------

-----4

------

-----4

------

-----4

I I I

I I

I I

I 1

I I I

I I

I

I I

I I

I I

I I

I I

I I

I I

I 4-

------

----*

------

-----4

------

-----4

------

-----4

------

-----*

------

-----4

------

-----4

------

-----.

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I 4-

------

----4

------

-----,

------

------

-4---

------

--4---

---

-----*

------

-----4

------

-r---+

---4-

------

----4

I I

I I

I I

I I

I I 1

I I

I I

I I

f t

I I

I

I I

I I

I I

I I

I I

I I

I I

I 4-

------

----4

------

-----4

------

-----4

------

-----4

------

-----4

------

-----4

------

-----4

------

-----4

1 IX

t

I I

I I

I I

I I

I I

X

I I

I I

I

I I

I I

I I

I I I

t I 4-

w...

.----

---*-

-----r

----4

------

-----4

- ---

------

-4---

------

--4---

------

--4---

------

--4---

------

--4

I I

X

I I

I lx

x IX

x

I I

I I

I I I

t I I

I I

I I

I X

I

I t

I t

I 1

I I

I I

I I

4----

------

-*---

------

--4---

------

*---4

------

-----4

----

------

-*---

------

--4---

------

---r--

------

----4

INPT

I

NW

1 IN

VER

T I

TRAT

E N

EYR

AO

OU

TPU

T PA

NEL

PA

RT

IN

PLO

TA

,PLO

TAS

PLO

TA

PLO

TA

PLO

TAS

PLO

TV

SEPR

AT

SHAP

E SI

N

SMO

OTH

SO

LVE

SOR

P4N

SOU

RC

E SO

RT

SRFV

EL

SUM

T4

N

(e)

Page

5

Figu

re

7.-

Con

tinue

d.

Page 108: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

-

*-w

-s-

------

*----

------

-c---

------

--~---

------

--.

------

-----*

------

-----+

------

-----*

------

-----.

ls

sssv

lvvv

vvlz

I

I I

I IO

OR

UC

IEEL

OTI

I

I I

I I

I SU

BRO

UTI

NE

IRuF

tiEIL

LOLA

I I

I N

AME

IPR

J N

ICC

CU

BI

I I

I t

I I

I AC

E TI

AMTH

LI

I I

---s

----

--

INEL

R

ILPY

EEI

I I

I I

t I

EXTE

RN

AL

- I

REF

EREN

CES

-I

I I

I I I

I I

I I

I ---

-----~

-~-~

-~~-

~-~-

~~-4

-~~~

~~~~

~--*

-~~-

~-~-

~--~

--~-~

-~-~

--+--~

-~-~

-~--~

--~-~

~~-~

--

.--l-l

-l-l--

!--l-l

-l-l--

.. TA

PE10

t

I X

I

I I

I I

TAPE

5 I

I I

I I

I I

TAPE

6 lx

x xx

x I

TAPE

7 I

I x

I I

I I

I 1

1 TA

PEB

I x

I I

I I

I I

I +-

s.--m

---B.

.-*

------

-----.

------

-----*

------

---*-

--*---

------

--+---

------

--*---

------

--~---

------

--*

TAPE

9 I

I x

I I

I I

I I

VCEN

TR

I I

I I

I I

I VE

LCAL

r

I I

I I

I VE

LCH

P VL

OC

TY

I I

I I

I I

I I

I I’

I l

-----r

-----+

------

-----.

------

-----+

------

-- ---

~----

------

-*---

------

--.---

------

--~---

------

--~

VOLU

ME

VTAB

LE

I I

I 1

I I

I I

I

2 I

I I

I I

I I

I 1

.-----

r-----

~----

------

-*---

-----

---*-

------

----.-

------

----*

------

------

-.----

------

-+---

------

--~

(f)

Page

6

Figu

re

7.-

Con

clud

ed.

Page 109: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

c----

------

-~---

------

--.

------

-----*

------

-----~

------

-----+

------

-----*

------

-----+

------

-----*

lAAB

BBIB

BCC

CIC

DD

DD

lDD

EFF~

FFG

II~IN

NPP

~PP~

P~lP

SSSS

l lW

SDH

0l00

H00

l0FI

OPI

TZLL

OlP

EN

NtT

EOAA

tLLL

LLIL

EHM

Ol

SUR

RO

lJT

INE

IAU

YAD

IDD

AHN

INEA

UH

IAD

ND

RIV

O

PVtR

UZN

RtO

OO

OO

lOPA

OLl

N

AME

~PH

~P~~

~;PB

FIFQ

GBI

lBN

OVC

lE

MTE

lAR

VETl

lTTT

TlTR

POVI

III

OKI

LDIL

USE

EIL

RlT

ATLi

tAAA

AiIV

AETE

I ---

--s-w

-- 1

N

N

I L

NG

IRH

NTT

IE

ELPI

TI

EDi

Nl2

567B

l T

H

I C

OM

MO

N

- I

I I

I I

I I

I BL

OC

KS

-I --

----

----

--*-

-l-l-l

-l--~

--

I I

I I

I I

~-~-

~-~-

-*-~

~-~-

~-~-

-+--~

-~-~

~~--*

~-~~

~-~-

~-~*

~~~~

~~~~

~~~+

~~~~

~~~~

~~~+

~~~~

~~~~

~~~+

I

I I

I X

I

x I

I I

x I

BLR

Ev

BLSE

P BO

DC

OH

BO

DYG

N

BPLT

Al

BPLT

AZ

BSC

ALE

BTH

ET

BVEL

C

BOD

Y

CFL

AG

CFL

T C

LDS

CN

TRO

D

CO

NF

CO

NST

C

OP

CTR

ANS

CVR

TX

DYD

X

020X

EX

TRA

FLO

W

HE

AD

ITER

AT

JOPT

NS

LIM

ITS

LDAD

P H

APB

HAP

C

I I

I I

X

I x

I I

I X

I

I I

x X

I

I I

X

I X

I

I I

I I

I I

I I

I I

x XX

I I

l ---

------

--*---

------

--*---

------

+--

------

---+-

------

----*

------

-----*

------

-----+

------

-----*

I I

I I

I I

I x

I I

I I

I I

I I

x x

I x

I x

I X

I

I I

I I

1 I

I

I I

I I

X

I x

I I

I 1

*----

------

-.----

-----*

---*-

------

----*

------

-----*

------

-----+

------

-----~

------

-----*

------

-----~

I

I I

x I

X

I x

I I

I

I I

X

x I

I I

I X

I

I X

I

I 1 I

I I

I X

I

I I

I I

I X

I

x I

x I

I I

X

i l

-----r

--,--*

------

-,,--+

-,----

,,----

------

-.--

------

---+-

------

----*

------

------

-r----

-+---

------

--~

I x

x I

X

I x

x I

X

XIXK

x

I x

I I

x I

1 I

I X

I

x I

x I

I I

I I

1 I

t I

X

I I

X

I I

I x

I XI

X x

I x

I I

I I

*----

------

-*---

------

--~---

------

--*---

------

--*---

------

--*---

------

--+---

------

--*---

------

--.

I 1

X

I XI

X x

‘I x

I I

I I

X

I I

1 I

X

I

I I

x I

X

x I

x X

x

I

I I

! I

X

; I

t I

I I

X

I x

I I

1 .--

------

---+-

------

----*

------

------

-~---

------

--.---

------

--,---

------

--+---

------

--*---

------

--.

I x

I x

x I

I x

x X

X

x

I I

I x

I X

I

I r

t X

I

I I

I X

x

I x

I I

I X

x

I X

I

1 X

lx

x I

I I

I

I x

x I

X

I I

X

I xx

I

I I

I .--

------

---*-

------

----.-

------

----*

------

-----*

------

-----+

------

-----*

------

-----*

------

-----~

(a)

Page

1

Figu

re

8.-

Com

mon

Bl

ock

Cro

ss

Ref

eren

ce

Tabl

e fo

r Pr

ogra

m

NO

ZVTX

.

Page 110: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

,----

----

---+

----

----

---*

----

----

- --

+---

----

----

*---

----

----

+---

----

--*-

----

----

--4-

----

----

--*

IAAB

8BIB

BCC

CIC

DD

DD

IDD

EFFl

FFQ

~IlIN

NPP

l~~P

P~lP

SSSS

l lM

SDH

OIO

OH

00l0

FIO

PlTZ

LLO

lP

ENN

lTEO

AAlL

LiLL

lLEH

MO

t SU

BRO

UTI

NE

lAU

YAD

lDD

AHN

lNEA

UH

lAD

ND

RlV

O

PVlR

YZN

RlO

OO

OO

lOPA

OLl

N

AME

IPH

GPP

IVYP

BFlF

OG

BIlB

NO

VClE

H

TEIA

RVE

TITT

TTTI

TRPO

VI

I E

AI

ER

IIIO

KILD

ILU

SEEI

L R

lTAT

LilA

AiAA

IVAE

TEl

----

---s

--

1 N

N

I

L N

GIR

MN

TTIE

EL

PI

TIED

X N

l256

761

T Ii

I C

OM

MO

N

- I

I I

BLO

CKS

-I

I I

I I

I I I

----

----

----

*--~

-~-~

-1--

*--1

-1-1

-1--

+--1

-~-~

-.~--

4--~

-~-~

-~--

4~-~

-~-~

-~

--!--~

-(-~-

.,--+

--~-~

-~-~

--+--~

-~~~

~,--.

H

APN

TH

MAP

N

MA

PP

M

AP

X

MAP

1

HAP

2 H

ATC

OW

N

EUC

OH

O

NE

PAR

AM

PHI

POIN

T PR

ESS

PRIN

T R

EF

R22

2 SE

G

SHPE

SM

OO

TH

SPSA

NG

STAC

K SY

MTR

Y TR

ANS

TWO

VE

LCO

W

VEL

VFPT

S VO

RTE

X VS

TAR

T VT

XTBL

I X

I

I lx

x x

X

I x

I x

I X

X

I

I I

X

I I

x I

X

I x

I X

I

I X

I

x X

;

: I

X

I lx

x x

I X

I

x XI

xx

XI

XX

x I

I I

xxx

I +-

------

----+

-r----

-----.

------

---*-

--+---

------

--+---

------

--+---

------

--+---

------

--*---

------

--.

I x

I I

I X

x

I x

I I

I X

X

I. I

I I

I x

I X

I

I X

1

I X

X

I

I XI

I x

I X

I

I I

I X

x

I x

x I

X

I X

I

X

I x

x I

I x

I 4-

------

----+

------

-----4

------

---+-

--4---

------

--4---

------

--4---

------

--.---

------

--4---

------

--4

I I

f x

I X

I

I I

x I

x I

x X

I

X

I lx

x XX

I I

x I

I I

I I

X

x I

X

X

I I

I I

t I

I I

I I

I X

x

I x

I I

lxx

x I

*--,-

----

-r-*

----

----

---+

----

----

---+

----

----

~--+

----

----

---+

----

----

-~-+

--~~

--~-

--~+

----

~--~

-~~+

I I

I I

x I

I I

X

I I

I X

I

I I

I I

I I

I X

I

X

X

I x

I X

I

I I

t X

I

I I

I I

I I

I *,

~~--

-~~-

--4~

~-~-

-~-~

--4-

-~--

---~

*---

4~~~

~~~~

~~~~

4~~~

----

~~~~

4-~~

~~-~

-~~~

4~--

~~~~

~~-~

4~~~

~~~~

~~~~

,

I X

I

I I

I I

I I

x I

I I

I X

x

x I

I I

I I

I X

I

I X

I

x X

1

I 1

t I

x I

x I

X

I I

X

I x

I I

x I

4----

------

-.----

------

-4---

------

--.---

------

--4---

------

--4---

------

--4-

------

----4

----r-

-----*

f I

I x

I X

lx

x x

I I

X

I x

X

I I

I I’

I x

I XI

X x

XI

x x

: I

x X

I

I I

I X

I

f I

I x

I IX

x

I x

I I

I X

I

I x

x I

+----

--rr--

-.-r--

------

-*---

------

----*

------

----~

+--

------

---+-

------

----4

------

-----r

-----+

(b)

Page

2

Figu

re

8.-

Con

tinue

d.

Page 111: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

*----

------

-+---

------

--*---

------

--*---

------

--*---

------

--4-

------

----4

------

-----4

------

-----4

lAAB

BBlB

BCC

ClC

DO

OD

lDD

EFFl

FFG

IIlIN

Npp

lppp

Pplp

SSSS

l lH

SDM

OIO

OH

00l0

FIO

PITZ

LLO

lP

ENN

ITEO

AAIL

LLLL

ILEH

MO

l SU

BRO

UTI

NE

lAU

YAD

lDD

AHN

lNEA

UH

lAD

ND

RlV

O

PVIR

YZN

RID

OO

O~I

DPA

OL~

N

AME

lPM

GPP

lVYP

BFlF

OG

BIlB

NO

VClE

H

TElA

RVE

TlTT

TTTl

TRPO

VI

I E

A

IE

R

IIlO

KILD

lLU

SEEl

L R

ITAT

LIIA

AAAA

IVAE

TEI

----

----

--

1 N

N

I

L N

GIR

MN

TTIE

EL

PI

T IE

DX

Nl2

567B

l T

H

CO

MM

ON

-

I I

I I

; I

I I

I R

LOC

KS

-I I

I I

I ---

------

---4-

-)-I-I

-~--1

-1-1

-1--*

--1-~

-~-~

--.--

I-l-l-

l--+-

-l-l-l

-l--!-

-l-l-l

1

- --+

--~-~

-~~~

~~!-~

t-~~I

-l~-!

WBT

Rl

X

I X

I

I VP

TR

I X

I

I I

I I

I 1

t ZF

LOW

I

I I

X

I x

I I

I x

I /

/ I

X

x I

x x

I x

I x

I X

lx

x xx

I

I x

I

(c)

Page

3

Figu

re

8.-

Con

tinue

d.

Page 112: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

1

*----

------

-4---

------

--*---

------

--*---

------

--+---

------

--+

------

-----4

------

-----+

------

-----.

lsss

svIv

vvvv

I2

I I

I I

I I

IOO

RU

CIE

ELO

TI

I I

I I

I I

SUBR

OU

TIN

E N

AME

WJ~

MEl

LLO

LAl N

ICC

CU

BI

I I

I I

I I

I AC

E TI

AHTH

LI

I I

---w

------

IN

EL

RIL

PYEE

I I

I I

I I

I C

OM

MO

N

- I

I I

I I

BLO

CKS

-1

I

I I

I I

I I

------

------

*--~

-I-I-~

--+--;

--1

-~-~

-~--

4--~

-~-~

-lr-4

--~-

~-~-

~--4

~-~-

~-~-

~ --!

--~-~

-~-~

--+-~

~-~~

~~~-

-+

I I

I I

I I

I I

BLR

EV

PLSE

P BO

DC

OM

R

OD

Y G

N

BPLl

Al

RPL

TAZ

BSC

ALE

RTH

ET

BVEL

C

BOD

Y

CFL

AG

CFL

T C

LDS

CN

TRO

D

CO

NF

CO

NST

C

OP

CTR

ANS

CVR

TX

DYD

X

020X

EX

TRA

FLO

W

HEA

D

ITER

AT

JOPT

NS

LIM

ITS

LOAD

P H

APB

MAP

C

i i

I I

I I I

1 I

x :

I I

I I

I I

f I

I I

I I

I I

I I

4----

------

-*---

------

--4

------

-----*

------

-----*

------

---*-

--.---

------

--4---

------

--4---

------

--4

I I

I I

I I

I I

I I

I I

I I

I I I

X

I I

I

I I

I I

I I

I I

I I

I I

I I

4----

------

-4---

------

--*---

------

--*---

------

--+---

------

--4---

------

--4---

------

--.---

------

--4

I I

X

I I I

-I I

I t

I

I I

I I

I I

I I

x I

I I

I I

I I

I I

I I

I I

I I

I I

4----

------

-4---

------

--4---

------

--.---

------

--.---

------

--4---

------

--4---

------

--4---

------

--+

I I

X

I I

I I

I I

I I

I I

I I

I

I I

I I

I x

I I

I I

f I

I I

I I

I I

I I

*----

---r--

-4,--

-----,

--+

------

-----.

------

-----.

------

---*-

--4---

------

--4---

------

--4---

------

--4

I I

I I

I I

I I

I I

I t

I I

I I

X

I I

I I

! I

I I

1 I

I I

I I

I I

+----

------

-*---

------

--.---

------

+---4

------

-----.

------

-----4

------

-----4

------

-----4

------

-----+

I I

x x

I I

I I

I I

I I

X

I I

I I

. I

I I

I I

I I

I I

I I

I I

I I

; I

I I

I I

I I

I 4-

--B-

------

+----

-----o

-,----

------

-+---

-----

---+-

------

----*

------

-----4

------

---*-

------

----+

(d)

Page

4

Figu

re

8.-

Con

tinue

d.

Page 113: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

4----

s ---

---*-

------

----*

------

-----+

------

-----

*----

------

-*---

--r---

--*---

--r---

--*---

--*---

------

--+

Isss

svIv

vvvv

Iz

lOO

RU

ClE

ELO

Tl

I I

I I

I I

I I

SUBR

OU

TIN

E IR

UFt

iElL

LOLA

I I

I N

AME

IPR

Ii N

ICC

CU

BI

I I

I I

I 1

IAC

E TI

AMTH

LI

-----w

w---

IN

EL

RIL

PYEE

I I

CO

MM

ON

-

I I

I BL

OC

KS

-I I

------

------

*--~

-~-~

-~--!

--~~~

-~-~

--+--~

~~-~

-~--~

-~.

HAP

NTH

H

APN

H

APP

MA

PX

M

AP1

MAP

2 M

ATC

OH

N

EWC

OM

O

NE

PAR

Aid

PHI

POIN

T PR

ESS

PRIN

T R

EF

R22

i SE

G

SHPE

SM

OO

TH

SPSA

NG

STAC

K SY

MTR

Y TR

ANS

TWO

VE

LCO

M

VEL

VFPT

S VO

RTE

X VS

TAR

T VT

XTBL

I I

I I

I I

I

I I

x 1

I I

I

I I

x

I I

x I

I I

I

I X

X

I

I I

I I

I I

I I

+----

------

-4---

------

--4---

------

--4---

------

--4

------

-----+

------

-----*

------

-----+

rr--+

------

-----.

I I

I I

I I

I I

I I

I X

I

I I

I

I X

I

x x

I X

I

I I

I. I

I I

I X

I

x x

I I

I I

I I

I +-

---r--

----4

------

-----4

------

-----4

---

------

--+---

------

r-+---

--*-r-

-----*

------

-----+

------

-----.

I I

X

I I

I I

I

I X

I

X

I I

I I

I ;

I I

1 :

I

I 1

I I

I I

I X

I

I I

I I

I *-

----r-

----4

------

-----4

------

---+

------

-----*

------

-----*

------

-----*

---r--

-----+

------

-----+

I I

I I

I I

I I

I I

I x

I I

I I

I

I I

I I

I I

I I

I I

X

I I

I I

I I

I I

I t

4----

------

-4---

------

--*---

------

---

-+---

------

--+---

----r-

--+---

+----

-+---

------

--+---

------

--.

I I

x I

I I

I I

I I

I I

I I

x X

I

I I

I I

I X

1

I I

I I

I I

I X

I

I I

I 1

l ---

------

--.---

------

--*-r-

---

-----4

------

-----*

------

------

-4---

------

--4---

------

--4---

------

--4

I I

X

I I

I I

I I

I I

I I

I I

I I

I

t x

I X

x

I I

I I

I I

I I

I I

I I

I I

I x

I X

x

I I

I I

I I

I .--

------

---.--

------

---4-

------

----*

---

------

--+---

------

--+---

------

--r---

----+

------

-----+

(e)

Page

5

Figu

re

8.-

Con

tinue

d.

Page 114: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

+---

----

----

+---

----

----

*---

----

--*-

--4-

----

----

--4

------

-----4

------

-----4

------

-----4

------

-----4

lsss

svIv

vvvv

I2

I I

I I

I I

IOO

RU

CIE

ELO

TI

I I

I SU

RR

OU

TIN

E IR

UFM

E IL

LOLA

I

I N

AME

IPR

’j N

ICC

CU

BI

I I

I I

I I

IAC

E Tl

AMTM

LI

I I

f --

----

----

IN

CL

RIL

PYEE

I I

I I

I I

CO

MM

ON

-

I BL

OC

KS

-1

I I

I I

I t

I !

I I

------

~----

-+-~

~-)-~

~~-~

+--~

~~~~

~~~~

+~~~

~~~~

~~-~

+~~~

~~-~

~~~~

*~~~

-~-~

~~~~

*~~~

~~-~

-~-~

*~~~

~~~~

~~~~

~~~~

~~~~

~~~~

~.

YBTR

l I

I I

I I

I I

WBT

R

I I

I I

I I

ZFLO

U

// I

I X

I

x x

I I

I I

1 I

I I

I I

I I

*---

~~~r

~--~

4--~

----

--~~

4--~

---~

----

*~~~

~~--

~~~~

4~~~

~~~~

~~~~

4~~~

~~-~

~~-~

4~~~

~~~~

~~~~

*~~~

~~~~

~~~~

4

(f)

Page

6

Figu

re

8.-

Con

clud

ed.

Page 115: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

P 0 a3

ITEM

5

10

IS

20

25

30

35

50

45

sn

55

60

65

70

75

a0

-_-

NcI

R

1 N

CF

1 IS

YH

1 I

NBL

SEP

INSE

PR

~NSI

KJTH

IND

FUS

IND

PIII

IINP

INXF

V I

NFV

IN

VP

I N

VR

I N

VM

1 N

VA

~NAS

YM

1 I

I I

I I

I I

I I

I I

I I

(1)

(2)

(3)

(4)

(5)

(6)

(7)

5 10

IS

20

75

30

3s

NR

EM

INPR

NTP

~PR

NTS

~N

PRN

TV IN

PW

INPL

OTA

IN

PRTV

L I

I I

I I

I

TITL

E (N

IIEAD

ca

rds)

In

20

30

CO

SO

REF

S IJ

!&EI

L I

XM

I SL

I

SD

I

10

20

30

50

50

ALPH

AC

I PH

I I

FE

KC’0

P.E

I XM

ACH

I

I I

10

20

30

4"

so

60

70

I

XI

I XF

I

DX

I EH

KF

I R

GAM

I

VRF

I FD

X

IO

20

30

'IO

5"

I

E5

1 XT

ABL

I- Ix

nsyH

F I

I I

(a)

Page

1

Figu

re

9.-

Inpu

t fo

rms

for

Prog

ram

N

OZV

TX.

Page 116: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

ITEM

_.

._

(1))

(9)

(10)

(11)

1 N

XR

"1

10

70

30

I,” (

NXK

Vi1

1 LI(-

s)

‘.”

Ffl

70

80

1 XR

(1)

I XR

(2)

I XR

(3)

I I

I I

I I

I I

I I

I I

I I

I

IO

70

xl

,” (N

SH V

.alv

!:)

I ,,D

A0

70

00

R

(1)

R(2

) R

(3)

I I

I I

I I

la

20

30

,,. I (N

XR V

alw

S)

DR

(1)

DR

(2)

DR

(3)

5. I

60

70

80

I I

I I

I I

Valu

es)

IO

70

30

,,. (N

XR

~”

60

70

80

AE(1

) I

AE(2

) x5

(3)

I c1

21*

I I

I I

I 10

20

30

4.

(N

XR V

alnc

s)

5.

GO

70

80

R

E(1)

1

RE(

2)

BE(3

) I

I (1

3)*’

I I

I I

I l

Om

it ite

ms

(12)

an

d (1

3)

if N

C~R

#

1

(b)

Page

2

Figu

re

9.-

Con

tinue

d.

Page 117: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

ITEM

--

(14)

‘1

M

NFC

51M

XFC

lo

,

ZZC

(J)

10

(lEl)'

t 1

RZC

(J)

20

I

XRC

(I,J)

10

1 YR

C(I,

J)

20

(20)

l

‘e

I N

R C

ards

l f%

it ite

ms

(14)

th

roug

h (2

2)

if N

CIR

'

2 :,(

nnit

item

s (1

6)

and

(17)

if

NC

F #

0 ar

mit

itrm

s (1

8)

thro

rlgh

(22)

if

Ncf

: =

0

(cl

Page

3

Figu

re

9.-

Con

tinue

d.

Page 118: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

ITKM

(N

R "

a I I

II':.)

_-

-. _

TIIC

(1.J

) '('

TI

IC(2

.J)

20

‘TIIC

(

3 ,.I

1

w

4)

50

Gl)

70

80

I (2

1)

l o

I I

I I

(IIN

IT

"a11

1r:i)

XFC

(1)

l2

XFC

(2)

24

XFC

(3)

3G

48

GO

72

(22)

+0

(NXF

V va

l11e

s)

XFV(

1)

lo

1 XF

V(2)

2"

IX

FV(3

) 30

40

50

60

70

80

(23)

+ I

I I

I I

I I

YFV

10 ,

ZFV

CM

)+*

I I (N

FV c

ards

)

10

ICY

20

CM

70

40

5n

1

1 C

R

ICSL

I I

I I

I

lr’ IYF

20

I:

I zr

3n

I

XSIII

:DP

40

NW

ca

rds

(26)

r

I I

I rh

uit

item

(Z

?(,)

if N

W

7 II

AOm

it ite

ms

(25)

th

roug

h (2

9)

if N

VP +

NVR

+ N

VM +

NVA

= 0

+O

mit

item

s (2

3),

(24)

if

NXF

V =

0 *O

mit

item

(2

4)

if N

FV =

0

*Om

it ite

ms

(21)

, (2

2)

if N

CIR

-c

2 oO

mit

item

s (2

1),

(22)

if

NC

F =

0

(d)

Page

4

Figu

re

9.-

Con

tinue

d.

Page 119: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

ITEM

_-

-- 10

20

30

40

G

AMR

YR

ZM

xs

III1D

l~

NVR

ca

rds

(27)

* 0G

.t ite

m

(27)

if

NW

? =

0

1

10

2(L

30

40

GAM

M

YM

ZM

XS

IIED

M

NVM

ca

rds

(28)

* (k

nit

item

(2

R)

if N

W

= 0

or

if IS

YM =

0

GM

A lo

YA

20

1 zn

30

1 10

XS

IIIC

DA

NVA

car

ds

(29)

* I

I C

hit

item

(2

9)

if N

VA =

0

or

if IS

YM

= 0

80

(3O

)A

TITL

E1

(NFO

RX

valu

es)

7l

1 XF

US(

3)

21

28

35

42

49

56

63

70

XFlJ

S(l)

XFU

S (2

) I

(33)

A I

I I

I I

I I

I

AOm

it ite

ms

(30)

-(43

) if

NC

IR

= 0

*Om

it ite

ms

(27,

(28)

,(29)

if

NVP

+ N

VR +

NVM

+ N

VA =

0

(e)

Page

5

Figu

re

9.-

Con

tinue

d.

Page 120: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

ITEM

(N

FOR

X “a

IIll

’S)

--

Fusn

R”(1

: F”

snR

D(:;

, 21

28

35

42

43

56

63

70

1

I I

I I

I (3

4)

*A

I I

I 7

14

valu

es)

21

28

(NFO

;; 42

43

56

FU

SRAD

(l)

FUSR

AD(2

) 1

I 63

70

I

I (3

5)

+A

_ I

I I

I I

7 U

SBY

(1)

FUSB

Y (2i

4,

21

20

~NFo

jy

Ival

ur?n

) 42

4.

56

63

70

I

I I

I I

I I

(36)

)h

I I

I I

I I

I I

I I

07)p

I.

YJ

10

w

20

(38)

xA

NR

ADX

card

s

l Cm

it ite

m

34)

if J2

#

-1

b0m

j.t

item

( 3

5)

if J2

#

-2

pnit

item

s (3

6),

(37)

if

52

# -3

x )rh

it ite

m

( 3R

) if

J2

# 1

I R

epea

t ite

m

(38)

N

FOR

X tim

es

IOni

t itr

ms

(34)

-(43)

if

NC

TR

= 0

(f)

Page

6

Figu

re

9.-

Con

tinue

d.

Page 121: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

ITEM

80

(3

9)b

KRAD

X KF

OR

X

(41)

b (IK

RAD

XI

valu

es)

r '

'41

2 28

35

42

49

56

63

70

PH

IK(1

) PH

IK(2

) PH

IK(3

) (4

2)*A

1

I I

I I

I (

(KV'

OR

X "a

Lue

s)

XF"S

K(1:

14

1

XFU

SKO

) 21 1

28

3.

, 42

49

56

63

70

XF

USK

(2)

(43)

tA

I I

I I

I I

I

NXB

OD

?IN

CO

D?

1 20

30

(4

4)x

XNO

SE

1 XL

BOD

Y I

I I

l Cnn

it ite

m

(42)

if

KRAD

X 1

0

rcan

it ite

m

(43)

if

KFO

RX

= 0

/.chi

t ite

ms

(33)

-(43)

if

NC

IR

= 0

xCkn

it ite

m

(44)

if

NC

IR

# 0

(9)

Page

7

Figu

re

9.-

Con

clud

ed.

Page 122: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Plane of syrmtry

1 I I I

I / [m 0% J) , = (N% J) 1

Figure lO.- Convention for ordering coordinates for a noncirctiar cross section at X = m(J).

115

Page 123: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

(a) 9 panels, equal spacing

(b) 10 panels, equal spacing

--- Body surface

- 9 panels (KRADX = 10)

--- Body surface

- 10 panels (KRADX = 11)

--- Body surface - 9 panels

(K~Dx = -lo>

(c) 9 panels, custom spacing

Figure ll.- Panel layout on a 2:l elliptic cross section.

116

Page 124: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

(KtiDX = 14) (a) 13 panels, equal spacing

--- Body surface - 19 panels

(KRADX = -20) (b) 19 panels, custom spacing

Figure 12.- Panels layout on a 3:l elliptic cross section.

117

Page 125: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

e-w Body surface --- Body surface

- 9 panels, custom spacing = -10)

(a ) 9 panels, custom spacing lb) 1 7 panels, custom spacing

Figure 13.- Panel layout on a lobed cross section.

- 17 panels, custom spacing

(KRADX = -1 8)

118

Page 126: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Item

(1) (2) (31

(4) (5) (6) (7) (8) (9)

(10)

(11)

(12)

(13)

(23) (24)

(30) (31) (32) (33)

(36)

(37)

1 n 0 :

0 1 0 1 10 0 0 0 0 0 4 1 1 3

NIELSEN ENGINEEkfING 5 RESEAWCn. INC. PROGRAM NOZVTA SAMPLE CASE 1 3:l ELLIPTICAL CROSS-SECTION IWOY REF : NASA TM-74079 BY GHAVES MACH NO = 2.5~ ALPrlAC = 20 OE~EESI PHI = 0 DEGREES

12.56588

;.a .Ol

30 0.0 7.700 15.400 22.400 0.0 1.465 7.179 2.202 .2eo .12A .055 -.047 n.00

2.198 3.269 3.303 n.00

,733 1.090 1.101

4.20 .2s .25 .50 .50 .75 .75 1.0

I!;: 1.25

5.6 0.0

16.8 666463. 1.4

0.0

28.0

A” 0.0

4.n 2.5 0.0 1.0 0.0

0.0

.420 .700 2.100 3.500 4.900 8.400 9.100 i0.5no 11.500 12.hOO

16.800 17.500 18.200 19.0*0 19.700 23.100 24.50n 25.QOO 26.600 2h.noo

.iie .19b .507 .850 1.078 1.550 1.631 1.781 1.91b 1.977 2.252 2.279 2.299 2.309 2.3114 2.165 2.086 2.006 1.370 I.‘123 .2en .280 .234 ,175 .15.8 .119 .llO .102 .093 .00S .047 .034 .n2n .004 -.017 -. 055 -.057 -.055 -.lJ3LI -.034 .I7b .294 .ii81 1.275 1.617

2.326 2.447 ?.b72 r.n74 .?.Yb5 3.37R 3.418 3.4-H 3.4a4 3.Sk.b 3.240 3.128 3.009 2.vss 2.8H5 .059 .n9e .294 .425 .539 .7?5 .R16 .tl91 .95b .9na 1.126 1.140 1.149 I.155 1.152 1.083 1.043 1.003 . 9us .vo2

.75 1.0 .75 1.0 .50 1.0 .50 1.0 .50 1.0

3:l ELLIPTICAL CROSS-SECTION UWY 0 n

-3 -1 10 30 0.0 .420 .700 2.10 3.50 4.9n 5.60 6.30 7.70 0.*0 9.10 10.50 il.9n 12.60 13.30 lS.70 15.40 lb.60 17.50 lb.20

19.040 19.70 7n.30 21 .OQ 22.40 73. In 24.50 25.uo Cb.60 28.00 0.0 .17h ,294 .aAl 1.27s l.bl7 1.776 1.922 Z.lYH 2.3c’b

2.447 2.672 2.87* 2.9h5 3.051 3.203 3.2bY 3.37l.4 3.41b 3.*48 3.464 3.456 3.432 3.397 3.3u3 3.2*R 3.12n 3.uo9 2.V55 C.HA5 0.0 .05Q .09A ,294 .425 .53v .591 .brl .733 .775 .I416 .R91 .95A .98e 1.017 l.ObU 1.090 l.li’b I.160 I.169 1.155 1.152 1.144 1.112 1.101 l.Uh3 1.043 l.oUJ .‘+m5 .962

3:l ELI IPTICAL CtiOSS-SECTION hllL)y - &DUIllWJAL PAIJELII~~ INIJUl f-l n -1 n A

5.600 6.300 13.300 14.700 20.3UO 21.000

1.182 1.2dl 2.034 2.136 2.2G0 2.265

.1*5 .135

. 076 .069 -.030 -.O*l

1.774 1.922 3.051 3.203 3.432 3.357

.591 .641 1.017 l.obCI 1.144 1.132

(39) (40) (41) (43) 0.0 .420 .700 2.10 3.50 4.Yn 3.bO b.30

(a) Sample Case 1

Figure 14.- Sample input decks for program NOZVTX.

119

Page 127: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

1 0 0 0 1 1 0 0 0 3 0 3 0 0 4 1 1 : 3 0

NIELSEv ENGINEERING K. GESEAXH- INC. PROirUAM NI)ZVTX SAMPLE CASE 2 3:1 ELLIDTICAL CPOSS-SECTION JODY QEF: NASA TM-74079 BY GQPVES MACH NO r 2.5. ALP-AC = 20 OFG*EFSa PHI = 0 tEGclEE5

26.0 a.n 0.0 2.5

28.0 l.c. 1.05 0.0 1.0 0.0 0.0 0.U 0.0

i 2.56588 20.0 G.6 .@l

30 n.0 7.700 15.400 72.000 n.0 1.465 1.179 ?.202

240 :12n .n55 -.04-l ".OO

2.19n 7.2e9 3.303 7.00

.733 1 .OQO 1.101

. 42n .7no 2.100 3.500 l3.400 s.ino 10.500 11.900

16.80-O i7.5nn lY.200 19.040 23.100 2n.5on 25.~00 26.400

.119 .!9b .id7 .H50 1.55’) 1.631 1.7n1 1.9lh 2.252 2.279 2.299 2.33V 2.165 2.046 2.506 1.970 ..?I30 >en

.119 :11a .23r .175 0132 .093

.047 . n3* .020 .oo* -.F55 -.057 -.055 -.039 .176 .?51 .*a1 1.27';

2.326 ?.&I.7 I.672 c.r;7* 3.378 3.416 3.496 3.rbl 3.24P 3.12P, 7.009 2.q5.5 ,059 .n99 .2Ul . 42S .775 .a16 .i91 .95a 1.126 l.lb*J l.lL9 1.155 1.043 1.063 1.003 .si5

1.20011 0.0 0.0 0.G 1.02A64 .9Qb61 2.an 1.59082 .77324 4.203 l.Sbll .nq70 z.40

4.9no 12.600 19.700 2b.000

1.078 1.977 2.30~ 1.923 .15i! .Od5 -.017 -.33* 1.617 2.555 3.456

2.885 .!Y39 .VOR

1.152

,591 .6&l 1 . 017 1.*766 1.146 1.132

. 952 . 362’1 . ~5032 . 42231 .00346

ELLIPTICAL CaUSS-SECTIOQ d30Y - mDldI,‘l Gt>*tTey Ih.'uT 3:1 0 0

-3 -1 0.0 v.10

19.040 0.0

2.~47 3.464 0.0 . ‘lb 1.155

3:1 0 0 0 0

0.0

5.600 6.300 13.300 14.700 20.300 11.000

1.1er 1.281 i.u3* 2.136 2.286 2.265

,165 .135 .07b ,059 -.030 -.041

1.77* 1.922 j.651 3.203 3.~32 3.397

10 30 ,420 .700 2.10 3.=0 a.90 5.60 0.30 7.70 A.40

10.50 11.9r) 12.40 13.30 iti.7n 15.60 Ib.F30 17.50 18.20 19.7'l 20.30 21.00 22.40 23.10 24.50 25.90 26.bO 28.00

,176 .294 aa1 1.275 1.617 1.774 1.922 2.148 2.326 2.672 2.874 i.965 3."51 3.203 3.269 3.378 3.*16 3.448

U'," 3.432 ,098 .2Q4 3.397 3.303 .425 3.248 .539 3.128 .591 3.ou9 .641 2.755 .733 2.0Q5 .775 . A91 .950 .qaa 1.017 l.Oh8 i-090 1.126 l.l*O 1.149 1.152 1.144 1.132 1.101 l.OU3 1.043 1.003 .V85 .562

ELLIPTICAL CROSS-SECTIOY dOOy - A@DlTIOkAL PAlrELIlYCI INPUT -1

(b) Sample Case 2

Figure 14.- Continued.

120

Page 128: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

1 0 0 1 U 0 0 0 0 0 0 0 ‘ 1 1 :

NIELSEN ENGIWEQING 5 QESEAQCH. INC. PRJWAH hOZVTX SAMPLE CASE 3 3:l ELLIPTICAL CQOSS-SECTION BOOY WF: NASA TM-74079 dY GEAvES MACH NO = 2.5. ALP+AC = 20 DEG9EES. !-WI = 0 DEWEES

1?.565RB 4.n 20.0 0.0 E.8 2R.0 . 01 0.0

30 n.0 7.7no 15.*00 ?Z.AOO n.O 1.445 2.179 2.2n2 .280 .1Z!a .055 -.047 n.00

2.19n 3.2'9 3.3')3 an.00

.733 I.090

.420 P.400

16.800 23.100

.110 1.550 2.252 2.165 .Pe.O ,119 .047 -.955 .174

2.326 3.378 3.24R .059 ,775 1.126

14.R Mh463. 1.1

0.0

.700 4.109

17.500 2*.5on .196 1.631 2.279 2.086 .20n .11n .n3* -.057 .294

2.d.L7 3.418

3.12R .n9= . nl6 i.len

?8.0 0.0

1.05 0.0

2.100 lfil.500

ld.200 25.000 .537 1.7n1 2.209 2.006 .234 .102 .020 -.055 .Pdl

2.672 3.443

3.9ns .294 .A91 l-1*9

i.lni 1 .oi33 I.003 1.003 3:1 ELLIPTICAL CPOSS-SECTIUK dODy -

0 0 -7 -1 10 30

4.0 2.5 0.0 0.0

1.0 0.0

3.500 4.900 5.400 11.900 12.bOO 13.300

19.osn 19.700 20.300 26.600 2.5.000 .a50 1.079 1.182 l.Vl6 1.977 2.J34 2.309 2.3112 i.286 1.970 1.923 .175 .15s .1*5 .093 .OR5 .w76 .004 -.017 -.030 -.039 -.034 1.275 l.bl7 1.776

2.c74 2.045 3.Lf51 3.&b* 3.45b 3.&32

2.955 2. .tiq .025 .53Q .591 .950 .9rla 1.017

1.155 1.152 l.lUL . Y85 . -02

0.0 .420 ,700 2.10 3.50 b.9t.l 5.60 0.31) 7.70 8.-O 9.10 10.50 11.90 I%.60 13.30 lb.70 15.40 l?.i+O 17.50 16.20

19.040 19.70 20.30 21.00 22.&O 23.10 2b.50 25.~0 Cb.50 is.00 0.0 ,176 .294 .?kll 1.275 l.bl7 1.77r. 1.922 2.136 2.326

2.~47 2.672 2.07~ 2.965 3.p51 3.2n3 3.269 3.37H 3.*id 3.44d 3.464 3.656 3.432 3.397 3.303 3.208 3.128 3.ofiv 2.355 2.995 0.0 .059 .09@ .2QL .L2S .539 .591 .5*1 .733 .775 ..'16 .a91 .95R , PRA i.nl7 l.Oh@ 1.990 1.126 i.i*n 1.1-Y 1.15% 1.152 1.144 1.132 1.101 1.0r3 1.043 l.Oti3 ,985 .YbZ

3:l ELLIPTICAL CQOSS-SECTION HODY - aDCITIONAL *r\NE~lhut IWLIT n n -1 n 0

b. 300 14.700

21.000

1.261 2.136 2.265

.I35

.oa9 -.O*l

l..J22 3. r03 3.357

.4&l 1. .)48

I. 132

(c) Sample Case 3

Figure 14.- Continued.

121

Page 129: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

1 0 t :

0 Ii

1 1 0 0 0 0 0 0 4 1 3 0

NIELSEQ ENGINEERING L. REzEARCH* INC. PROGfiAh NOZVTX SAMPLE CASE A 3:1 ELLIPTICAL CQOSS-SECTION 8ODy I?EF : NASA TM-74079 dY MAC* NO.= 2.5. ALPHAC = %b DEGSEES. %I = 05 DtWEES

lZ.S658A 70.0 ?.B .Ol

30 0.0 7.700 \5.40@ 22.400 0.0 1.405 2.179 7.202 .2eo .12P .055 -.nA7 n.00

2.19n 3.269 3.3?3 0.00

'.733 1.090

4.0 16.8 2d.0 45.0 666463. 0.0 20.0 l*A 1.05 0.0 0.0 0.0

.uzo . 700 R.40@ 9.100

16.800 17.SOF 23. lo.0 24.5on

.118 .I96 I.550 1.631 2.242 2.279 2.165 2.096 .200 .2er! .119 .llO .047 . n34 -.055 -.057 ,176 .290

?. 326 2.147 3.370 3.bl.S 3.2&R 3.128 .059 . n9a .775 . 916

2. Ino 10.500

lR.200 25.+00 ,587 1.791 2.299 2. a!!‘4 .23c. .102 ,020 -.055 .@I31

2.472 3.4&d

3.oi)9 .29& .991 1.119

1.003 1.126 1.140 1.093 1.043 1.101

3:1 ELLIPTICAL CROSS-SECTION -lOOY - 1 n

2.5-- 0.0 1.0 0.0

3.500 4.voo 11.900 lC.600

19.040 19.700 26.600 28.000 .650 i.07e 1.915 1.577 2.31)') 2.31~4 1.97n 1.023 .175 .15? .093 . l)d5 .ilO4 -.017 -.035 -.O?* 1.275 1.61 7

2.P7C 2.465 3.464 3.-50

2.955 ;1.ta5 . *25 .539 .95R .3ee

1.155 1.152

0.0

5.600 6.300 13.300 14.700 2u.300 21.000

l.ld2 1.281 2.034 2.136 C.2i3d 2.265

.lC5 .135

.07b .069 -.030 -.O*l

1.772 I.Y22 3. US1 3.2b3 3.432 3.397

.5Yl 1.a17 1.1&k

.641 1. soa

1.132 . Yes . ib2

cCY3or r,EDrETqr INPUT

-3 -I in 30 0.0 ,420 .70$l 2.10 3.50 4.9n 5.60 4.3ti 7.70 b.40 9.10 10.50 11.9fl 12.60 15.30 14.70 15.-o lb.:0 17.55 16.20

19.040 19.70 20.30 21.00 22.40 23.10 2*.50 25.90 26.60 re.oa 0.0 .176 .294 .ee1 1.275 1.617 1.774 I.922 2.lqh 2.326

2.447 2.672 2.074 2.965 3.551 3.203 3.249 3.378 3.w19 3.440 3.464

f;;;" 3.432 3.397 3.303 3.2&R 3.12Q 3.0ns 2.355 2.835

0.0 .OV8 .204 .r25 ,539 .591 .bel .733 .775 .a16 A91

i.152 .95P .9e.A 1.017 I.069 1.09n 1.125 1.140 l.lLY

1.159 1.144 1.132 1.101 l.lJY3 1.0&3 1.003 .3e5 .562 3:1 ELLI"TlCAL CqOSS-SECTIOY YODY - ACWITIcJkAL PAiuELIW IluVuT

0 0 -1 n 0

0 0

GFtAvES

(d) Sample Case 4

Figure 14.- Continued.

122

Page 130: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

7

0 0 0 :

0 1 0 3 109 .o 0 0 0 0 4 1 1 3

NIELSEN ENGINEERING r. REXARC** INC. P~OGI?AM Wi!vTa SAMPLE CASE 5 CIRCULAR OGIVE CrLINOER REF : AFATL TR-78-127 tlr OBER*PMPF MAC+ NO.= 2.0. ALWAC = 15.-EGREES. OhI = 0 ‘tGREES

.Obe56 3.0 39. 3.0 15.0 3.0 .Ol

24 n.0. 7.00 4.on 4.00 0,. 0

.a5630 1.34216

1.500 . c3333 .33041 .15883

n.0 21.0 0.0 0.0 0.0 0.0 r1.0 n.0 0.0 .3n .3 .3 .3 .3 .3 .3 .45 .45 .45 .45

0.0 39. 0.0

1.0 0.0

-25 2.25 4.25 36.0

.129Al

.93606 1.37933 1.500 .50526 .30773 .13857 0.0

30. 1.2 1.50

I. rn 2.10 2.40 2.7n

3.00 1.2 I.50

1..9n 2.1n 2.40 2.70

3.00 ‘1.05

1.10 1.2 1.30

l.cn 1.50 1.60

1.70 1.90 1.90

2.00 2.10

2.20 2.30

2.40 2.70

3.00 1.05 1.10

1.2 1.30 1.40

1.50 I.hrl

.=I0 2.50 r.5n

.25272 1.n102o I.41144

0.0 2.0 .05 0.0 0.0 0.0

-75 1.00 2.75 3.00 a.75 5.00

36095 .47d70 .07@@3 1.14203 .43RSd 1.461772

45195 42630 26361 :24209 09851 .07867

1.25 1.50 3.25 3.50 5.25 ea.50

.58216 , bi'948 I.19090 1.25250 1.47792 l..bYO14

.‘lUl4S .37722

.22OP9 .13440

.05393 . U3525

.77(182 1.29990 1 .ri9755

. 47815

.2e548

.I1847

.35355

.I7920

.01441

. 45

.45

.45

. 45

.45

.45

.45

.45

.45

. 4s

.45

. 45

.45

.bO

.40

.60 .60 .60

.6

.h

3G.

(e) Sample Case 5

1.75 3.75 5.75

Figure 14.- Continued.

123

Page 131: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

id i.70 .6 1.80 ;i 1.90 .6 2.m .6 2.10 .h 2.20 .6 2.3n

.6 2.4r)

.6 2.70 .6 3.00 .75 1.2 . 75 1.30 .75 1.4 .75 1.5n .75 175 75

.75

.75

.75

.75

. 75

.75

.75

.75

.Q

.9

.9

.Q

.9

.9@

.9

.9

.9

.9

.9

.9

.Q

.Q

.Q

.9

.Q

.Q

1.6 1.7 1.l3n 1.9

2.0 2.1n 2.zn 2.3 2.4n 2.7n

3.00 .75

.n

.Q 1.1 1.1

1.2 1.3 1.4

I .5n 1.6 1.7 1.a 1.9 2.0 2.1.) 2.2 ?.3 2.4”

.9 2.711 .Q 3.00 1. n5 l.@C :; l.ns .d 1.05 .9 1.05 1.9 1.05 1.1 1.05 1.2 1.05 1.3 1.05 1.6 1.05 1.50 1.05 1.6 1.05 1.7 1.05 1.90

1.05 1.05 ::;: 1.05 2.10 1.05 2.2 1.05 2.3 1.05 2.41l 1.05 2.70 1 .nr. 7.nn

(e) Sample Case 5, Continued.

Figure 14.- Continued.

124

Page 132: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

.__- 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2n 1.20 I.20 1.2n 1.20 1.20 1.2 1.2 1.2 I.2 !.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3= 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 I.35 1.35 1.35 1.35 1.35' !.35 1.35 1.35 !.35 1.35 1.35 1.35 1.35 1.35 1.3s 1.35 1.35 1.35 1.5n 1.5n I.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5n 1.50

51

0.0 .lO .2

.3 .4 .5

.;”

.A .Q

1.0 1.1 1.2

1.3 1.4

1.5n 1.6 .7 1.Q 1.9

2.n 2.1n

2.4n 2.70

3.on 0.0 .l .2 .3

.;' .b

.7 .8 .9 1 . 1 1.1

1.2 1.3 1.4 1.5n 1.6

1.7 1.80

1.9 2.0 2.10 2.2

2.3 2.20 2.70

3.no 0.0 .3 .b .9

1.2 l.SO

1.80 2.10 2.40 2.70

3.00 z 6.n -49.

(e) Sample Case 5, Concluded.

Figure 14.- Continued.

125

Page 133: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

0 0 0 l-l 0 Cl 11 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0

NIELSE~J ENGiNEEAiNG L WsEWH:INC. SAMPLE CASE 6. CIQCLILAR OGIVE MACH NO.= 1.6.

7.07 20.0 n.0 0.0 .50 19.5 .Ol 0.0

11 .-I . 1. 2. 9.

CYLINDER PEF: NASA TW h-3551) 9Y LAivDRUW ALPWAC = r) DEGYEESt ~1 = 0 DEGNEES

9.0 20.0 3.0 ~00000. 0.0 1.6

0.0 1.05 0.0 1.0 1.0 0.0 0.0 0.0

2. ZP.

3. 4. 5. b.

n. .32 .60 .!?.r 1.04 1.22 1.34 1.ca 1.50 1.5n .343 .301 .?61 .221 .lt)3 .14h .109 .E3h 0.0 0.0

51 2 9.0 2n.

7.

1.42

. 0 I2

(f) Sample Case 6

Figure 14.- Continued.

126

Page 134: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

1 0 0 1 0 1 1 0 0 0 0 0 0 0 0

NfELSEN 1 ENGINEEYING 1 1 5 3 RESEA%H .‘INC. DQOGirAP NOZVTX SIMPLE CISE 7 2:1 ELLIPTICIL CROSS SECTION FOREBODY REF: N4S4 TM-80062 MY TOWNSEND MACH NO.= 1.7. AL+rt4C = 20.36 DEGREES. PHI = 0 DEGREES

13.17679 7.0 3.60342 20.36 .50 .05

39 0.0 p.on 4.00 7.00 11.0

0.00000 0.50696 0.93592 1.43313 l.n2310 0.27300 0.23398 0.19498 0.136&Q 0.05R49 0.00000 0.33797 0.62395 0.95542 1.215~0 0.00000 0.67594 1.24790 1.91nsc

14.0 0.0 14.0 0.0

900855. .SO 0.0

14.0 0.0

1.05 0.0

1.7 - 0.0 0.0

1.0 0.0

025 2.25

4.25 7.50 11.50

0.06764 0.564@4 n.994ob l.L9r+94 1.84991 0.26310 0.22910 0.19012 0.1267* 0.04R75 0.0*509 0.37656 0.65604 ?. 99929 1.23327 0.0~019 0.75319 1.31208 1.39P59

. SO 2.50

4.50 4.00 12.0

0.13405 q.62151 l.n3n9fi 1.55997 1.n71a5 Il.?6322 n.22424 0.19524 0.11690 r).o39on n.n8937 0.61434 0.68732 1.n3991 I.?!*790 0.17874 n.a2868 l.-,7cb4 2."7983 ?.*9TF.-

.75 2.75

4.75 8.50

12.so n.19925 (3.67696 1.37669 1.51593 1 .&MY1 0.25836 0.21936 O.l8036 n.10724 0.02924 0.13283 0.45131 n.71779 1.07729 1.25927 'l.2b567 0.90241 1.*>557 2.15057

2.*30RO 2.rh455 2.51+5* ;r:1 ELLTPTICAL CaOSS-SECTION ;ORkiODr n 0

-3 -1 18 29 0.0 .50 5.0 5.5 k",

10.0 10.5 11. n.0 .na937 .17549

. 74744 .a0431 .05793 1.169901.19~281.215~0

. 17076 .35(197 1.:9:&60~621.715ft6 2.'.39#12.38A552.430~0

2:1 ELLIPTICAL CROS n 0 -1 n 11 n.O 1.0 2.0 14.

I.5 6.5 11.5

-25835 .9083n

1.23327 .51671

l.Rl66il 2.J.6655 5-5ECTI

3.0 4.0 5.0 6.0 8.0 10.0 12.

1.00 3.00 5.00 9.00

13.0 d.26323 0.73119 I.12116 l.bb711 1.90109 0.25349 0.214&r! 0.17426 0.09769 II.01950 0.17549 0.4074h 0.74744 1.11141 1.267*0 0.35097 0.97*9? 1.49-69 2.22282 2.53*7Q

1.25 3.25 5.50 Y.50 13.50

0.32599 0.76~20 1.2064b 1.71342 1.90941 0.248bO 0.20960 o.lb;73 O.UH775 ti.OOQYl cl.21733 0.52280 0.60431 l.li228 1.27227 0.*3&65 1.04560 1.609b2 2.28-56

1.50 3.50 b.00 10.0 16.0

0.38753 o.f!3599

KEZ . l.Yll 0.24372 0.20474 0.15599 0.07800 0.00000 @.25835 0.55733 0.*5793 1.16996 1.27.+rJO 0.51671 1.11*66 1.71586 2.33981

Z.>rrS* 2.54ano - -Dr=CY GEWETAY JNgdT

2.0 2.5 3.0 3.5 4.0 7.0 7.5 8.0 a.5 9.0 Y,:i'

12. 12.5 13. 13.5 14. . 33797 .*1434 .487&b .55733 .62395 .6t1732 .95542 .~99291.039911.077291.111411.1~22’? .2~7901.259271.267c01.272271.274 . h7594 .eze4a .97~2~1.1144hl.247901.374b4 . 9lOA*l.9995Y2.079932.15~572.222822.28~56 .495802.51P542.534792.5k~542.5*B N FOYEtdODY - ADDITIONAL JnNELINlj INPClT

1.75 3.75

b.50 10.50

0.447d5 r).@4bS7 1.3b245 1.79142

0.2368b 0.149tlb 0. I*624 0.04Ll2.l

'1.29B57 0.59105 0.901330 1.19LZd

0.5-.7lr 1.18209 1.81bbU 2.3n855

(g) Sample Case 7

Figure 14.- Continued.

127

Page 135: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

-

1 0 0 : i

11 0 0 0 0 0 0 0 0 4 1 1 0

NIELSELi EMGINEERING & RESE4RCH. 1%. PROGSA.CI NOZVTX S4uPLE CASE P 2:1 ELLIPTICAL CROSS SECTION F5REGODr REF: N4SA TM-80062 BY TOJNSEND r4CH NO.= 1.7. ALPUAC = 20.3h JEGREESt PHI q 0 DEG;cEES

13.17679 20.36 .50 .05

39 n.0 2.00 4.00 7.00 11-n

0.00000 0.50h96 0.93592 1.43313 1.82310 0.27300 0.23398 0.19*9s 0.13649 0.05Rb9 0.00000 0.33797 0.62395 0.95542 1.21540 0.00b00 o.fl759a 1.247QO l.9lne4

l*.O 7.0 14.0 3.60342 0.0 900855. 0.0 1.7 14.0 .50 1.05 0.0 0.0 0.0 0.0 0.0

.25 2.25

4.25 7.50 11.50

0.06764 0.564@* 0.98406 1.49894 i .e49Yl 0.26810 0.22910 0.19012 O.ltS74 o.ora75

.GO 2.50

o.w a.00

. 12.0 0.13405 n.62151 l.n3nsq 1.55987 l.Fl7185 0.2b322 0.22424 n.18524 0.11599 o.n39on 0.00Y37 n.41434 O.h873> i.n399i i.2479n O.l7@74

.7j 2.75

L.75 8.50

12.50 0.19925 n.b7h96 l.n7668 1.61593 1.aen91 0.25R36 0.21936 n.id034 O.lU724 0.02Y24 n. 13293 0.65131 0.71779 1;07729 1.25927 0.26567 n.90261 1.43557 2.15457

0.04509 g.37656 0.65604 Il.99929 1.23327 0.09018 n.75319 fl.R296R 1.31208 1.374b4 1.99859 2.17987

2.*3080 2.46555 2.&958n 2.51954 7:l ELLIPTICAL CROSS-SECTION coCE90Dy !l @

-3 -1 19 29 n.0 5.0

10.0 9.0 .

. 74744 . 1.169901

n.0 . i.r94nei . 2.339912 .

2:1 EL L n 0 - 1

.50 1.n 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.5 6.0 6.5 7.0 7.5 8.0 e.5 Y.0 9.5

10.5 11. 11.5 12. 12.5 13. 13.5 14. r)0Y37 .l7509 .25R35 .33797 .41434 .48746 .55733 .h2395 .btr732 90431 .e5793 .90830 .95542 . 999291.039911.0772Y1.111411.14228 194281.215401.233271.2~790l.259271.267401.272271.274 7074 . 35097 .51671 .6759* . 82868 .974211.11*661.247901.37*b4 608621.715~61.~16601.910~41.99R592.07Y~32.154572.222~22.2845b 79~552.430~02.466552.4~5PO2.51$5~2.5347~2.5~~542.S4~ IPTICAL CROSS-SECT!ON FOREsOOY - ADDITIONAL ?ANELI~~ INPUT

- -IQ 11 n.0 5. 10. 1s. 26. 30.5 45. 58.75 72.5 107.5

121.25 135. 1*4.5 154. 162. 170. 175. 140. 0.0 1.0 2.0 3.0 4.0 5.0 6.0 6.0 10.0 12.

1.0 0.0

1.00 1.25 1.50 3.00 3.25 3.50 5.00 5.50 b.00 9.00 9.50 10.0

13.0 13.50 14.0 0.26323 0.32599 0.30753 0.73119 0.78420 o.e3599 1.12116 1.203-b 1.2Rod9 1.66711 1.71342 1.75466 l.YOlOY l.YLiC41 1.911 0.25348 0.2&860 0.2*372 0.21448 U.209bo 0.20479 0.17426 O.lb573 0.15599 0.09749 0.01775 0.07800 0.01950 0.009Yl 0.00000 0.175&9 U.21733 0.254-15 0.68746 0.52280 0.55733 0.7474r 0.60431 O.tj57P3 1.11141 1.1*228 l.lb990 1.267~0 1.27227 1.27riIO 0.35097 O.rhb5 O.Slb71 0.97492 1.04540 1. llub6 1.49&P9 l.bfi*52 1.71584 2.22282 2.25456 2.339al 2.53&79 2.5rr5r 2.54hOO

14.

1.75 3.75

6.50 10.50

n.427a5 n.B6657 1.36245 I.74142

0.23666 0.1996b 0. l-624 O.ObU24

0.29837 0.55105 0.90330 l.lYC2ti

0.59714 1.182OY 1.81660 2.3Rb55

(h) Sample Case 8

Figure 14.- Continued.

128

Page 136: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

1 n 0 2 1 1 4 1 1 : -P 2 0

3 0 0 0

SAMPLE CASE 9 3:l ELLIPTICAL CqOSS SECTION CONE REF: NASA r*-78808 MACH NO.= 1.7. ALPMAC =

2T.lW6 6.794 7.0 20.351;E;REE5. . PHI = 0 DEGREES 6.794

20.35 0.0 1130000. .25 1.70 .50 7.0 0.0 1.05 0.0 1.0

.Ol 0.0 0.0 0.0 0.0 2

9.0 14.0 0.0 3.397 .2*27 .242? n.O 5.0455 0.0 1 .b9R5 3:l CONICAL ELLIPSE - dDY9Dy GEOMETRY IhPUT n 0

0 0 0 0

BY TOWNSEND

.50

-3 -1 1P 2 0. lC.0

n.O 5.0955 0.0 1.6995

3:l CONICAL ELLIPSE - aDDITIONAL PPNtlLlhG INPUT -1: 5 n -1

n.0 13.q5 27.69 b1.56 55.38 69.50 77.00 81.50 e7.00 93.00 9a.50 103. 110.5 126.62 13P.46 152.31 166.15 130. 0.0 .50 6.25 12.0 lb.0

(i) Sample Case 9

Figure 14.- Continued.

129

Page 137: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

-- ..----.--.- I

2 0 0 1 0 2 11 0 0 0 0 o..o 0 0 s i 1 i 3 2 0

NIELSEN ENGINEERING ir ~ESE4PCnr INC. PROGRAM NOZVTX SAMPLE CASE IO LOAED CROSS SECTION FDaEqODY eiEF : NASA TM-80062 bY TOWNSEND M4Cti ND.= 1.7. ALPHAC = ?0.3/, DEGQEE5. PHI = 0 DEGREES

15.05941 14.0 7.0 14.3 4.37884 to.34 0.0 728764. .075 1.7 .50 7.0 0.0 1.05 0.0 1.0 1.0 .05 0.0 0.0 0.0 0.0

29 n.0 -0

4.0 25 1.0 5.0

::5’ 2.0 2.5 3.0 3.5 6.0 7.0 7.5

Q.0 0.5 0.0 9.5 10. 1::: 11.0 11.5 12.0 12.5 13.0 13.5 14.0

J:r;i237 1.19128 .15359 . 1.2n461 .3nibo .44403 1.36235 J .58087 .47*51 1.5bJO8 .71212 1.64207 .63779 .95787 1.71747 1.70728 2.14474 .31 .?2341 .I3404 .34468

20 1 .50

24 .oooon .0155R .031os . II4629 .oblln . 07524 . OR840 .1002h .JlO49 .llRA2 .1250R .12926 .I3147 . J 3194 .13097 .12891 .12607 .Jl’OO .1ooon .08365 . 07847

1.85151 1.01014 1.96322 2.31069 2.05258 2.08P89 2.11961 2.16429 2.17925 7.14663 2.18042 . 30160 .2St44 .27927 .268’.!9 .25692 .2~575 .23&5d .21224 .2n1’J7 .18990 .17873 .16756 .15639 .1*52l ,122.M .11J71 .1nus3 .06936 .07820 .06703 .05585 .03351 .02234 .OllJ7 0.0

-.17874 -. 17809 -.17612 -.I7275 -.Jb7Ah -.16134 -.15312 -. Jr319 -.13JbR -.117@2 -.10&9h -.09051 -.07590 -.‘I6152 -.Or767 -.r.345* -.n2223

.01900

.05800

. 09970

.11206 .a7212 .12492 .06431 .1379J . cl5476 .15044 .0433s .i6171 . 03011 .17077 .OlS*b . J76bR .oooon .1187r

LOBED CROSS SECTION PODY - vDYHDY GEOHETHY INPUT l-l 1 1 1 20 29

5:; 5.5 .5 6.0 1.0 6.5 J.5 2.0 7.0 2.5 7.5 8.0 3.0 8.5 3.5 4.0 9.0 4.5 9.5 1n. 10.5 11.0 11.5 12. 12.5 13. 13.5 14.

0.0 0.0 n.n n.n

Cj) Sample Case 10

Figure 14.- Continued.

130

Page 138: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

. __ n.O 0.0 0.0 n.O 0.0 0.0 n.0 0.0 0.0 0.0 n.O 0.0 0.0 (1.0 0.0 l-I.0 0.0 n.0

.ooooo

.n155n

.031ns

. n4b29

.06110

.osa*a

.11040

.125n,P

.13147

.I3097

.124n7 114ao

: 10000 .00345 . 07212 .05*7t+ .n4333 .03Gll .-I1546 .ooooo .ooooo .0305Q .06@9S .09069 .I1997 .17359 .2169h .245hl .25814 .25719 .24756

.2239 .I944

.lb427

.14142

.I0752

.08509

.O5913

.03035 o.oooon

.ooooo

.045n4

.ne970

.I3301

.17642

.x557

.31942

.341hn

- . . 0.0 0.0 0.0 0.0 0.0 0.0

X:i 0.0

8:; 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-. 17674 -.17809 -. 17612 -. 17275 -. 16786 -.1c312 -.1316P -.10*94 -.q759n -.I34751 -. G2223

.OlQ

.nsn .09970 .12492 .lSOLO .14171 .17077 .I7461 .17r??i

-. 35097 -.3497n -. 145n4 -. 33922 -. 32942 -.30047 -.2585? -.20609 -. l&905 -.n9341 -.0*345

.n373 .1139

.1957?

.24530

.29541

. -41755

. 33534

.3r4v3

.35097 -.51471 -.5l*R4 -.5c915 -.4994n -.c8527 -. 44245 -. 3.3047 -. .3034?

(j) Sample Case 10, Continued.

Figure 14.- Continued.

131

Page 139: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

.38004 -.21943

.3?Bh3 -. 13781

.36447 -.06427 .72956 .05493 .2@909 .16-r&?

.24184 .ZRAZI

.2085n .36114

.1563n .43*92

.12527 .4475n

.08705 .a9349

.04469 .51076 0.n0000 .51671

.oooon -.47594

.05@92 -.4735n

.11744 -. bbhn4

.lms -.65331

.231n4 -.63*i?2

. 33432 -.57907

.41786 -.4979n

. 47304 -. 39492

.49719 -.287A5

.49532 -. lP?ZP

.6767r( -.08407 .-3113 .?I7185 .37a1a .21935

.31637 .377n3

.27274 .47243

.207na .54895

. 14387 .4115@

.i13nn .54593

.CS8&4 .bb817 0.00000 .67594

.ooooo -. 82bbR

. n7224 -. 82549

.143Q9 -.RlbSr,

.21*41 -.POO93

.29327 -.77027

. LO907 -.70991

. =122a -.c1051

.57992 -.48541

.40953 -.35191

158.52 60724 -.22102 -. 10307 . 52.356 .08809 . 44344 .24891

.38785 .Pb222

.33439 .5791Q

.25387 .49751

.20090 .74977

.13941 .79l77

. 07147 0.00000

.ooooo

.81915

.0206A

. 09499

.14939

.2524R

.3332q

.4@22n

.40269

.48224

.71710

-.97492 -.97139 -.QbObb -.94227 -.91541 -.p3519 -.71025 -.572&Q -.4i4n2 -.24002 -. 12125

.10344

.31436 .54-i70

. 71440

. 60767 .A2102 .<4545

. h5hln

(j) Sample Case 10, Continued.

Figure 14.- Continued.

132

I., I .I. I ..-... ._..._._.. -..-..- -. _ --._...-. . ..-. . - ., - . m.. I I I m

Page 140: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

. ..-. _. __ .39340 .6bIJQ 8 29867 -82060 w 23b35 .882QR .I6425 .9314Q .n8431 .96371

0.00000 .9?492 .ooooo -1.11466 .09717 -1.11063 .I9367 -1.09635 .26867 -1 .n7733 .3PlOZ -1.ndm5 .55131 -.95491 .68906 -.a2120 .78005 -.65454 .e19flq -.47335 .PlbcJtI -.29729 .79424 -. 13863

.71OPS .11849

.12364 .34171 .5217n .62174 .44979 .779nh .341*a .93822 .27023 1.00951 .I8779 ). n650n .09440 1.101P4

0.00000 1.11444 .ooooo -1.24790 .1087c. -1.24339 .21ae2 -1.22941 .32317 -1.20610

r2b.57 :41722

-1.17199 -1.04905

.77143 -.9193*

.p733n -.732?q

.91789 -.52094

.91444 -.332.&3

.0002? -. 15521 . ‘9593 .1324’S .m3ia

.59404 -, 40*95

.69405 .5n355 .P721n .3923n I.05036 .30253 1.12904 .21020 1.19231 .10792 1.23355

0.00000 1.24790 .ooooo -1.37464 .11983 -1.3bVb7 .231X04 -1.35453 .35bOo -1.32bbo .64989 -1.29101 .4799n -1.17762 .R497g -1.ni273 .94199 -.90721

1.01111 -.%3374 I .00731 -.36463

.94961 -.17097 . a7676 .14613 .7b909 .44407

.44338 .?4675

.55*70 .96076 042113 1. IS704 .33326 1.243?3 .23159 1.31340 .1168P l-35883

n.nnnnn I. 37rPl*

(j) Sample Case 10, Continued.

Figure 14.- Continued.

133

Page 141: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

_.-___. __-. - .ooooo -1.494RA .13031 -1.40947 .25973 -1.47301 .3871b -l.-r44EI1 .51099 -1.40393 .73937 -1.28963 .924ll -1.10131

1.04bl4 -.87781 l.nq955 -.63403 1.09542 -. 39870 1.05*43 -. 18592

.95345 .I5891 ‘.a3436 .Ctl509

.49945 .83362

.40322 1.044ao

.45796 1.25825

.36241 1.35.252

.25164 1.4282R

.I2929 l.4776Q 0.00000 1.494dFl

.ooooo -1.60862

.14023 -1.~0290

.27949 -1.58509

.41459 -1.55474

.54907 -1.51076 .79543 -1.37807 .99442 -1.18511

1.12573 -.964bO 1 .l8321 -.h.3313 1.17877 -.429n4 1.13446 -.20007

1.02hOO .17100 . ~0000 .52200

.75209 .R9724 .649ll I.12430 .*9281 1.35398 .3899@ 1.45543 .27101 1.534% .I3912 1.59012

0.00000. 1.40642 .ooooo -1.71584 .1495R -1.70965 .29813 -1.59076 .44*37 -1.45839 .5ab53 -1.61147 .04067 -1 .a6994

1.04072 -1.24411 1.20078 -1.00758 1.2421@ -.72867 1.25735 -.45764 1.2103n -.21341

1.09400 -1a240 .94000 .55680

.a0309 .95708

.49239 1.19925

.52544 1.44425

.4159r! 1.55246

.28907 1.43942

. i4e39 1.49412 0.00000 1.71584

.ooooo -1.81660

.15836 -1.61003

.31563 -1.79003

.47045 -1.75576

.62096 -1.70409

. aoc15n -1.55c170

(j> Sample Case 10, Continued.

134

Figure 14.- Continued.

Page 142: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

-V.--w ____.-

1.12299 -1.33833 1.2712n -1.06673 1.33620 -.77145 1.33117 -.4a451 I.28136 -. 22594

1.15965 .19311 1.01636 .58949

.F5023 1.01327

.73304 I;24946

.55653 1.529n4

.44040 1.44361

.30405 I. 73567

.lS?lO 1.79571 0.00000 1.815bn

.ooooo -1.9lOAu

.16457 -1.9’)393

.332nn -l.BAPRP

.494.36 -1.fl4b85

.6531! -1.79459

.94511 -1.4349c1 1.18125 -1.*0776 1.33723 -1.122n7 1.~0551 ~~.A1147 1.40023 -.509br 1.34783 -.23764

1.2lR74 -20313 1.04909 .42007

.09434 1. P5S93

. 771n7 1.33s53

.5854n 1.50937

.44325 1.72U88

.32192 1.62572

.16525 1.888a7 0.00000 1.91094

.ooooo -1.99359

.I7422 -1.99135

.34725 - I. 94935

.5175a -1.93145

.68317 -1.87700

.9ne51 -1.71215 I.23540 ‘-1.47241 1.39854 -1.1735” 1.47005 -.a6674 1.44*53 -.53304 1.40972 -.24057

1.27473 .21245 1.11818 .44855

.93541 1.1147R

.A0647 1.39405

. hl22R 1.48222

. 4f3452 1 .PO824

.33471 1.90955

.I7281 1.975bil 0.00000 1.99859

.ooooo -2.07993

.18130 -2.07231

.34137 -2.04940

.53fl62 -2.01017

.71094 -1.9533n 1.02849 -1.7P175 1.28572 -1.53226 1.45540 -1.221311 1.52981 -.88324 1.52406 -.55471 1.44703 -.25948

1.72655 .27in9

(j) Sample Case 10, Continued.

Figure 14.- Continued.

135

Page 143: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

__e---- ---_. 1.16364 .6?491

.9?343 1.16009

.R3926 1.45364

.63?17 1.75061

.5n422 1.88177

.35039 1.98718

.179El7 2.05591 0.00000 2.07983

.ooooo -2.15457

.113782 -2.1467R

.37435 -2.123ns

.55798 -2.08241

.73449 -2.32350 1.06566 -1.84578 1.33192 -1.50732 i.507an -1.26519 1.50479 i .57a83 1.51975

1.37422 1.20545

i.ooari .a4942 .44007 .52234 .34299 .I9433

0.90000 .ooooo .I9377 .38421 .57545 .75902

1.09941 1.37411 1.55556 1.43499 1.42884 1.56780

1.41775 1.24344

1.04036 .99696 .6809? .5300P .37448 .19223

0.00000 .ooooo .I9915 .39494 .59145 .79093

1.12995 1.4122.9 1.59877 l.bao*o 1.674n9 1.61144

1.45713 1.27818

1.06925 .92167 .09909 .55385 .794b39

-.9149a -.57445 -.26797

.22904

.49914 1.20178 1.5nsa4 l.Fl352 1.9494n 2. nsa59 2.12979 2.15*57

-2.22252 -2.21478 -2.19030 -2.14837 -2. n8759 -1.90~24 -1.637611 -1.30527

-.94396 -.59285 -. 27644

.23629

.72131 1.2398~ 1.55357 1 .a7096 2.filll4 2.12379 2.19725 2.22292

-2.2P456 -2.2743n -2.25114 -2.20805 -2.1455a -1.95714 -1.4e3n9 -1.34153

-.970lR -. ho932 -.28414

.24205

. 74135 1.27429 1.59673 1.92293 2.04701 9. IA?70

(j) Sample Case 10, Continued.

Figure 14.- Continued.

136

Page 144: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

-- -.-- -___-. .19x7 2.25029

0.00000 2.2845b .00000 -2.33981 .20397 .40654 .60595 .79981

1.1572R 1.44643 1.63743 1.72104 1.71457 1.65041

1.4923b 1.30909

1.09511 .o441r, .71681 .56725 .3Q419 .20235

0.00000 .ooooo .2nfi22 .41501 .hlt!5@ .nlb47

1.18139 1 .A7457 1.67154 1.75609 1.75029 1.60470

1.523~5 1.33636

1.11793 . 96383 .73175 .77906 .40200 .20657

0.00000 .ooooo .21190 .A2235 .62952 .c33091

1.2022p 1.50268 1.70111 1.70797 1.7R125 1.71459

1.55040 1.36000

1.13770 .9POOA .74469 .59931 .4n952 .21022

0.00000 .ooooo .21501 .42A5+ .h-4A77

-2.33135 -2.30559 -2.26145 -2.1974b -2.00447 -1.72370 -1.37397

-.993b4 -. b2*n5 -.29101

.24073

.75927 1.30510 1.63534 1.96943 2.11699 2.23557 2.31290 2.339nl

-2.3895~ -2.37992 -2.35361 -2.3085& -2.24324 -2. ‘)4623 -1.7597n -1.63259 -1.n1434

-.63705 -.29707

.253Ql

.77509 1.33229 1.66941 2.n104b 2.1611ll 2.28215 2.36108 2.30055

-2.430130 -2.42201 -2.39524 -2.34939 -2.24292 -2.08242 -1.79083 -1.42740 -1.03228

-.64032 -.30233

.25840

.78860 1.35586 1.6989L 2.04602 2.19932 2.32251 2.40204 2.43ORO

-2.46655 -2.45763 -2.43046 -2. PA794

Cj) Sample Case 10, Continued.

Figure 14.- Continued.

137

Page 145: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

.---. _.__ -. .04313 -2.31649

1.21996 -2.11304 1.52478 -1.01716 1.72612 -1.44839 l.Al426 -1.04746 1.80744 -.65706 1.73981 -.3Ob77

1.57320 .26220 1.38000 .80040

1.15443 i.37san .99531 1.72392 .75564 2.07611 .59?97 2.23166 .41554 2.35667 .21331 2.43818

0.00000 2.46655 .ooono -2.49580 .21756 -2.40677 .433b4 -2.45925 .60635 -2.41221 .n5313 -2.34396

1.23443 -2.13411’ 1.54286 -1.83871 1.74659 -1.46556 1 .a3577 -1.05988 1 .a2897 -.66566 1.76046 -.31041

1.59195 .26531 1.39636 -.80989

1.16812 1.39211 1.00711 1.74436

.764bn 2.10073

.60506 2.25813

.42047 2.38461

.21500 2.46709 0.00000 2.49580

.ooooo -2.51854

.21955 -2.50944

. 43759 -2.48170

.65224 -2.43419

.R6091 -2.36532 1.24568 -2.15759 1.55692 -1.85547 1.76251 -1.47092 1. P5251 -1.06955 I.#4554 -.67172 1.77bCA -.31324

1.60636 .2b773 1.40909 .a1727

1.17877 1.40480 1.01629 1.76026

.77157 2.11987

.blOSR 2.27871

.42430 2.40635

.21781 2.48959 0.00000 2.51854

.ooooo -2.53P79

.22096 -2.52563 .44041 -2.49771 .65645 -2.44990 . ebb44 -2.380513

1.25372 -2.17150 1.5bb97 -1.86744 1.77389 -1.48846 1.86446 -1.07645 l.A97CG -. h7hfIcI

Cj) Sample Case 10, Continued.

Figure 14.- Continued.

138

Page 146: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

i I7;;9; -:;;iii 1.61673 .26945 1.4lAlEl .a2255

1.19637 1.41384 1.02284 1.77162

.77655 2.13355

.61452 2.29341

.42704 2.42107

.21922 2.5r)5b4 0.00000 2.53479

.ooooo -2.54454

.221Al -2.53534

.44211 -2.51-1732

.65097 -2.4593?

.Pb979 -2.38974 1.25854 -2.17986 1.573nn -1.87462 1.79n7n -1.49419 I.+‘7163 -1.08059 1 .Rb459 -.h78bb 1.79*c)2 -.3164a

1.42295 .2704q 1.42364 .R2571

1.19093 1.4193n l.n267n 1.77443

.7795& 2.1417b

. hl hOa 2.30223

. 4286n 2.63119

.22noh 2.51529 o.ooono 2.54454

. nonon -2.54779

.222ln -2.53858

.44267 -2.51.‘52

.45981 -2.46246

.n7n91 -2.39279 1.26315 -2.18264 1.47500 -1.87702 1.7929R -1.49610 1 .a7402 -1.n8197 1 .R4694 -.67957 1.79711 -.3149R

1.62502 .27004 1.42545 .a2676 ’

1.19245 1.42111 1.02809 1.78070

.79053 2.14449

.61767 2.30517

.42923 2.43429

.22034 2.51849 0.00000 2.54779

LOBED CROSS SECTIOY 4ODY - nooITI0td1~ PANELING INPUT -,I: 14 0 -1

0.0 5.5 11. IQ.5 28. 36.5 45. 53.5 62. 71. Brl. 97.5 115. 145. 154.5 164. 172. 180.

n. .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6. 7. R. 9. 10. 12. 14.

Cj) Sample Case 10, Concluded.

Figure 14.- Continued.

II

139

Page 147: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

1 0 1 1 0 1 0 0 0 0 0 0 4 1 : f 0

NIELSEW ENGINEERING 4 RESEARCH* I*cC. PROGRAM NOZVTX SAMPLE CASE 11 2:] ELLIPTICAL CD055 SECTION BODY REF : AFFDL TR-79-3130 BY GOODiIN MACH NO.= 1.51 ALPHAC = 15 DEGREESe ?HI = 0 DEGREES

.a636 .5625 6. 10. 1.025 15. 0.0 100@000. 0.0 1.5

21 2.

20 1.05 0.0 1.0 0.0

a.0 0.0 0.0 14

n. 1 .b if8 2” ;P2

.I3 1.0 1.2 1.4 2.4 2.6

n. .0935 .176b .2530 .3149 .3714 .*200 .4611 .49;r9 .5218 .5AlA .555i! .5617 .5625 .4740 .4280 .3a5b 3443

:0515 .3044 .2659 .2205 .1919

.1561 .1210 '.OabO .01714 0. 0. .I246 .2354 .3335 .4199 .4952 .SbOO .blCP . 6599 .6957 .7224 .7roo .7409 .75no

r. . .0623 .l I77 .I668 .2099 .2*76 .ZYOO .3074 .33on .3479 .3612 .3700 .3744 .3750

1 .6 2:l ELLIPTICAL CROSS SECTION ilODY - hDYEiDY GEOHET6Y INPUT

n 0 -3 -1 8 12 0. .2 .4 .h .9 1. 1.2 1.4 1.8 2.2 2.6 6.2 0. .1246 .2354 .3335 .*200 .4952 .5600 .4148 .5957 .74n1 .7500 .7500

0. .0423 .1177 .1668 .2100 .247b .28011 .307u .3479 .3700 . 7750 .3750

2:1 ELLIPTICAL CYOSS SECTION d)oD~’ - ADDITlOhAL PANELJNG IW=UT -1: 11 0 -1

0. 20. 53. 7?. 05. 95. 108. 127. 160. 180.

0. .2 .* .h .a 1.0 1.2 1.4 1.7 2.0 7.5

(k) Sample Case 11

Figure 14.- Concluded.

140

Page 148: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

NIF

LSEN

EN

liIN

EFPI

N6

4 H

f.5tA

MC

H.

IrJL.

SA

MPL

E C

AM

1 3:

l FL

LIPT

ICAL

C

WSS

-SEC

TIO

N

WU

Y I+

F. F-

: N

ASA

lH-la

1l7V

H

Y W

AVlh

M

ACH

N

V =

2.5.

AL

PhAC

=

21,

l)F

6Uf.f

!,.

PH

I =

0 L,

I I.U

ff S

HEF

EUFW

E O

UAN

TITI

LS

RF.

F .

ARFA

.

. .

. .

. .

. 17

.<7

WFF

. LF

NG

TH

. .

. .

. .

4.00

Xi

HO

MFN

I C

EMTE

IJI

. 15

.All

RO

DY

LEN

GTH

IL

)...

2H.

no

RAS

E IJ

IAM

ETER

tfl

f. 4.

nn

FLO

Y C

ON

DIT

IOYS

M

ACH

N

UM

SEH

.

. .

. .

. .

ACPH

A C

(D

EG.1

.

. .

PHI

fPE6

.t .

. .

. .

. .

REY

NO

LDS

NO

. (IJ

I..

VOR

TEX

FAC

TOR

.

. .

. W

OR

E .

. .

. .

. .

. .

. .

.

ALPH

A In

EG.1

.

. .

. .

BETA

ff7

FG.l

. .

. .

. .

u/v

. .

. .

. .

. .

. .

. .

. .

RE(

Z-D

IM.).

......

. FI

RE)

C

RO

SSFL

OW

...

7.50

zn

.on

0.00

h.

hb5E

.05

l.rlO

.fl

3

20.0

11

0.00

.9

4Q

2.77

9E40

5 5.

699E

.04

INIT

lsL

CO

ND

ITIO

NS

Xl

XF

OX

WL

2.80

0 5.

600

1.40

0 .0

1000

OPT

ION

S...

NC

lR

NC

F IS

YM

N’C

SEP

NSt

PR

NSH

O

1 H

N

IJFU

S N

l)PH

I IN

P 1

” n

1 n

0 1

1 0

NPQ

NIP

N

PRN

TS

NPR

NTV

N

PLO

IV

NPl

.UTA

N

WIV

L I

1 1

3 2

0

DEF

INIT

ION

S O

F O

UTP

UT

I-JU

ANTI

T1F.

S .

. .

CN

fXI

(UC

N/D

Xl/lQ

*lJl

. PO

SITI

VE

Uf’

CYf

XJ

lDtY

/DX)

/lfJ*

nl

9 W

SIlIV

F.

UlW

T

CN

N

/ lfJ

*Pt‘F

Sf

. f’U

S1Tl

V~

UC

) C

Y V/

IfJ

*AEF

5)

v

Pll5

IllVF

W

IGH

T

CM

M

/llJ*

f?FF

S*R

FFLf

.

I’U’i1

TlVt

N

OSE

U

l’ C

R

A/fl~

~AEF

S*W

FLl

. PU

SIIIV

t N

OSt

LE

FT

CLC

L/

lO’U

FFS*

fJFf

L)

. PU

5lTl

Vt

CO

U~J

l~W

~.l.u

~KkI

~F

(a)

Page

1

NXF

V N

FV

1 IO

RG

CH

FO

X 0.

000

0.00

0

NVP

N

W?

NW

N

VA

HAS

YM

0 0

0 0

0

Figu

re

15.-

Out

put

for

sam

ple

case

1.

Page 149: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

P -h

lxu

= h)

X

o.on

oo

.47n

n .7

noo

2.10

00

3.50

00

4.90

00

5.60

00

fi.3n

oo

7.70

00

R.4

000

9.io

no

10.5

000

11.9

000

12.6

000

13.3

000

i4.7

noo

15.4

000

16.8

000

17.5

000

le.tn

oo

19.0

400

19.7

000

20.3

000

21.0

000

22.4

000

23.1

000

24.5

000

25.9

000

26.6

000

28.0

000

I.2

DU

/llX

n.nn

nn

.2*a

t1n

.11n

n .?

nnn

.I9hf

l .?

RU

ll .5

R7n

.7

34n

.nw

n .1

7sn

1 .n

7m

.15R

O

l.lP7

n .I4

SU

I .?

Rln

.l.

FiO

I

.sf&

n .lw

n 1.

55nn

.I1

90

1.63

lr,

.ll~O

I.t

t3ln

.

In20

1.

91hn

.n

v30

1 .v

770

2.03

4n

.nns

o .0

7bO

2.

136n

.0

6VO

2.

1790

.o

55n

2.25

2n

.n47

0 7.

279n

.0

340

2.29

90

.O?O

O

2.30

90

.nO

40

2.30

40

-.017

0 2.

2tw

n -.0

300

2.26

50

-.041

0 2.

2n20

-.O

4?0

2.16

50

-. n5

50

2.nH

bn

-005

70

2.00

60

-.n55

0 I.9

704

-.n39

0 1.

923n

-.0

340

A H

o.

nnon

9

. 0

IJ II

(1

.I ‘7

5b

. U

5YU

.2

v4n

.OYH

U

.I381

0 .2

Y40

I .7

75n

.42W

i.h

l7n

.5

3vn

1.77

4n

.5Vl

U

1. q

zr!o

.b

*lO

2.

IYAI

) .

1 .3

3 u

2.32

hn

.775

0 2.

4470

.H

l60

2.67

20

.HVl

cJ

2.H

r4n

.95Y

U

2.vb

sn

.9el

Jn

3.05

10

I.017

0 3.

2030

1.

06R

O

3.26

90

I .0

9nn

J.JI

RO

1.

1260

3.

4lR

O

1.14

00

3.44

RO

1.

1490

3.

4640

1.

1550

3.

4560

I.1

520

3.43

20

I.l44

U

3.3v

70

I.132

0 3.

303u

1.

1010

3.

2480

l.U

tl30

3.12

80

1.04

30

3.00

90

1 .n

o30

2.95

50

.995

0 2.

RH

50

. O

h20

r001

rio~a

L O

UTP

IJT

PH~N

TEO

AT

7~

. FO

CLO

YIPI

G

AXIA

L ST

ATIO

NS

XFV

= 4.

70

FLO

W

FIEL

D

vEL~

CIT

IFS

ARE

CAL

CIJ

LATE

~ AT

FI

ELD

PO

INTS

VF

v/R

LF

V/h’

.25n

.7

50

.250

1

.onn

.5

no

.7$c

l .s

nn

I.000

.7

5u

.5fJ

o .7

5n

I.nnn

i.n

no

.snn

I

.nnO

l.O

nn

I.250

.5

no

1.25

0 I.n

nr,

(b)

Page

2

Figu

re

15.-

Con

tinue

d.

Page 150: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

3:

1 EL

LlPl

IC

AL

CQ

USS

-SEC

1 Io

N

IlUllV

-

Yl-J

Vr4l

JV

1.t

Ubl

t’T)tY

ItW

IlT

PRIN

T O

PlIO

NS

AND

PA

NFL

5Y

MM

ETPV

IP

RTI

11

IXlS

YW

I TM

SVM

1

0 0

GEO

MET

RY

OPI

ION

IN

FOR

Y6IIO

Y J2

Jf

. N

F U

T N

UAU

X N

F (IN

X

-3

-1

1 In

7n

VEH

ICLE

G

EOM

ETR

Y O

FFIN

TIO

N

HFU

XF

US

- FU

SFLA

GF

X-ST

ATIO

NS

I 0.

0000

0 .4

2oon

.7

nn00

2.

1000

0 3.

5000

0 4.

vnnn

o 5.

bono

o 6.

3000

0 7.

7000

0 8.

4000

0 I

9.~0

000

10.5

0000

Il.

snnO

n l~

.bon

oo

13.3

0000

14

.70o

on

15.4

nnoo

ib

.800

no

17.5

0000

In

.200

00

1’

19.0

4000

19

.7on

on

2n.3

nn00

21

.oon

on

22.4

0000

23

.100

00

24.5

0000

25

.9uo

oo

2b.6

0000

tn

.000

00

NFU

FU

SBY

- EL

LIPT

IC

FuSE

LatE

SE

MI-M

AJO

R

AXFS

t

2e44

700

0.00

000

2.67

200

.17a

on

2.07

4no

.294

00

2.96

5on

.R81

00

3.05

lOU

1.

2750

0 3.

2030

0 1.

6170

0 3.

2690

0 1.

7740

0 3.

3700

0 1.

9220

0 3.

41H

OO

2.

19R

OO

3.

4480

0 2.

3260

0

I 3.

4b40

0 3.

4560

0 3.

4370

0 3.

3Y7D

O

3.30

300

3.C

4enn

3.

1290

0 3.

0090

0 2.

9550

0 2.

8850

0

NFU

FU

SAZ

- EL

LIPT

IC

FUSE

LAG

E SE

MI-M

INO

R

AXES

1

0.00

000

.059

00

.09A

OO

.2

94on

.4

2500

.5

3900

.5

9100

.6

4100

.7

3300

.7

7soo

t 1.

1550

0 .R

1100

I.1

5200

.A

9100

I.i

44no

.9

5RO

O

1.13

200

.9fw

on

1.10

100

1.01

700

I 1.06

R00

.0

83on

1.

09oo

n I

.043

00

1.l2

600

1 .n

o300

1.

1400

0 .9

8500

1.

1490

0 .9

6200

(c)

Page

3

Figu

re

15.-

Con

tinue

d.

l *

GEU

H

l e

l *

CO

NFI

G

l *

Page 151: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

3:l

ELLI

PIIC

AL

CR

OST

-SFC

llUN

W

Jl)Y

-

AItU

I 1

IIJN

AL

I’AW

tC

INti

INI’U

I

OU

TPU

7 O

PIIO

Y.

IPR

INT

I -I

ADD

ITIO

NAL

PA

NFL

ING

IN

FUH

MAl

lUN

K2

KF

US

KRM

X R

FUW

x I

1 n

A XF

USK

= 0.

.4

2900

.7

ooon

2.

lnnn

3.

5000

4.

9000

5.

6000

6.

3000

(d)

Page

4

Figu

re

IS.-

Con

tinue

d.

Page 152: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

-

1 AN

D

3 IN

nlC

AlE

Hon

Y PA

WL

LEA1

JIN

~+El

JGE

I’llIN

ISr

2 AN

IJ

4 IN

IJIC

ATE

WAI

LIN

G-tD

GE

POlN

lS

X V

2 -1

a

2 a

I Y

3 z 3

X 4

Y 4

2 4

PIN

E1

1 2 3 4 5 h 7 H 9 ;: I.?

;: ;z

I7

;x

20

21

22

23

24

25

76

27

2A

29

30

31

32

33

34

35

3fl

37

3A

30

40

41

42

43

44

45

46

b7

4A

49

50

51

57

s7

n.on

noo

o.un

ooo

0.00

000

n.nn

non

o.nQ

non

n.00

000

n.on

Qun

o.

oQno

o lJ

.OO

QO

O

Q.o

unon

0.

0000

0 o.

onno

o n.

oooo

n u.

nonn

o U

.OQ

UO

O

0.00

000

0.00

000

0.00

000

n.oo

nuo

n.un

ouo

0.00

000

~J.0

0000

0.

0000

0 0.

0000

0 u.

nonu

n Q

.onn

oo

u.00

000

n.nn

noo

0.00

000

0.00

000

n.nu

nun

u.uo

oon

u.00

000

n.nn

oou

0.00

000

0.00

000

o.on

noo

u.00

000

0.00

000

o.un

oon

n.nn

unn

n.uo

nnQ

O

.uoQ

nn

Q.u

unnn

u.

nnna

n n.

QuO

on

n.oo

nun

n.uo

nnn

n.oo

non

n.nu

unn

o.oo

nnn

n.oo

ono

n.uu

noo

n.nu

ono

o.oo

nnn

1J.0

0000

n.

ouno

o -.0

5900

-.0

5AS7

-.0

5mo

-.051

02

-.027

47

.n27

47

.051

02

.05h

RO

.0

5a57

.0

5900

.n

5n57

.U

5hR

O

.051

02

.027

47

-.027

47

-.n51

02

-.u5m

n -

. U5R

57

-.u9f

lnn

-.OV7

?9

-.n94

3R

-.uFJ

4n7

-.nos

n?

. fl4

5P2

.UR

4R7

.U94

3A

. nv7

29

. nv

nQn

.I197

20

.UV4

3R

.UH

4A7

.04S

N?

-.n4w

7 -.O

A4R

7 -.f

lYbJ

A

-.u5v

nn

-.05u

57

-.05m

n -.0

5102

-.Q

/747

. 0

714

r .u

5102

.0

5hun

.o

st)5

7 .0

5vou

.n

w57

.

U5b

HO

.u

5102

.0

274

r -.U

?747

-.0

5102

-.U

5bPO

-.n

w57

-.0

9t10

0 -.0

9729

1.

0943

8 -.U

R4R

7 -.0

4w2

.045

n2

.QR

4H7

.094

38

.097

29

.098

00

.097

29

.094

38

.O

R4R

7 .U

45R

2 -.0

45A2

-.O

RQ

H7

-.UY4

3A

-.n97

2v

-.294

lJn

-.29l

Pb

-.7R

311

- .2

5454

-.I

37

3s

.I373

5 .2

5454

.7

R3l

l .2

9lH

h .2

94un

.;I

OlH

h .lJ

H.3

1 I

.c54

54

. I3

715

-.I

3715

-.?

5454

-.C

JWJI

l

o.on

oon

n.nn

oon

o.on

nnn

n.oo

onn

0.00

000

o.oo

onn

o.oo

onn

o.no

oon

0 .o

oonn

o.

noO

on

o.oo

onn

0.00

000

o.no

onn

o.oo

nnn

o.oO

non

o.oo

oon

o.nn

onu

o.oo

onn

.47o

cJrl

.42o

on

.420

00

.420

0n

.42n

on

.42o

nn

.420

00

.420

00

.420

00

.42o

on

.42O

OO

.4

?oon

.4

2Onn

.4

200n

.4

2non

.4

2nnn

O.o

nnnO

n

.noo

no

n.nn

nno

o.nn

ono

n.oo

ono

n.nn

unu

n.un

ono

o.nn

uno

o.on

uno

o.nn

ono

n.on

nnO

n.

noon

o n.

uoon

O

.42O

QO

.4

2non

.4

?OQ

U

.42n

no

. 4z

nIJo

.4

ano

.4?0

00

.470

00

.42n

oo

.420

00

.47u

un

.470

00

.4?o

no

.470

00

.4?u

nn

.42n

on

.42O

OQ

.onn

on

.uiJ

1:42

.4

2000

.4

2000

.4

2000

.4

2000

.4

2000

.4

2000

.4

2000

.4

2000

.4

2000

.4

2000

.4

2000

.4

?000

.4

2000

.4

2000

.4

2000

.4

2000

.4

2000

.021

32

.047

66

.088

37

.I557

7 .I5

577

.om

337

.047

bb

.021

32

-.ooo

oo

-.021

32

-.047

bb

-.088

37

-.I55

77

-. IS

577

-.080

37

-.04?

bb

-.021

32

-.ooo

oo

.035

41

.079

19

.147

00

.259

&J

.259

013

.I470

0 .0

7919

.0

3541

-.o

oooo

-.0

3541

-.0

7919

-.I

4700

-.2

5908

-.2

5988

-.I

4700

-.0

7919

-.0

3541

-.0

0000

.1

0623

.2

3756

.4

4007

.7

7195

.7

7895

.4

4007

.2

3756

.I0

623

-.ooo

oo

-.106

23

-.237

56

-.44O

R7

-.770

95

-.770

v5

-.440

07

-.237

Sb

-.I06

23

-.058

57

-.056

80

-.051

02

-.n27

47

.n27

47

.051

02

.056

80

.058

57

.059

00

.058

57

.056

80

0051

02

.027

47

-.027

47

-.051

02

-.056

80

-.050

57

-.059

00

-.097

29

-.094

3.3

-.084

17

-.045

82

~045

02

.004

07

.094

38

.097

29

.098

00

.097

29

.094

3e

.084

R7

.045

82

-.045

02

-.084

07

-.094

30

-.097

29

-.09R

OO

-.2

9lR

b -.2

8311

-.2

5454

-.1

3735

.1

3735

.2

5454

.2

8311

.2

9186

.7

9400

.2

9186

.2

03ll

.254

54

.I373

5 -.I

3735

-.7

5454

-0

2831

1 -.2

9106

.Q47

hh

.OR

H37

.I5

577

.155

17

.OAH

37

. 04

lhh

.U21

37

-.ono

nQ

-.021

3?

-.047

hh

-.UH

H37

-.I

5577

-.1

5577

-.Q

AH37

-.0

4lbh

-.0

2137

.O

OO

OQ

.u

3541

.0

7919

.1

47Q

O

.259

9A

.25q

RR

.l4

700

.OT9

19

.035

4l

-.UO

OO

Q

-.035

41

-.U79

19

-. l4

7nn

-.259

RA

-.259

0R

-. 14

71)Q

-.0

7Vl9

-.u

3541

.o

nfrQ

O

. IO

h23

.?.I

I5h

.44Q

R7

.77H

9S

.17n

v5

.u40

R7

.231

5h

. lllb

P3

-.QlJ

QQ

U

-.lnh

8.3

-.237

Llh

-.441

lHI

-.77H

V\

n.oo

nno

O.Q

nnnO

O

.oon

oo

n.00

000

0.00

000

u.nn

QQ

o 0.

0000

0 o.

ooQ

on

0.00

000

0.00

000

0.00

000

-.05R

57

-.056

80

-.051

02

-.027

47

.027

47

.051

02

.056

90

.05R

57

.059

00

.058

57

.05b

AO

.051

02

.027

47

-.027

47

-.051

02

-.05e

eo

-.051

57

-.059

00

-.097

29

-.094

38

-.@A4

87

-.045

A2

.I 58

2 .o

e4fl7

.

n943

8 .0

9729

. o

vflo

o .Q

9729

.0

943R

.Q

H4R

7 .0

4502

-.0

4582

-.n

we7

-.O

V43R

-.n

972v

0.00

000

o.un

noo

n.on

nno

.oon

nO

.021

32

.n47

fse

.OR

R37

.I5

577

.I557

7 .O

RR

37

.U47

flh

.021

32

-.000

n0

-.021

32

-.047

hb

-.OAR

37

-. 15

5;7

-.I55

77

-.OAA

II -.U

47h4

-.0

7132

o.on

non

n.no

oou

n.un

non

.420

00

.420

00

.420

00

.42n

oo

.420

00

.420

00

.420

00

.42n

oo

.42n

oo

.42O

UO

.4

2nno

.4

29nn

.4

2OO

U

.42n

on

.420

00

.42n

nn

.42n

uo

.42n

on

u.ou

ooo

0.0Q

000

0.00

000

.021

32

.U47

66

.42n

on

.7no

no

.700

00

.700

00

.700

00

.700

00

.700

00

.700

00

.700

00

.700

00

.700

00

.7no

on

.7nn

uo

.700

00

.7nQ

no

.700

00

.700

00

.700

00

.7fln

nn

2.1n

nuo

2.10

000

2.1Q

OQ

O

2.lQ

OU

O

z.

luoo

n 2.

11J0

00

c!.lQ

OO

O

7.iu

QO

n 7.

lnQ

Qn

z.ln

noQ

ti.

lQlIQ

Q

7.

IQQ

QO

i.l

UQ

QO

2.

in

Qn0

c.

lnon

n 2.

iunu

n 2.

ln

non

.420

00

.700

00

.700

00

.700

00

.700

00

.700

00

.700

00

.700

00

.700

00

.700

00

.700

00

.700

00

.700

00

.100

00

.7no

oo

.700

00

.7ou

oo

.7O

OQ

O

.700

00

2.10

000

2.10

000

2.10

000

2.10

000

2.10

000

2.lO

OO

O

2.10

000

2.10

000

2.IU

OO

O

2.10

000

2.10

000

2.10

003

2.10

000

2.10

000

2.10

000

2.ln

ooo

~.lQ

OO

O

.OR

R37

.I5

577

.I557

7 .O

AR37

.O

O

7hb

.021

32

-.noo

ou

-.021

32

-.047

66

-.OR

837

-.I55

77

-.I55

71

-.UR

837

-.047

66

-.tI2

132

- .Q

OU

OO

.

0354

1

.n79

19

.I470

0 .2

!598

H

.259

RH

.1

4700

.u

7919

.0

3541

-.u

noQ

n -.I

1354

1 -.O

IYlV

-.I

4100

-.2

59AA

-.2

5uflt

J -.

1470

0 -.0

7919

-.Q

.?54

l

.*;no

n .4

2Qnn

. 7

onnO

.7

onnn

.7

nnor

l .tn

onn

.7nn

nn

.7nn

oQ

.7O

OQ

Q

.7Q

OnQ

.7

noQ

n .7

0nnn

.7

Qnn

n .7

oonn

.7

QlJ

QQ

.7

nnnn

.

7non

n .7

nQnn

.7

noon

.nno

nn

.Q35

4 1

.U79

19

. l4

7nn

.25V

qfl

.?59

Rfl

.I470

0 .

n79i

9 .

0354

1 -.o

nQnn

-.n

3541

-.0

7919

-.1

4lnO

-.7

5QU

9 -.2

49R

H

-.icr

nn

-.n7v

l9

.7O

QQ

Q

.rnno

o .7

nnoQ

.7

onuo

.7

0QO

U

.7nn

nn

. 7Q

nnu

.7Q

Qon

.

lOnO

n .

ruou

n .7

nnnn

.

rnnn

n .

IUQ

OQ

.

7onn

o .

rnnn

Q

.70n

nn

. In

n00

-.IlH

V\

-.440

117

-.217

%

(e)

Page

5

'iguf

e 15

.- C

ontin

lu

ed.

F

Page 153: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Sk

55

Sb

57

59

59

hn

61

62

63

hb

h5

bb

h7

hA

h9

70

71

72

73

74

75

76

77

7R

79

RO

Al

nt

A.

1 Ilk

85

R

6 A?

R

A A9

90

91

92

.7on

nn

2.10

non

2.lo

onn

Z.lfl

OO

n z.

lnnn

n 2.

lnnn

n 2.

100n

n 2.

1non

n 2.

lo

non

2.ln

oon

2.

lnon

n 2.

loon

n 2.

1000

0 2.

In

oon

2.10

00n

2.io

non

2.in

oon

2.1o

onn

2.10

0nO

3.

5000

0 3.

5oon

n 3.

5000

0 3.

5ooo

n 3.

5ono

n 3.

5000

0 3.

5000

0 3.

!iooo

n 3.

5000

0 3.

5000

0 3.

5000

4 3.

50no

n 3.

5000

0 3.

5000

n 3.

5ono

n 3.

5000

n 3.

5ooo

n 3.

5oon

n 4.

9000

0 4.

9ooo

n 4.

9ooo

n 4.

9000

0 4.

9onn

n 4.

9oon

n 4.

9000

1)

4.90

000

4.90

000

4.9n

onn

4.9o

oon

4.9n

oon

4.90

000

4.9o

onn

4.90

0011

4.

9000

0 4.

9non

n 4.

9nnn

n 5.

honO

n 5.

6000

0 5.

hOno

n 5.

hnnn

n 5.

honn

n

-.035

4l

.ctn

noo

.inh2

3 .?

3756

.4

4nr\7

.7

7RQ

5 .7

7HV5

.b

bO~l

.7

37w

i .ln

h73

-.nnn

nn

-. lllb

T3

-.237

sb

-.bbO

R7

-.77A

95

-.77A

95

-.4bn

n7

-.237

5b

-.I06

73

.noo

nO

-.ItV

72’l

-.2vr

on

-.ZVI

Yh

-.CH

711

-.~54

54

-.137

JS

.I373

5 .%

5bSb

2.

innn

o .1

.500

00

3.50

000

3.5o

nnn

3.50

000

3.5n

nno

3.5n

ouO

3.

5noo

o 3.

5000

0 3.

5000

0 3.

5000

0 3.

5non

n 3.

5000

0 3.

5000

0 3.

snoo

o 3.

5ono

o 3.

5000

0 3.

5fJo

oo

3.5n

noo

4.90

000

4.90

000

4.90

000

4.90

000

4.9n

nnO

4.

9noo

o 4.

9000

0

-. IO

h -.Z

VIR

h .u

ouon

-.b

?wo

.153

sfl

-.471

v1

.343

*4

-.409

29

.h37

5n

-. W

HO

b l.1

27O

l -.l

VHTJ

1.

1270

3 .1

w73

.h

375n

.3

hHO

h .3

4344

.4

ov29

.1

535h

.4

?1Vl

-.O

nnnO

.4

25no

-.1

535h

.4

2lVl

-.3

4344

.4

nv29

-.6

37SO

.3

hm6

-1.1

2707

.I9

873

-1.1

2703

-.1

9R73

-.b

3750

-.3

bHU

b -.3

4344

-.4

nv2v

-.I

5356

-.4

7191

.o

ooon

-.5

3YO

U

.194

75

-.535

nA

.435

5h

-.519

08

.t)ot

35n

-.bhb

79

1.42

934

-.252

rJ3

.7on

nn

7.

Ineo

n 7.

1000

0 2.

1nno

o 2.

100n

n ~.

lonn

n 2.

1000

0 2.

1000

0 2.

1000

0 2.

Io

n00

z.iu

noo

7.1

ooon

2.

1000

0 2.

lo

nuo

2.

looo

n 2.

1000

0 2.

lnoo

n 7.

1000

0 2.

innu

n 3.

5000

0 3.

5000

0 3.

snoo

o 3.

5000

0 3.

5000

0 3.

5000

0 3.

5uoo

o 3.

5000

0 3.

5000

0 3.

5000

0 3.

5000

0 3.

5000

0 3.

5ono

o 3.

5ono

o 3.

5000

0 3.

50no

o 3.

5000

0 3.

sooo

o 4.

9onu

o 4.

90(1

00

4.90

000

4.90

000

4.90

000

4.9n

noo

4.90

000

4.90

000

4.90

000

b.vo

nOn

4.90

000

4.90

000

4.vn

nno

4.90

000

4.90

000

4.90

000

4.vo

nun

*.von

oO

s.hn

noo

5.h0

000

5.6n

noo

s.ho

non

s.hn

r)nn

-.nO

Ono

-.0

9Ron

-.2

9IAh

-.?

A.31

I

-.25b

Sb

-.I37

35

. IJ

TJS

.25*

54

.2R

311

.291

06

.294

00

.291

Rb

.2R

311

.254

54

.I373

5 -.1

3735

-.2

5454

-.Z

R31

1 -.2

91R

6 -.2

9400

-.4

2191

-.4

0929

-.

3bR

Ob

-.19R

73

.19R

73

.3hR

Ob

.409

29

.421

91

.425

00

.b21

91

.409

29

.3hR

Ob

.19R

73

-.I98

73

-.36R

Ob

-.bO

929

-.b21

9l

-.bZS

OO

-.5

3508

-.5

190A

-.b

hb79

-.2

5203

.2

5203

.4

hb79

.5

190R

.5

3508

.?

I390

0 .5

350H

.5

190R

.4

6b79

.2

5203

-.?

5203

-.4

hb79

-.5

i9ne

-.5

35O

R

-.539

on

-.5H

h70

-.!I4

918

-.51l

R9

-.21h

b'l

.276

4?.

2.10

000

-.ooo

oo

3.50

000

.153

56

-.29b

OO

-.b

2191

-.4

0929

-.

3680

6 -.

l9R

73

.I987

3 .3

6806

.4

0929

.4

2191

.5

2500

.4

2191

.4

0929

.3

bBO

6 .1

9873

-.1

9873

-.3

6606

-.5

0929

-.4

2191

-.b

2500

-.5

3508

-.5

1908

-.b

bb79

-0

2520

3 .2

5203

.4

6679

05

1908

.5

3508

.5

3900

.5

3508

.5

19oe

.b

bb79

.2

5203

.-.

2520

3 -.b

b679

-.5

1908

-.5

3508

-.5

3900

‘-.

5867

0 -.5

6918

-.5

11R

9 -.2

7b41

.2

7bb7

.5

11(1

9 .5

6918

.5

8670

.5

9100

.5

8670

.5

6918

.5

1169

.2

7647

-.2

7647

-.5

1189

-.S

b918

-.5

8670

-.5

9100

-.6

3633

-.6

1728

-.5

5505

-.2

99bO

.2

9960

.inh2

3 .2

37Sh

3.

5000

0 .3

4344

3.

5000

0 .b

3750

3.

5noo

o 1.

1270

3 3.

5Onn

o I.1

2703

3.

5ouo

o .6

3750

3.

5000

0 .3

b3bb

3.

5000

0 .I5

356

3.50

000

-.ooo

oo

3.50

000

-. 15

356

3.50

000

-.343

44

3.50

000

-.b37

50

3.5t

OO

U

-1.1

2703

3.

5000

0 -1

.127

03

3.50

000

-.637

50

3.50

000

A.34

311

3.50

000

-. 15

356

3.50

000

-.ooo

oo

4.90

000

.I947

5 4.

9000

0 .4

3556

4.

9000

0 .8

0850

4.

9000

0 l.b

2934

4.

9000

0 I

.429

34

4.90

000

.Elo

El50

4.

9000

0 .4

3556

. 44

0A7

.77A

95

. I7

HV5

44

llH7

:23X

6 .IO

b23

-.Onn

oo

-.106

23

-.237

56

-.440

R7

-. 77

095

-.770

95

-.440

R7

-.%37

56

-.lIl6

23

-.ono

on

. I5

356

.343

44

.6.3

750

I.127

03

1.12

703

.b37

50

.343

bb

.153

56

-.ono

oo

-.I53

56

-.343

44

-.637

50

-1.1

2703

-1

.127

03

-.637

50

-.343

44

-. 15

356

-.ooo

oo

.1v4

75

.435

56

.808

5n

1.42

934

1.42

934

.tlO

RSO

.4

3556

.I9

475

-.ooo

oo

-.I94

75

-.435

5b

-.HO

B50

-I .4

2V34

-I

.429

34

-.Hnw

io

-.435

5h

-.194

75

-.Ono

OO

.2

1354

.4

71bU

.H

R6h

%

I.56l

VJ

l.5h1

93

.283

1 I

.>Yl

Ab

.2v4

no

.?Yl

Hh

.2H

311

.254

54

.I373

5 -.1

3735

-.r

?545

4 -.2

871

I -.?

9lH

h -.4

2500

-.4

2191

-.4

0929

-.3

hAO

h -.1

9A73

.1

9H73

.3

bRllh

.4

0929

.4

2191

.4

25on

.b

Z;‘il

.404

29

.3bP

Oh

.I’38

73

-.19n

73

-.3bR

nh

-.409

29

-.421

91

-.539

un

-.535

09

-.519

OP

-.466

79

-.252

03

.252

03

. 15

356

.343

44

.b37

50

I.127

03

1.12

703

.637

50

.343

44

. IS

356

-.Ooo

nO

-.I53

56

-.343

44

-.637

50

-1.1

2703

-1

.127

n3

-.637

50

-.343

44

-.I53

56

.oO

onO

.1

9475

.4

3596

.R

OR

SO

1.42

914

1.42

9‘14

.9

oe50

.4

3556

.I9

475

-.nno

no

-.194

75

-.43S

Sb

-.AO

RSO

-1

.429

34

-1.4

2934

-.f

low

n -.4

355h

-.I

9475

.o

nono

.2

1354

.4

77hn

.R

Ahh7

I

.5h7

Q3

I .4

2q34

.fi

oww

.4

3556

.1

9475

.252

03

.4hb

79

4.90

000

4.9n

ooo

4.90

000

.519

0R

.53S

OA

.539

00

4.90

000

.191

75

4.90

000

-.ooo

oo

-.ono

oO

-.I94

75

-.435

5tf

-.80A

SO

.I.42

934

.I .4

2934

-.t

30H

50

-.435

5h

-.I94

75

.ooo

oo

4.90

000

-.19b

75

4.90

000

-.435

56

4.90

000

-.808

50

4.90

000

-1.4

2934

4.

9000

0 -1

.429

34

4.90

000

-.eol

350

4.90

000

-.435

56

4.90

000

-.I91

75

4.90

000

-.ooo

oo

5.60

000

.213

5b

5.60

000

.477

60

5.60

000

.886

62

5.60

000

I .5

6793

5.

6000

0 1.

5679

3 5.

6000

0 .8

8bb2

5.

6000

0 .4

77bO

5.

bO

OO

0 .2

1354

5.

6000

0 -.o

oooo

5.

6000

0 -.2

1354

5.

6000

0 -.4

7760

5.

6000

0 -.a

8662

5.

6000

0 -1

.567

93

5.60

000

-1.5

b793

5.

bOO

OO

-.8

8662

5.

bOO

OO

-.4

7760

5.

6000

0 -.2

1354

5.

6000

0 -.o

oooo

6.

3ooo

n .2

3160

b.

3000

0 .5

179b

6.

3000

0 .9

6137

6.

3000

0 I.6

9914

6.

3000

0 1.

6991

4

4.90

000

4.90

000

4.90

000

4.90

000

4.90

000

4.90

000

4.90

000

4.9n

ooo

5.60

000

5.60

000

5.60

000

5.hO

OO

O

5.hO

OO

O

5.60

000

s.60

000

5.60

000

5.hO

OU

O

5.ho

ono

5.60

000

5.hO

OO

O

5.bn

ono

5.hO

OflO

5.

hnoo

o 5.

6uon

o 5.

6000

0 s.

huon

u 6.

3nno

n

.53S

OR

.5

lYU

A

. bhh

79

.519

0A

.535

0R

.539

0n

.535

nn

.519

0A

. 4b

h79

.252

0-I

-.2’~

203

-.4hh

79

-.51u

on

-.535

n9

-.S9~

00

-.5R

h7n

-.Llh

QlA

-.5

1 lR

Q

-.%?h

47

.bbb

lP

.252

03

-.252

03

-.46b

79

-.SlY

1lH

-.5

35n8

-.5

9100

-.5

0hro

-.5

691R

-.5

11R

9 -.2

7647

.2

7647

.5

1 IH

V .5

hY

1R

.?I8

670

.5Yl

no

.Wh7

0 .%

9lti

.511

49

.27h

41

-.776

47

-.SllR

9 -.5

4VlH

-.5

9h70

-.b

4lno

-.h

3b33

-.h

l I?

A -.5

5505

-.

ewr,n

(f)

Pa

,ge

6

.213

54

.477

60

93

94

.AAb

b?

I .5

6193

l.S

h7Vl

.H

R4h

? .4

77hn

.2

1354

95

96

97

98

99

100

101

102

103

lob

In5

inh

In7

IOA

i n9

11

0 III

II2

II7

-.ooo

nn

-.213

54

-.417

h0

-.HAb

h?

-1.5

6793

-1

.5b7

Y3

-. Af

lhh?

-.o

lIhn

-.Zl3

54

.ono

on

.23l

hn

.Sl7

9h

h.3u

nou

b.30

0UO

h.

3n

oflo

6.

3n

ooo

Figu

re

15.-

Con

tinue

d.

Page 154: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

114

II5

Ilh

117

IIR

119

I20

I21

122

123

126

I?5

176

5.ho

oon

1.5h

793

5.bo

onn

.RR

hflZ

5.

honn

n .4

7?hf

, 5.

bonn

n .7

1354

5.

5000

0 -.n

nono

5.

hnon

n -.2

13%

4 5.

honn

n -.4

77hn

5.

bnoo

n -.A

Rhh

P s.

boon

n -1

.5hl

Q3

5.60

00(1

-1

.5hT

q3

5.bo

nno

-.AAb

hZ

5.6n

onn

-.477

hn

5.6n

nnn

-.213

54

.2?h

4?

b.3n

OO

o I.6

9914

.5

11n9

b.

3n

oon

.9hl

37

.5hV

IP

h.

jono

.!I

,1

I')b

.SU

h?O

h.

3000

0 .Z

?lhl

l .w

lnn

6.30

000

-.09o

lJll

.LIR

hlO

h.

39O

nO

-.z?l

hn

.Sh,

UIR

h.

3000

0 -.5

119h

.S

llA9

6.30

000

-.Yh1

37

.2?h

b7

h.3n

non

- .I

.b99

lo

-.2lh

b7

6.3n

ooo

- ,I

.h99

lb

-.51l

R9

b.

3110

00

-.961

77

-.5llV

r, -.2

3lhn

-.S

bVlA

-.5

Hh7

n h.

3n

nno

h.

3000

0

.?VV

hO

.s55

ns

.hl

l<A

.6.3

6 13

.

b4

1 I!0

.h

lhI3

.b

l 72

8 .s

s505

.7

9VhO

-.%

9UhU

-.5

5595

5.hn

non

5.ho

oon

5.bu

noo

5.ho

onn

5.hu

noo

s.hn

non

5.hO

noo

s.ho

90n

- 5.

hnno

o -

5.ho

noo

5.h0

000

5.

hono

n 5.

hnnn

o

.HH

hbZ

. 47

761)

.2

1354

-.o

nnoo

-.2

1.15

4 -.4

77fln

-.L

(Hhh

Z .1

.5h7

93

.I.56

793

-.RAb

62

-.477

hn

-.?I3

54

-.ooo

oo

(9)

Page

7

Figu

re

15.-

Con

tinue

d.

.511

A9

6.30

000

.%I3

7 .5

5505

.5

69IH

b.

Jnoo

o .5

1796

.6

1728

.S

RhT

O

b.30

000

.23l

bO

.636

33

.591

0n

b.3n

ooo

-.ooo

oo

.bbl

OO

.5

Hh7

n 6.

3000

0 -.2

3160

.6

3633

.S

hYIA

b.

30

000

-.517

96

.bl7

28

.511

R9

6.30

000

-.961

37

l 555

05

.276

47

6.30

000

-1.6

9914

.2

9960

-.2

7647

6.

3000

0 -1

.b99

14

-.299

bO

-.5l

IA9

6.30

000

-.9b1

37

-.555

05

-.Sb9

1R

6.30

000

-.517

9b

-.bl7

28

-.St3

h70

6.30

000

-.231

60

-.636

33

-.591

00

6.30

000

-.ooo

oo

-.bbl

OO

Page 155: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

I-J

h 00

I 7 1 4 5 h 7 A 9 t: IF

I3

:: lh I7

IR

I9

70

21

72

23

if4

25

76

27

7R

29

30

31

32

33

34

35

36

37

3A

39

40

41

42

43

Lb

45

46

47

LR

49

SO

51

57

5-l

54

59

x cp

.7fln

no

.wnn

n .2

Rnn

o .7

Rnn

o .7

flonn

.7

Rnn

n .7

nnnn

.7

fwon

.2

Rnn

o .?

RnO

O

.mnn

o .Z

RO

On

.2R

oon

.?R

OO

O

.2R

OO

O

.ZAO

OO

.2

8oon

.7

RO

OO

.5

7159

.5

7lhl

.5

7164

.5

7175

.5

7169

.5

7175

.5

7164

.5

71(5

1 .5

7159

.5

7159

.5

7161

.5

?1hb

.5

7175

.‘!

I716

9 .5

7175

.5

7164

.S

7161

.5

7159

l.5

1bb7

I

.5lh

hh

1.51

663

I.516

54

I .5

1659

I

.516

54

I .5

lhh3

I

.Slb

bb

1.5l

hh7

1.5l

hh7

I.5lh

bh

l.Slh

63

1.5l

hSb

1.51

h59

I.516

54

I .S

lbh3

1.

5lhh

h l.S

lhh7

Z.

Rb2

5I

.007

l I

. 00

13~

. 04

534

.n77

99

.nn7

l l

--on7

11

-.n27

99

-.!-I4

534

-.OR

l3P

-.lfl!

Rb

-.nn1

3R

-. 04

534

-. 02

799

-.onr

li .

Ill44

7 .O

bhl3

4 .0

9i!b

3 .1

6617

.2

1?17

.1

m17

. 0

9743

.O

bh04

.n

lbbr

-.O

lbbt

-.O

bhBb

-.0

9243

-.i

hh17

-.2

1717

-.l

hhl?

-.0

9743

-.O

bhR

b -.O

lbb?

.0

3n3f

l .1

2blb

.2

4499

.

bbn5

1 .5

67bb

.b

bOSl

.7

4499

.I2

414

.03R

3h

-.ll3

U3h

-.I

2414

-.2

ssq9

-.4

4951

-.S

h?hb

-.4

4qs1

-.7

44-w

-.I

7414

-.O

3R3h

.

nlrS

h 7

-.113

’)lV

-. I,

7R4’

, -.n

w

4 -.O

c’hl

h .n

nnoo

. 03

9lV

.039

19

.93H

b5

.035

’,0

.n2h

lb

. uo

o90

-.nzb

lt,

-.n35

94

-.03R

b5

-.r).3

919

-.n79

R2

-.07.

934

-.073

?5

-.953

39

.onn

oti

.n53

39

.073

25

.07H

34

.n79

R2

.079

R7

.07R

34

.073

75

.n53

3v

.ono

no

-.053

3Y

-.073

25

-.07R

34

-.079

82

-.2I

1%

-.207

63

-.1v4

15

-.I41

52

.nnn

nn

.I415

7 .1

9415

.2

n7h3

.2

11%

.2

115h

.2

olhJ

.I9

415

.I415

2 .o

nnnu

-.1

4152

-.I

9415

-.L

lllhj

-.?I

15h

-. Ih

i’

(h)

Page

8

Figu

re

15.-

Con

tinue

d.

Page 156: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

-

Sh

57

5R

59

ho

61

h2

h3

hb

65

hb

67

fin

h9

70

71

72

73

74

75

lb

77

70

79

A0

RI R2 A3

(rb

AS

R6 R7 A8

R9

QO

91

92

93

94

Q

5 96

97

9R

1:;

101

102

In3

104

105

lob

In7

IOR

la

9 I1

0 Ill

11

2 II3

llb

11

5

2.R

b253

2.

R47

S7

2.R

bZh7

2.

R42

hl

2.R

b?h7

2.

Rb2

S7

2.R

4253

Z.

AbZS

I 2.

Rb2

51

2.R

b253

2.

Rb2

57

2.Ab

267

Z.R

bZhl

Z.

BbZh

l 2.

Pb25

7 Z.

Ab25

3 Z.

Rb2

51

4.22

759

4.22

759

4.22

159

4.27

759

4.22

759

4.22

759

4.72

759

4.22

759

4.22

759

4.22

759

4.72

159

4.27

759

4.22

159

4.22

759

4.22

759

4.27

759

4.22

759

4.22

759

5.25

537

5.25

537

5.25

538

5.25

541

5.25

539

5.25

541

5.25

538

5.25

537

5.25

537

5.25

537

5.25

537

5.25

53R

5.

2554

1 5.

2553

9 5.

2554

1 5.

2553

A 5.

2553

7 5.

2553

7 5.

9547

7 5.

9547

3 5.

9547

1 5.

9546

5 5.

95bh

9 5.

9544

5

.217

51

. 41

1344

.

IS43

3 .Ih

15

R

. 75

43')

.b,Q

b4

.217

52

. nb

Sb7

-.nh’

ibl

-.ZltS

? -.4

1944

-.7

9439

-.9

b75t

3 -.1

5439

-.4

1944

-.212

52

-.nbG

bl

.OP7

bR

.ZR

314

.55R

Rb

l.no5

2h

l.2R

blb

l.ooq

26

.55R

.34

.i'H

llb

.OR

748

-.OR

7br)

-.2R

71b

- .5

5904

-1

.005

26

-I.ZR

blb

-1.0

0526

-.5

5n84

-.2

A714

-.n

AlbA

.in

715

.33n

bO

.h57

53

I.173

94

l.b99

70

I.173

94

. h5

753

.33n

60

.lf12

15

-.in?

15

-.330

hn

-.h52

53

-1.1

7)94

-1

.499

70

-1.1

7394

-.h

S753

-.3

3nhn

-.i

nz15

.I1

135

.3hn

37

. 7l

l?R

1.

7794

5 l.h

7441

I.2

7045

5.

9547

1 .7

1171

1

-.755

43

-.132

7v

-..?4

273

. un

nno

.24,

?73

.77r

'7V

.355

43

.3h?

l5

. lb

?lS

.355

43

.31>

79

.24?

73

.Uoo

no

-.242

33

-.33%

39

-.355

43

-.3h2

l5

-.4R

24H

-.4

7354

-.b

bZR

b -.3

2290

.o

nonn

.3

2zqo

.6

4?R

b .4

7354

.

bR24

8 .b

R24

0 .4

7354

.b

bZR

h .3

22qu

.n

oono

-.3

7290

-.4

42R

b -.4

7354

-.b

RZb

R

-.5h3

74

-.552

9U

-.517

10

-.377

nb

.ooo

no

. 37

7nb

.517

in

.!I52

911

.5h3

74

.Sh3

74

.55m

.5

i7ln

.3

77nh

.

OO

UU

O

-.377

Ob

-.517

lO

-.552

uu

-.Sh3

34

-.hl4

09

-.402

70

-.5hM

h -.o

lnw

.n

nnnu

.

410’

)4

.ShW

b

(i)

Page

9

Figu

re

15.-

Con

tinue

d.

Page 157: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

P u-l

0

Ilh

117

II9

119

I70

121

l??

123

I?4

125

I?6

5.95

413

5.‘3

54

I3

5.95

471

5.95

4b5

5.v!

4h9

5.95

465

5.95

471

5.95

473

5.05

473

. 3h

ll 37

.I1

135

-.111

15

-.3hr

l37

-.111

7H

-I .7

7945

-1

.h

11

.41

-I .2

1745

-.7

1178

-.3

hI-I3

? -.l

l1.3

5

. 614

09

.hn2

70

. \f.

iJhb

.

4 1

ll’lfl

.ll

nlln

o -.4

lllQs

-.5h3

hh

-.602

70

-.hl4

09

(j)

Page

10

Figu

re

15.-

Con

tinue

d.

Page 158: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

PAN

EL

Ant

A

I 2 7 4 5 h 7 A 9 1n

II I2

:: I5

16

;I:

19

70

21

22

23

24

25

36

27

2tl

29

30

31

32

33

34

35

36

37

39

39

40

41

42

43

44

45

4h

41

4R

49

5n

51

57

51

54

54

. na

4’>7

.0

0’ih

fl .n

flt17

3

.(I15

74

.n17

311

.rll5

74

.nnf

l?3

. nn

w0

.rln4

57

.no4

5?

.nn5

bo

.nnR

77

.015

24

.nl7

3n

.015

24

.008

13

.D05

60

-on4

52

.OO

AO2

.009

94

. 01

551

.027

15

.021

89

.027

16

.015

51

.009

94

.on8

02

. no

802

.009

94

.015

51

.OEl

lh

.0?1

99

.027

16

.015

51

. O

OQ

96

.on8

02

.1nr

l13

.1?4

OA

.J93

77

.319

h4

.273

50

.339

64

.I937

7 .

l24O

W

.Jnn

l3

.lnnl

3 .1

24nn

.

I937

7 .3

39h4

.?

?JSO

.3

39h4

.I9

377

.I24O

R

.lnnl

J

.IR?h

R

.iH>n

? .3

S%l5

.J

fl?n7

.

l4U

?l

.141

5H

* 13

753

.13q

53

.141

5H

.I407

1 .

1H?U

7 .3

5<15

.

lnm

7 .1

4a71

.1

415R

.

I395

3 .1

3R3A

.I4

1145

.J

4767

.I8

138

.355

99

.lRl3

8 .1

476?

.1

4n45

.1

3R38

.1

3R3R

.

I404

5 .1

4767

.lA

l39

. -3

5599

.lR

l3rl

.I476

7 .1

4n45

.1

3F13

R

.I390

7 .l4

ln8

.14n

\3

.lAlIR

.3

5505

.lR

IIR

.14P

l3

.141

0A

. I

m7

. I3

907

.14l

OR

.1

4n13

.J

Rlln

.

.w.n

5 .ll

IJ

1H

.1*n

13

.l4Jm

.I

mi

. 03

12

8

-I.

1217

2 -

1.07

~~~l

l -

l.nno

?5

-C.A

II51?

-1

.57U

nn

-. 3

1h;‘H

-.1

411R

4 -.n

hlnv

-.O

?U31

.

nzn3

7 .O

h7(1

9 J4

nf34

:

l3hZ

R

1 .s

?nnn

2.

fln53

2 3.

noo7

5 3.

0745

0 3.

1211

2 -3

.121

36

-3.0

7497

-3

.001

71

-2.0

0735

-1

.570

RO

-.3

34?4

-.I

3998

-.O

h662

-.0

2023

.w

n23

. O

h662

.1

39R

8 .3

3424

I

.570

RO

2.

RO

735

3.00

171

3.07

497

3.12

1 >h

-3

.121

41

-3.n

7sJ4

-3

.Or)Z

O.s

-C

.floH

nfl

-1.5

7nno

-.3

3J51

-.I

3953

-.O

hh45

-.n

mlH

.

n>nl

n .U

h565

.I3

953

.333

51

I .5

70trn

2.

nnAn

fl J.

nnm

h 3.

0751

4 j.1

2141

-.J

.171

63

10.6

II.

41

ZU.

14’1

42

1ll.4

3171

ti.

s2n5

h H

.III?

H

I. VY

4 7

3 1.

9v4

I3

H.ll

17A

H.s

?USb

Jn

.43J

9i

20.

j4~4

2 l1

l.431

’?1

fJ.‘i

?U56

R

.JJl

IH

7.99

473

I.9?A

4R

H.n

4h9A

H

.4h0

91

10.3

9755

20

.396

85

10.3

vzs5

6.

4609

7 8.

04hV

A 7.

92R

4R

7.V?

H4A

fl.

(146

9R

8.46

097

10.3

9255

iln

.3vh

w

10.

3v25

5 R

.460

97

9.n4

690

?.9?

R40

7.

9679

5 A.

nd3c

13

H.4

H70

4 I

I).

lHO

V?

20.

342’

?4

l0.3

An92

H

.4H

704

t3.lJ

n.14

3 7

.Qhl

’Jh

I.Vhl

Vh

H.n

fl343

n.

4li7

no

I n.

qhin

vz

~n.7

42vr

lU

..IH

OV~

H

.4H

71J4

R

.nP3

4.3

?.Yh

l’#h

s.

144

?Z

-1lR

.A

Ij -I

Ilr.

ISb

-ill.v

3n

-IhU

. 13

.J

-YO

.UO

O

-I’).%

/,7

-H.U

7U

-.l.H

64

-1.tf

37

I.167

i.f

l44

R.iI

?O

1l.Z

hl

vn.0

00

lh”.7

33

1 ll.

930

17b.

lSb

179.

833

-IIA,

H41

-1

?h

.lHJ

-171

.YR

S -lh

lJ.R

4V

-90.

000

-19.

151

-8.0

15

-3.8

1 r

-1.lS

V 1.

159

3.81

7 fJ

.015

IV

. 15

1 YO

.000

lb

n.84

9 17

1.9n

5 17

6.

IR3

17H

.841

-1

lR.A

44

-17b

.193

-I

12.0

05

-lhll.

H91

-9

0.00

9 -1

v.1o

v -7

.v

vi

-j.R

n7

-1.lS

b 1.

156

3.tw

f ‘7

.095

19

.lnv

9n.0

00

if,n.

ti9l

1 ??

.on5

I

IO.

I93

I?11

.H44

-1

7R.H

45

(k)

Page

11

Figu

re

15.-

Con

tinue

d.

Page 159: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

5h

57

SA

c;n

hll

hl

h?

63

64

65

hh

h7

flP

fl9

70

71

72

73

74

75

7h

77

7pI

19

80

81

82

93

84

R5 A6

-7

R

9 R

9 90

91

92

93

94

95

9b

97

9R

1::

101

102

IO3

104

In5

Ill5

107

Inn

Ins

II0

III

I17

113

II4

115

.77h

1%

.1

5337

.h

l lh

h . c

nrrfl

3 .6

17hh

.3

\717

.?

?bJS

.IR

lhR

.

ln2h

n .7

?635

.-t

5337

.h

ilh6

.4A4

A)

.hl?

hh

.353

32

.276

35

.102

6A

.?44

hA

.303

17

. 47

324

.A27

10

.445

60

.R27

10

.473

?4

.363

11

.244

bR

s244

b0

.303

ll .4

7324

.8

2710

.6

456l

l .8

2710

.4

1324

.3

0317

.2

44bA

.I4

333

.I?75

9 .2

7723

.4

A451

.3

?713

.4

R45

1 .2

7723

.1

7?59

.I4

333

.I433

3 .I7

759

.???

23

.4R

451

.377

13

. 4A4

Sl

.?77

23

.I?75

9 .

I433

3 .

lw.2

3 .lV

35R

.3

n2l4

.5

?7R

l . 4

1027

.5

27R

l .ln

zlb

. n96

6h

- 1.

1175

lV

. 11

’)~>4

f, -J

.!ln,

‘lrv

. I

r’ 2

(1 h

-2.fl

ntl1

0 .

?I

Ih’J

-1

.51l

lRO

.I2

2nh

-.33J

r”>

. O

VQ4h

-.I

JV

Ul

.nsh

*h

-.nr.h

hn

,119

7/

A -.O

?Olh

.

IlV72

tl .

n2ul

h .

lt94b

h .

nhhh

o .

nVQ

4h

.I394

3 .l2

7n6

.77l

?V

.?47

h9

1 .L

ITlIR

U

.J77

nb

Z.R

OA3

0 .n

9q4h

3.

nn21

6 .n

94hb

J.

n7sl

9 .n

v72f

l 3.

1714

3 .0

8123

-3

.171

45

.n87

42

-3.0

7525

. O

HhS

A -3

.On2

?9

.106

17

-2.R

n046

.?

I267

-1

.57U

AO

.106

17

-.333

n3

.nnh

58

-.139

7U

.OR

242

-.0hb

34

.Ol3

123

-.n2o

i4

.afli

23

.020

14

.OR

?42

.Oflb

34

.n0h

5e

.I393

0 .I0

617

.333

03

.217

67

1.57

oetJ

.1

0611

2.

Bn9s

b . O

Bh59

3.

0022

9 .

OR

?42

3.n7

w5

.OAl

?3

3.

I210

5 . 0

7414

-.J

.l?14

h . 0

7<24

-3

.n75

2v

.lllQ

O9

-3.n

nt37

.n

9722

-2

.Rnt

-373

.I9

545

-1.5

7ofio

.0

9722

-.

332A

b .

niVo

9 -.

13vz

2 . I

t752

4 -.O

bb31

) .0

7414

-.0

7013

.0

7414

.0

2013

.0

7524

.O

bh7U

.0

1109

.I3

972

.09?

22

.112

Uh

.I954

5 1.

57fl~

U

.n97

22

2.4f

lR73

.O

?~ll9

J.

rtnz7

7 .0

7524

J.

0757

9 .

0741

4 J.

lZlu

b .

n712

9 -J

.l>l4

5 .0

7?30

-

i.n75

25

.015

A3

-3.n

o27V

.

nv7w

-2

.AO

H56

.lR

52V

-l.s?

llt~o

.

noen

-.7

7 11

13

. l)l

SR7

-.IIV

Iu

5.h’

)HBU

5.

4234

4 5.

344

72

4.65

4.11

) 4.

7223

9 4.

9606

1 6.

nt39

2fl

l7.lt

a509

h.

OR

32H

Q

.VhU

bl

4.72

739

4.b5

430

4.65

430

4.72

730

4.96

0bl

h.nf

l32.

q 12

.1R

501)

b.

nfl3

LtJ

4.96

061

4.72

239

Q.6

5430

4.

7417

H

4.71

0H9

4.53

1htt

5.57

n15

11.1

9Rbl

S.

57O

lS

4.S3

lhH

4.

3lny

v 4.

7477

0 4.

2477

H

4.3l

OR

V 4.

<314

H

5.57

1115

11

.19R

bi

5.57

015

4.53

lbA

4.31

0HV

r.?47

7H

4.O

AQ4U

4.

lUZZ

l 4

..34G

klY

s.30

432

lO.h

lhS3

5.

10~3

2 4.

144s

v

-1

lh.

1vri

-1rl?

.u11

-Ih

n.q0

0 -v

u.00

0 -IV

.U?h

-I.

VH?

-3.rr

no

-1.1

55

I.155

3.

t+n4

?.

VRV

JV.0

9h

Vu.0

00

lhn.

vn4

172.

011

17h.

l9h

llA.H

o5

-IlR

.R4b

-I?

fJ.lV

Y -1

7P.U

lY

-lhO

.V19

-V

n.oo

o -lV

.nt3

1 -7

.VH

l -3

.801

-1

.154

i.1

54

3.AO

l 1.

981

19.o

n1

9o.n

no

lbn.

919

172.

019

176.

199

17R

.R45

-ll

R.A

47

-1?6

.2(1

1 -1

72.0

23

-1bO

.V2H

-9

0.00

0 -1

9.07

2 -7

.v77

-3

.199

-1

.15.

1 I.

153

3.79

9 7.

977

19.0

72

vn.o

no

lhU

.92H

17

2.U

2.3

llh.2

01

1 lR

.H47

-l?

H.H

4b

-I lb

.190

-ll

il.O

lY

-lhn.

Vlv

-9n.

nno

-19.

llHl

-f.Vr

ll (f)

Page

12

Figu

re

15.-

Con

tinue

d.

Page 160: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

llh

I17

IlR

II9

17n

I71

I?.?

I7

3 I7

4 12

5 I7

6

.11-

w!

.IShh

3 .1

5h?3

.1

935,

A .3

0714

.5

27R

l . 4

1027

.5

27H

I .3

02l4

.1

9.15

A .

I%?3

. n

I?

30

. O

ll?V

. 07

179

.077

30

. n7

5A3

. nv

2sn

.lrk?

V .

nv7w

.

O7r

;H.l

. 077

30

. n7

179

IHF:

lT

EHAl

lON

C

ON

vtQ

tiFD

AF

IFA

-.flh

h34

-.nr’l

)l”

. u

r’ n

1 4

.Ohh

?‘I

.13v

w

. 7-

l rn

3 I

.5?l

lHll

d.H

llPSh

j.n

o79

3.07

575

3.1?

145

THF

SOI-U

TIO

N

A7

THE

PRES

ENT

17ER

47lO

N

1’i

GH

fN).N

=I.

IZb

.AO

?4l

.795

65

-.?I4

133

-.510

46

.774

lh

.h77

hS

-.396

06

.116

567

.06b

56

-.39R

77

.b79

72

.775

06

-.?Pw

3*9

-.hA9

31

.A55

63

.S6.

?4I

-.R48

h2

-.R48

67

.969

77

.96l

R2

-.ni?

34e

- .8

05R

A I.0

1466

.9

751n

-.1

1260

6 .I5

957

.77?

33

-.394

en

. nh

s57

.h77

65

-.517

95

.797

741

-.tnn

nl

I .n

2774

-.R

0390

.9

5n95

-.7

9751

.I5

957

.975

lO

VELO

CIT

Y O

N

sonr

MAC

H-

2.50

0 AL

PHA=

2o

.oon

PAN

EL

NO

. I : 5 6 7 A 9 IO

II I2

I3

14

I5

I6

I7

lr)

I9

70

71

SOU

WC

E ST

REN

GTH

.I3

0241

.7

95+.

5 .7

7733

.6

75R

q .O

hb4r

’ -.3

94no

-.5

104h

-.5

4133

-.5

50SR

-.5

5nw

-.5

4133

-.s

inrh

-.3

94nn

.

Obb

42

.b7S

RV

.772

3J

.7VT

wl

.PO

?LI

. An*

19

.7’)7

w

. 71

415

.b75

RQ

.n

hh47

-.3

vhnn

.7

74lb

-.5

442’

) .1

104A

> -.

7Onn

l .9

7317

-.7

7951

.9

53H

R

.16n

70

-.A2h

Oh

l.Ql4

hh

.Ohh

42

.67W

V -.5

137M

.I9

739

-.?I5

391

.Hhi

’4

I -.b

A93l

.V

447H

-.

127S

h .

I607

0 .9

53R

R

-.HR

THR

1.

0713

3

-. 10

400

.I723

3 -.5

44H

H

.f40*

1v

-.553

9l

.ll55

h.3

-.55f

34v

. H

VUr?

‘l .If

lZU

7 -.7

v751

.9

5oqs

-

.95h

Vb

l.n70

97

-.510

4h

./V56

5 -.5

5415

.R

OItJ

? -.5

44#?

9 .H

3553

-.6

20Zb

.

lb7H

I .H

VAZV

-.t

lO5,

HA

.9bl

H2

- .V

5ASO

-.541

33

.HO

r’4

I -.5

5415

.7

9781

-.5

ljVS

.737

2A

.I427

R

-.?k’

JSh

,944

7H

-.H

234A

.V

bV77

-.V

SH50

-.550

5R

.RO

bl9

-.544

9R

.715

06

-.39f

vr

.I427

8 .7

?72r

) -.7

7963

.9

7313

-.A

3027

I

.079

97

- .9

5696

-.550

58

.7V7

J9

-.513

78

.679

72

.066

56

-.b.?

OEh

.R

3553

-.a

0390

1.

0272

4 -.R

3027

I.0

7133

-.t

la7n

e

l *

SOLV

E l

a

lWlR

= 0.

000

VFLO

Cl7

Y AX

l4L

-.14b

4h

-.I48

34

-. 15

72R

-. IA

777

-. 12

499

.635

mE-

ni

.hSh

>4E-

ul

.h.ll

RhE

-nl

.&22

7X-IJ

l .6

727X

-01

.hllP

hli-l

ll .r,

5,h7

4f

-01

.h.3

shO

t-u1

-.I24

115

-. IY

7?7

-. 15

72n

-. 14

RV,

r -.I

Ch4

h -.1

4hn2

-.

14H

LIIl

-. , ‘

il,‘b

ll

VELO

CIlY

LA

IER

AL

..‘49

43E-

01

.Rlb

5HE-

ill .I6

714

.342

47

.3n7

3i

-.I34

74

-.Vl3

77f.-

01

-.414

h’~t

-oI

-.147

4lF-

01

.147

ult-l

Jl

.474

hQt-l

Jl

.Vl3

72t-0

1 .I3

474

-. 30

231

-.34%

47

-. Ic

lllO

-.Rlh

wlk

-01

-.?sV

olt-I

ll .2

4ww

-1

11

.HIZ

hflf-

OI

. lW

,34

VEU

T IC

AL

V~LU

CIT

Y -.4

5294

-.4

4949

-.4

3h71

-.3

bVlJ

7 .

IVhO

h -.9

V253

E-01

-.

I 7b

V4

-.lV5

57

-.2~l

rlvl

-.~llO

97

-. IV

557

-.llh

V4

-.VV7

5.x-

01

. 19

hllh

-.3

hm7

-.r.J

f.ll

-.44v

4v

-.452

v4

-.45/

01

-.44N

Il1

-. .a

Jh

I v

NO

WAL

-469

32

.470

4J

.4/4

1?

.LR

7b7

..37h

7b

-.1r7

3tl

-.iW

hl

-.711

524

-.r’n

797

-.ZflI

V3

-.ZO

524

-.I%

67

-.147

3A

. 32

57h

. 4H

7h7

.r74l

Z .4

/O&3

(m)

Page

13

Figu

re

15.-

Con

tinue

d.

Page 161: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

72

.h77

h5

-.1H

711

23

.065

h7

--.]7

4011

74

-.39h

nn

.fI3u

ost-U

l 75

-.5

l?‘IA

.h

hOuW

-Ol

Zh

- .5

44R

R

.h35

hIF.

-ol

?7

-.554

15

.r,Zh

9Ht

-01

?R

-.=I5

415

.h?h

94E-

lll 79

-.5

449A

.h

3563

t-~~l

10

-.5

117H

.h

hOO

3E

-01

31

-.39h

nn

.h39

n5t-u

i 12

? O

hSh7

-.\

74w

l 33

.6

77h5

-.l

R71

7 14

.7

74lh

-.1

55sn

15

.7

9739

-.

14fe

n 36

.n

n4l9

-.l

46n7

37

.A

l)*flZ

-.I

4611

1R

.7

97R

l -.l

4RR

7 39

.7

75nb

-.1

57nn

40

.b

797c

’ -.1

869’

l 41

.O

bb56

-.

1245

1 42

-.3

9027

.6

3930

E-01

43

-.5

13Q

5 .h

5742

E-01

44

-.5

4479

.h

3364

E-01

45

-.5

5391

.h

234A

E-01

46

-.5

5391

.h

234R

E-O

l 47

-.5

442Q

.fJ

33h4

E-U

I 48

-.5

1395

.h

5747

E-01

49

-.3

9827

.6

393O

t-01

50

.Ob6

56

-. I2

451

51

.679

72

-.lfl6

9n

52

.775

n6

-.i57

nn

53

.797

Rl

-. 14

082

54

.t304

R2

-. I4

631

55

.a62

41

-.I27

45

56

.855

h3

-.l30

0A

57

.A35

53

-.I36

44

58

.777

70

-.I54

50

59

.l427

fl -.7

5017

E-01

60

-.6

2OPb

.7

7030

E-01

61

-.6

5049

.f!

5055

E-01

62

-.h

A931

.~

lSl3

E-01

h3

-.7

00AI

h4

-.7

0nFl

1 h5

-.b

R93

1 h6

-.6

5049

h7

-.6

2Oi?

b hA

.I4

270

h9

.777

?A

70

.a35

53

71

.A55

h3

72

.062

4l

73

i .n

2724

74

.9

7313

75

.9

44

IA

76

.AVA

29

77

.I62S

7 78

-.7

235h

79

-.7

7Oh3

an

-.A

0390

R

I -.R

4Rh2

. 7.

946R

E-01

78

4hR

t-01

:sl5

13E-

01

.~50

55E-

01

.770

3nE-

ol

-.750

17E-

01

-.I54

50

-. 13

h44

-.l3o

m

-.I27

45

-. IO

R

-.12l

n4

-.124

h7

-.lw

an

-.ho4

nnE-

ul

.777

fl1t-0

1 .

7fw

n,x-

01

.&IO

47

e-01

.

7um

7t-n

i

. 3

4 I

h h

. 3u

?‘J

I -.

I 16

64

-.vi5

721-

nl

-.4

r5hO

t-01

-.i47

wf

-01

.147

3Ht-l

ll .4

75tIn

t -0

1 .V

l527

t.-nl

.I3

464

-. 10

297

-. j4

lhh

-. lh

h34

-.Hl.?

h4E-

OI

-.74e

nflE

-01

.248

7=JE

-01

.Rl2

?6E-

01

.I659

7 .J

Sl

IR

.3n2

24

-.I35

10

-.9lO

lOE-

01

-.474

42E-

01

-.147

RZE

-01

.147

ti;rF

-Ul

.414

42t-0

1 .9

IOlO

E-01

.I3

510

-. 30

224

-.34l

lf3

-.lh5

97

-.Rl2

26E-

01

-.248

79E-

01

.230

3bE-

01

. IZ

hhhE

-01

.146

4h

.330

5Q

.214

QLl

-.2

1546

-.7

8792

E-01

-.4

4b25

E-01

-.1

59Q

lE-0

1 .lS

QQ

lE-0

1 .4

4625

E-01

.7

A797

E-01

.2

1546

-.2

14VA

-.3

3059

-.

1464

6 -.7

26hh

t-01

-.230

3hE-

01

.460

19E-

n1

.990

73E-

01

. I5

Ahl

.33f

l7h

.IHYP

I -.7

&37h

-.i

iv4n

-.H

04nf

+.-u

1 -.‘

,137

’rt-n

l

-. !h

V4H

.

IV55

h -.I

0042

-.

1 Ill

Oh

- .

IVh6

V -.7

0209

-.,

Juco

v -.1

9hb9

-.

I 7q

uFl

-. lo

o42

. l9

L15h

-.

3bV4

R

-.43f

>l9

-.44l

-!lU

-.4

5r’U

7 -.4

5)5V

-.4

4QlV

-.4

Jh65

-.3

6976

.lY

73l

-.I00

64

-.I77

73

-.19h

O9

-.2O

l44

-.201

44

-. 1Y

bOV

-.I77

73

-. 10

064

.I973

1 -.3

bV76

-.4

3665

-.4

4919

-.4

5259

-.4

1756

-.*

I422

-.4

0241

-.3

2950

.3

0A76

-.

1354

4 -.2

2770

-.2

4lt3

8 -.2

4b42

-.2

4642

-.2

4lfIt

l -.2

2770

-.

1354

4 .3

0H76

-.3

,?95

0 -.4

024i

-.4

1422

-.4

1756

-.4

OAH

O

-.40.

316

-.3V1

22

-.315

04

.373

2Y

-.147

9b

-.23h

OO

-

.i’57

22

-.2sr

r7c

.4H

130

. 32

151

) -.1

4Ai?

R

-.l9h

73

-.Zub

3b

-.2n9

06

-.znv

uh

-.2uh

36

-.l9h

7J

-.14H

2A

.32

150

.4H

I30

.47.

32h

. 4hV

44

.4bA

30

. 4bR

91

.47O

Ol

.473

67

.4H

l2l

.32b

67

-.14R

56

-.19b

30

-.2n5

74

-.208

39

-.200

39

-.205

74

-.I96

30

-.148

5b

.32b

67

.4R

721

.473

67

.47n

ol

.468

91

.427

99

.428

55

.430

34

.435

2l

.226

73

-.206

38

-.243

72

-.250

92

-.252

93

-.252

93

-.250

92

-.243

72

-.20h

38

.226

73

.435

21

.430

34

.42R

55

.427

99

. 417

07

-417

47

. 4ltl

fl9

.470

9Y

. I9

A34

-.22l

R3

-.256

18

-.2h2

75

-.r16

457

(n)

Page

14

Fiqu

re

l5.-

Con

tinue

d.

Page 162: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

R?

-.nrR

hiJ

n3

-.fln

39n

tl4

-.77Q

hJ

*!I

-. 1?

35h

Rh

.lh?F

17

Al

.AVA

ZV

nn

.944

7H

R9

.973

13

90

1.02

7zo

91

.9h9

77

02

.Ohl

Ri!

9;

.95n

os

94

.957

AR

95

.I607

0 96

-.

7915

1 97

-.A

OSR

lJ

90

-.A23

4A

99

-.R30

77

100

-.n3a

27

Ill1

-.023

4A

In2

-.aos

AA

103

-.197

51

1n4

.I607

0 1n

5 .9

5391

I(1

6 .9

5095

10

7 .9

6112

1n

fl .9

6977

In

9 1.

0799

7 11

0 1.

0713

3 11

1 1.

0146

6 11

2 .9

7510

11

3 .I5

957

114

-.R26

t76

115

-.t)R

7R8

116

-.956

96

II7

-.951

150

118

-.95R

50

119

-.956

96

120

-.BB7

RB

I71

-.R2b

llb

122

.I595

7 12

3 .9

7SlO

12

4 I.f

llbh6

1?

5 I.0

1113

1?

6 I

.07Q

Q7

. 7nZ

P7F-

Ol

.no4

71F.

-Ill

. 7M

907E

-01

.777

f-3E-

01

-.604

nrlt-

01

-. ,1

urn

-.124

h%

-.lZl

ll*

-.IQ

H.?

I -.

low

4 -.I

1207

-.I

In

In

-.I32

75

-.5?2

hhE-

Ol

.a2h

o7t-n

l 7r

)57f

lE-O

l :7

44lb

t-01

,702

4Ot-O

l .7

024O

E-01

.7

441f

Yt-0

1 .7

AS76

E-01

.R

%60

7f-0

1 -.5

22w

lE-0

1 -.I

3775

-.1

lRIR

-.I

1207

-.1

05n4

-.I

0574

-.I

0274

-.I

1463

-.

1273

4 -.4

7755

E-01

.R

l214

E-01

.7

6794

E-01

.h

6279

E-01

.7

1729

E-01

.

7172

9E-0

1 .h

6279

E-01

.

7h79

4t-0

1 .A

lZI4

t-ul

-.412

55t’-

01

-. I?

774

-.I14

67

-. 10

274

-.I05

74

MO

DIF

IED

SO

lWE

SIYF

N’T

II~

I IR

.I7

591

.I27l

h .l7

OV3

.

1411

m

. lJh

h42

.l4nv

5 . I

.in

v3

.I771

6 .I2

591

.1?7

lS

.i3nu

3 .i4

n95

.ll6b

42

.I409

5 .

I.)09

7 .Ir

’llh

.I159

1 19

36

.1

25n2

.I7

626

.I301

9 .la

nn3

.Oh5

67

. IS

UflJ

.I3

019

. I ;

‘h26

.I2

502

. l?

h?h

.13n

lu

.i4nR

3 .rl

h\hl

.I4

087

.13n

19

.12h

Zh

.I250

2 77

54

.I2

54h

. l2

h76

. I3

nS6

.I407

2 . O

h656

.1

ao72

.

i7n5

h .

Il’h7

6 .

l254

h .

li’h7h

.

I In

s6

.140

7i

.06h

ih

.I411

12

. lJ

ll\h

. lc

’h76

.1

2546

55

72

.

nRnc

In

.OA-

ilh

- nR

11h

.n~w

-d

.n7H

hi

.it.z

711

.nrw

il .

IIHH

SZ

.OH

3lb

. O0O

AO

.nnR

w

.nln

5l

. l’Z

7I~

.07l

l\l

.llM

n5F

.UH

3lh

. w

iofm

71

9n

.n

n971

.n

nrhi

.O

R/%

Ii .O

H7

I1

.Ihr’H

I .O

A737

.

nfw

a .O

H45

1 .O

R93

I .n

Rrh

l .n

n?w

.r)

H73

7 .lh

?R7

.OAI

J7

. O

YZSR

.U

H4h

l .O

H93

l ‘2

1 IO

R

.nh9

75

.OhV

l7

.072

5a

.oln

lr!

.lc10

70

.O~H

IR

.n72

54

.069

17

.069

75

.llh9

17

.07?

L;O

.0

7n1n

.Ih

llfl)

.OIY

lA

.o

7?54

.u

6917

.n

h975

.‘~I3

771

-Ill

.0f)4

nhF-

111

.llqr

n .Z

f.jlh

-.I

HYH

7 -.3

IR

7CI

-.I5H

hl

-.wl4

/.1t

-01

-.4hl

llYF-

III

.>33

n3t-0

1 .

7Ah9

V -0

1

. Ih

bh2

.347

lH

.17%

9 -.2

6597

-.I

4I?C

-.h

OH

92E-

01

-.lYl

r.rt-0

1 .

lul%

Rt-o

l .h

u9Q

2f.-o

l .I4

112

.?h5

97

-.175

69

-.347

lA

-.166

h2

-. IH

695E

-01

-.233

R3E

-Ul

.244

97E-

01

.943

53E-

01

.157

2l

.354

7l

.167

.?H

-..

?799

rI -.I

2548

-.H

78?7

E-IJ

l -.I

9117

L-U

I .1

9117

$-01

.H

7H?7

E-01

.

l2SU

H

.?7Q

UO

-.

lh72

A -.3

5431

-.

1572

1 -.u

43G

3t-n

1 -.2

49u7

t -0

1

-.>‘?

I!74

- .?

521/

-..

? jl.

Ull

-. I’I

/Uh

.Jl

Id‘J

-.

~120

4 -.

lVI,J

( -.‘

.I)

IIf>

-.401

tHIl

- .b

II ,

155

-. 3Y

932

-.3H

442

-.311

526

.3Y7

3h

-. 1S

45H

-.2

4074

-.2

hl3h

-.Z

f,hhl

-.Z

Mhl

-.2

613h

-.2

41)1

4 -.

l445

H

.397

36

-.305

26

-.3R

442

-.3v9

32

-.403

55

-.401

09

-. 39

650

-.3H

J27

-.?Y9

27

.429

64

-.I44

91

-.?46

45

-.263

17

-.769

411

-.?hV

40

-.263

17

-.24h

45

-. 14

1.91

.

42Hh

4 -.r

’992

7 -.

Ill.3

71

-.34h

SO

-.4U

lO9

-.r’t,

4sl

-.>!h

ZlL1

-.2

5hlH

-.C

?IR

J .IO

H14

.4

znw

.

4 IIl

hY

. 411

41

. 417

07

.4llI

hl

.4ln

94

.4l

IV0

.4lc

!93

.IH25

0 -.2

305i

-.?

hJIl

-..?A

067

-.27l

til

-.271

41

-.2h9

67

-.263

41

-.23O

Sl

.lR25

u . 4

1293

.4

1190

.4

1094

.4

1061

.4

nHol

.4

0825

.4

nfl9

2 .4

of37

1 .I7

312

-.%34

97

-.26h

55

-.272

50

-.274

15

-.274

15

-.c72

50

-.2hh

55

-.234

9 I

.I731

2 .4

liR71

. 4

UP9

2 .*n

t425

.4

ll!~U

l

.I259

1

.125

02

.I254

6

.000

00

.OA9

31

.069

75

(0)

Page

15

Figu

re

15.-

Con

tinue

d.

Page 163: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

1nq

I?6

.nhn

t-c

.057

lu

.Uh3

lU

.07r

5.?

.15v

s7

.n74

w

. O

f,.l3

o .0

\7lV

.O

hO7.

3 .0

6073

.O

S7lY

.n

fdw

.n

14W

.l5

U',7

.0

74%

/ .n

h339

.U

571'

4 .

0 h

0 7

3

(p)

Page

16

Figu

re

15.-

Con

tinue

d.

Page 164: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

X R

D

P/lln

A

H

H

2.nn

oO

.llH

5 .m

45

I .1

17H

O

.35,

35

?‘.w

on

RO

I’IV

SUPF

ACE

PAI?

SIJU

F lJ

I~lF

1I’II

Jll~

N

J I 2 3 ; F 8 9 tf 12

13

14

15

16

I7

I8

19

PO

71

22

73

14

25

?I

27

2n

79

70

31

72

73

74

75

36

77

30

19

40

‘I 4?

43

44

45

46

47

4R

49

50

51

52

53

Y 7

HFT4

o.

onoo

-.3

5Ol

o.nu

o .0

939

-.357

a 14

.713

.1

072

-.353

7 27

.R49

,2

79.u

-.3

469

3R.R

O7

.3hR

7 -.3

37&

47.5

2(1

.455

5 -.3

?%

54.4

54

.530

9 -.3

iln

60.0

12

.618

2 -.2

94?

64.5

54

.692

8 -.2

75l

6R.3

44

.762

2 -.2

539

71.5

73

.a25

7 -.2

3nn

74.3

81

.AA2

9 -.t

nan

76.R

bA

.933

5 -.1

79h

79.1

12

.97b

9 -.l

SlR

81

.160

1.

0129

-.1

72n

R3.

rlA6

1.04

11

-.09?

9 04

.n9

9 1.

0615

-.0

624

8b.h

3R

1.07

38

-.OllJ

m

.330

1.

0779

-.o

oon

90.0

00

1.07

38

.031

3 91

.670

1.

0615

.0

624

93.3

62

1.04

11

.092

9 95

.102

1.

0129

.1

22A

96.9

14

.9?6

9 .I5

14

98.P

31

.933

5 .1

79r,

loo.

ReR

.I8

29

.206

0 10

3.13

2 .a

251

.23n

n 10

5.61

9 .7

62Z

.253

9 10

8.42

7 .b

928

.2t5

1 11

1.65

h .6

182

.294

2 11

5.44

6 .5

389

.311

n 11

9.9f

l8

.455

5 .3

2’S

125.

54h

.x%

87

.337

5 13

2.47

1 .2

790

.346

9 14

1.19

3 .lR

72

.x37

15

2.11

1 .0

939

.357

* 16

5.7R

7 .o

ooo

.359

l IA

0.00

0 -.0

939

.357

n 19

4.71

3 -.I

872

.353

7 ?O

T.R

R9

-.279

0 .3

4h9

?lEl

.A07

-.3

m7

.x37

’; 22

7.52

9 -.4

555

.375

5 73

4.45

4 1.

5389

.3

11n

z40.

012

-.6lR

2 .2

942

744.

554

-.692

A .2

75l

748.

344

-.767

2 .2

53Q

25

1.57

3 -

.R?5

7 .2

3llR

75

4.3R

l -.R

lr29

.Zllh

O

?56.

RhR

-.9

335

. 17

0h

259.

112

-.97f

l9

.lSlR

76

1.16

9 -1

.012

9 .1

22R

26

3.tlF

lrr

-1.0

411

.097

9 76

4 .R

9H

-1

.nhl

s .n

h74

76h.

hJR

u/v0

.

Hllh

.R

llI

.H09

4 .P

Oh6

.t(

n3v

.enn

o .

7951

.7

9lO

.7

c176

.

IA4

7 .1

939

.RO

bQ

.Hl4

8 .8

23V

.R32

4 .e

405

.H4l

l2

.HS5

7 .L

lh3l

.P

775

.HY2

0 .v

o70

.V?2

6 .9

391

.V56

8 .9

7hl

.997

5 l.O

lh5

1.01

7R

1 .u

192

1.02

09

I.023

0 I

.023

4 1

.u72

0 I

. u2

n2

I .(l

lR3

l.l11

76

l.Ul8

3 I

. (1

202

1.07

70

1 .I)

234

I .1

1230

1.

0709

I.O

lU2

I.01

IR

I .Il

lh5

. W

I5

. U

7l.l

. VW

.74

.V39

1 .Y

72h

.YlllO

.H

V.?O

v/v0

.

uooo

.0

471

. nw

4 .I4

17

.lI~f

U

.241

9 .3

0hB

.363

7 .4

149

.4h?

3 .4

735

.4

TR2

.4H

45

.4H

97

.4H

VO

.473

0 .4

27R

.3

405

.217

8 .O

h53

-.052

2 -.l

ZA4

-.I76

7 -.2

1 I6

-.2

430

-.276

R

-.316

4 -.3

457

-.306

2 -.2

642

-.219

4 -.

1669

-.1

269

-.09H

3 -.0

673

-.n35

4 .o

ouu

.OJL

i4

.061

3 .0

9R3

.lr?h

9 .lh

hV

.2lA

4 .2

h42

.306

2 .3

457

.3lb

4 .2

7hH

.2

430

.211

6 .1

7h7

.lZH

4 .0

582

u/v0

-.l

VO7

-. II!

96

- .

1 11 f.

3

-.17u

;! -.I

712

-.I54

1 -.I

295

-.IO

hZ

-.OH

33

-.o>,

Y4

.037

h .1

4H5

.25,

R4

.372

0 .4

v43

.h2H

l .7

696

.9on

4 .w

95

.918

H

.I306

7 .6

844

.570

6 .4

6V5

.37R

5 .2

933

.209

9 .I3

65

.I096

.0

832

.055

7 .0

254

.005

7 -.0

033

-.Ol

IS

-.OlS

b -.0

170

-.015

6 -.O

l I5

-.0

033

.ooc

17

. 02

54

.055

7 . O

H32

.

lU96

.1

3h5

.2O

V9

.2u3

.3

1H5

.460

5 .5

7116

.h

R44

.P

UhI

VT/V

0 .lY

O7

.IY54

.z

n7u

.22R

5 .2

536

.i!H

70

.333

0 .1

7R9

.423

2 .4

hhl

.h75

0 .5

0OH

.5

49l

.h15

0 .h

953

.711

63

.RllO

S .9

62h

1.01

32

.921

2 .R

OA3

.6

963

.597

3 .5

149

.449

0 .4

033

.379

7 .3

717

.325

2 .?

770

.225

4 .I6

88

.I271

.0

9e4

.(ihR

L .0

3HI

.nl7

0 -.0

3R7

-.OhR

Z -.n

984

-.I27

1 -.

IhR

A -.2

254

-.777

0 -.

125?

-.3

717

-.319

7 -.4

U33

-.4

49A

-.514

Y -.5

973

-.f,9

h3

-.RO

Hl

CPl

rO

.47V

I .

4771

.4

71H

.L

hZl

.445

2 .4

197

.371

3 .3

264

.?7l

b .2

153

.179

6 .Il

A5

.03h

5 -.0

522

-.I33

0 -.I

916

-.220

7 -.2

2RO

-.2

2R6

-.227

3 -.2

158

-. 18

67

-.14R

9 -.1

163

-.097

6 -.0

960

-.111

4 -.1

3n3

-.I13

0 -.0

961

-.080

3 -.0

667

- .0

575

-.049

7 -.0

423

-.036

2 -.0

339

-.036

2 -.0

423

-.049

7 -.o

srs

-.Obh

T -.O

RO

3 -.O

Yhl

-.I13

0 -.I

303

-.I11

4 -.O

Vh0

-.097

6 -.l

lh3

-.14A

9 -.l

Hh7

-.?

l5R

DPH

I/DI

CPZ

0.

0000

.3

049

0.00

00

.304

0 0.

0000

.3

0lb

0.00

00

.297

3 0.

0000

.2

895

0.00

00

.277

5 0.

0000

.2

570

0.00

00

.730

8 0.

0000

.2

006

0.00

00

*lb70

0.

0000

.1

442

0.00

00

*lOI

0.00

00

a034

6 0.

0000

-.0

571

0.00

00

-.I76

4 0.

0000

-.3

247

0.00

00

-.494

7 0.

0000

-.6

5I39

0.

0000

-.7

714

0.00

00

-.618

4 0.

0000

-.4

491

0.00

00

-.307

4 0.

0000

-.2

079

0.00

00

-.147

0 0.

0000

-.1

177

0.00

00

-.115

4 0.

0000

-.1

391

0.00

00

-.I71

5 0.

0000

-.I

416

0.00

00

-.I15

5 0.

0000

-.0

931

0.00

00

-.075

1 0.

0000

-.0

636

0.00

00

-.054

1 0.

0000

-.0

454

0.00

00

-.030

4 0.

0000

-.0

359

0.00

00

-.03e

r 0.

0000

-.0

454

0.00

00

-.OSS

l 0.

0000

-.O

bJb

0.00

00

-.075

1 0.

0000

-.0

931

0.00

00

-.I15

5 0.

0000

-.1

416

0.00

00

-.I71

5 0.

0000

-.1

391

0.00

00

-.I15

4 0.

0000

-.I

177

0.00

00

-.147

0 0.

0000

-.2

079

0.00

00

-.30?

4 0.

0000

-.4

491

W(l)

.3

049

.304

0 .3

016

.297

3 .2

895

.277

5 .2

570

.230

8 .2

OO

b .I6

70

.144

2 .1

014

.034

b -.0

571

-. 17

64

-.324

7 -.4

94t

-.658

9 -.7

714

-.618

4 -.4

491

-.307

4 -.2

079

-. 14

70

-.117

t

::::;;

-.1

715

-.141

6 -.1

155

-.093

1 -.o

t51

-.063

6 -.0

541

-.045

4 -.0

384

-.035

9 -.0

304

-.045

4 -.0

541

-.063

6 -.0

751

-.093

1 -.I

155

-.14l

b -.I

715

-. 13

91

-.I15

4 -.I

177

-.147

0 -.2

079

-.307

4 -.4

491

VCP/

VO

0.00

00

.039

9 .O

IOJ

l 121

7 .

lb48

l 2

101

.250

5 .3

109

0361

5 04

326

.505

1 .5

mo

0684

0 .

t956

.9

241

1.06

65

1.20

96

1.32

37

,1.3

686

1.32

37

le20

96

I.066

5 09

241

-795

6 -6

840

l 51B

O

l 505

1 l 4

32e

.36E

5 a3

109

0258

5 l Z

lOl

.I648

*I2

17

l 080

3 .0

399

l ooo

o -.

0399

-*

0103

-.I

217

-.lb4

8 -9

2101

-.

2585

-.3

109

-.361

5 -.4

32b

-*so

51

-*SO

80

-.bI4

0 -.7

956

-092

41

-I*06

65

-1.2

096

(9)

Page

17

Figu

re

15.-

Con

tinue

d.

Page 165: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

54

-1.0

71H

95

-1

.077

1 56

-I

.073

R

57

-1.0

615

FIR

-I.

l-l4l

l 59

-I

.OIZ

V hn

-.9

7hV

+-I

-.93J

5 62

-.R

~29

h3

-.025

? hk

-.7

f.22

65

-.692

0 51

5 -.b

I02

67

-.53R

9 hP

-ii

555

69

-.3ht

ll 7r

l -.2

790

71

-.]A7

2 72

-.a

939

73

-.ono

o

. 03

17

.non

r, -.l

l?ll

-.nw

4 -.n

wu

-.IZZ

R

-.151

n -.I

796

-.2O

bO

-.23n

s -.2

539

-.27S

I -.7

942

-.311

n -.3

759

-.337

c.

-.34h

0 -.3

537

-.357

p -.3

591

ZHU

.HH

0 ?R

3.13

2 7t

lS.6

19

7RA.

627

791

.h5h

79

5.44

h 29

9.9R

H

305.

541,

11

2.47

1 12

1.19

3 33

2.11

1 vs

S.ZR

7 7h

O.fl

OO

. 11

4 II5

.

ll3,‘4

.P

2JV

.I+14

4 .fl

n49

. r9

3v

.7t1

47

.7H

7h

.19l

il .I9

51

.HO

flU

.H03

V .H

Ohh

.H

n94

.Uill

.U

ll6

-.UbW

-.<

I IH

-.

i4ns

-.4

2lH

-.a

730

- .Q

HYl

l -.S

UV?

-.4

tl4!l

-.47H

2 -.4

735

-.4hL

J -.4

14V

-.3bJ

7 -.3

OhR

-.2

4lf!

-.lH

70

-.I41

7 -.u

v74

-.U4I

l .

OO

OQ

FOR

CE

PND

M

OW

N1

CO

FFFI

CIE

NTS

-

PQES

SUR

F IN

TLG

HPT

ION

X C

NfX

) C

lor)

CN

C

Y 2.

4000

0 2.

053O

E-01

9.

6935

E-I1

fl.

A2R

6E-0

2 0.

.‘,lH

H

-.9.?

I?

. O

IIV!,

-i.nu

z .u

on4

-.qhr

'h

. Ih

Vh

- .H

I405

.h

;lPI

-.Itih

j .4

v)43

-.h

Ys,I

.37/

n -.h

l5II

.2\rt

r -.5

491

.I411

5 -.5

00lj

.037

h -.4

150

-.I)5

94

-.4fih

l -.0

0.13

-.4

232

-.IO

t?Z

-.31R

V -.I

295

- .

3 3

3 II

-. 15

47

-.2H

7U

-. 11

12

-.2S3

6 -.

I792

-.2

2RS

-. I r

tc3

-.707

9 -.

I I$

Yh

-.\vs

s -.

IV07

-.I

907

-.727

3

-.?‘?

A6

-.22H

O

-.220

7 -.l

Vltl

-.I33

0 -.0

52c

.03h

5 .ll

RS

.I 19

b .?

I53

.211

6 .3

264

.377

J .4

197

.445

2 .4

b21

.471

8 .4

771

.479

1

CM

C

R

3.2V

bOE-

01

0.

0.00

00

-.fBl

R*

0.00

00

-.771

4 n.

0000

-.6

589

0.00

00

-.494

1 0.

0000

-.J

247

0.00

00

-.lfb

b 0.

0000

-.0

571

0.00

00

.034

6 0.

0000

.I0

14

o.oo

ou

.I442

0.

0000

.1

670

0.00

00

.200

6 0.

0000

.2

300

0.00

00

.257

0 0.

0000

.2

?15

0.00

00

.289

S 0.

0000

.2

973

0.00

00

.3O

lb

0.00

00

.304

0 0.

0000

.3

049

-.618

4 -1

.323

7 -.1

71*

-1.3

6R6

-.b50

9 -1

.323

7 -.4

947

-1.2

096

-.324

7 -1

.066

5 -.I

764

-.924

1 -.0

571

-.795

b .0

346

-.613

40

.I014

-.s

Elao

.I4

42

-*so

51

.I670

-.4

326

.200

6 -.3

605

.230

R

-031

09

.257

0 -0

2585

-2

175

-*21

01

.289

5 -.I

648

.297

3 -.I

211

.301

6 -*

on03

.3

040

-.039

9 .3

049

-.ooo

o

CSL

XC

PN

2.62

07E-

It 1

.BbI

XC

PY

1.86

7

(r)

Page

18

Figu

re

15.-

Con

tinue

d.

Page 166: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

SlR

ATFO

IID

QPA

f2Al

lnlJ

C

’>Ilf

1~

lW4

(CAM

lflAU

O

6 fs

l :

.ni9

7h

SllH

HAP

Y O

F l’H

t5Vl

W

LIIS

THIW

III

IUW

Al

.111

9

PAH

AT

IWI

l’lIfN

I5

Old

H

OD

Y .

. .

X

l Y

SID

L:

Y 7

HI

1P

AN

STAG

Nbl

IO

N

PT.

11 .

n n

11

-. .J

L.Y

II.

001l

.

JlJl

l M

IN.

PC(F

‘iSIIH

F 1.

07H

-.i

rnn

Qll.

000

1 .z

nn

SFPb

qbl

ION

l.n

5h

.n70

V3

.825

1.

27s

-I SI

DE:

Y

Z M

IA

AWC

ST

AGN

4Tll7

N

PT.

.ann

.

.I59

1RIl.

000

.3n5

M

IN.

PRF

SSU

W

-1.0

79

.Ono

27

0.00

1)

I ..?

lJu

SEPA

RAT

ION

-1

.056

,0

10

7hb.

I7

5 l.d

T5

INIT

IAL

POSI

TIO

NS

llYD

ST

REN

GTH

S U

F SH

ED

VUH

llCllY

Al

x

= r.f

lon

NV

F4H

/V

HIW

I Y

Z H

tTA

l Y

SlO

E:

I .4

5n3

.211

5 l.d

h72

.IfH

47

V3.A

24V

-Y

SID

E:

2 -.A

Sn3

.7l

I5

-I .2

672

.nu4

7 2h

b.17

51

r 2.

Hn

CIJ

C

P’

. 4?

9 -.2

zv

0.00

0 -.z

oe

.Ol7

cr

CP’

-.0

34

-.2ZP

0.

000

-.2of

l .O

I7

VT/V

YC

ZC

f?

G/U

.177

5 I.0

162

,112

s 1.

4229

.717

5 -1

.016

2 .1

125

1 .A

229

(s)

Page

19

Figu

re

15.-

Con

tinue

d.

DC

P’/D

X

0.0n

O

.S25

DC

P’/D

x

0.00

0 .5

25

Page 167: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

SUH

MAU

Y O

F Vf

WlL

X Fi

t! I)

Al

& q

4 .

/ I1

n

H 5

I .

4 0

0 0

II

NV

GAW

/V

Y 7

A5H

F.U

H

tlA

I I

.45r

)72

I.lh9

62

.hQ

Zl)i!

c’

.wno

o 12

0.61

I

1 2

-.4st

r-42

-I.

1696

2 .h

v2n2

z.

rloou

o LJ

9..3

R9

CEN

TRD

ID

OF

VOR

TIC

ITY

GhH

/V

Y z

l Y

9“D

Y:

.4L1

032

I.lhV

h2

.h9Z

lIL

-Y

PWY:

-.4

sll-a

2 -1

.169

bZ

.hV2

02

YC

zc

.vz3

45

.943

54

-.923

45

.943

54

RG

R

G/R

I .3

2024

1.

3695

4

1.32

024

1.36

954

(t)

Page

20

Figu

re

15.-

Con

tinue

d.

Page 168: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

------

,-----

----I-

------

--,---

------

,----,

----,-

------

--,---

------

,-----

----,-

-----

I I

I I

1 I

1.60

0 - I

1 I

I I

I

i 1 I

1 1 I

I I

1 I

I

1 1

I .I0

00

- : I

I I

A I

; I 1

f I

. .

. ...

*..*

l I

.* .

l .

.

I .

. I

l .

I

I l

. I

l *

I I

. I

l 1

I .

. I

l .

I 1

l I

. I

0.

----

-.,--

----

---I-

----

----

l----

---I-

--l--

--~-

---,-

----

----

~---

----

--l

-we-

----

-,.--

--

I l

1 .

:

l .

1 .*

: l

I .

1 l

. I

.* I

1 .

l I

l .

I l

. l

l .

l

I .*.

...*

l l

. .

I I

I I

I I

1 I

1 I

I I

I -.n

nnn

- ‘1

I I

1 1

I I

I I

1 I

1 1

:

I I

I I

I I

I I

,----I

------

---,--

------

-,----

-----,

------

1.

000

I I 1 I ------

,-----

----,-

------

--l---

------

l----

-I.no

lr 0.

II I.4

AL

IJW

A H

tlA

4.7n

n .9

h4

r’ll.u

Ill)

ll.O

Ofl

n H

M

1.

446

.4R

.?

2.50

0

(u)

Page

23

Figu

re

15.-

Con

tinue

d.

Page 169: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

VF L

OC

I

1 Y

CO

~Whr

f

J ”

1 .2

rln

2 .2

41n

3 .

4A7.

l

: .*n

2n

.7?3

rr b

.723

n 7

.w4n

8

.vfi4

n 9

i .2

nsn

10

i.2n5

n

NT5

Al

W

tCltl

tlJ

f It.

Ln

WIN

15

Al

X =

4.2n

2 (l/

V0

v/v0

W

/VII

.7?.

30

.w40

.

7?Jn

.9

h40

.4R

2I)

.vh4

n .4

P29

.?I6

40

.402

0 .9

h4fl

9.17

h5E-

01

-3.4

614E

-02

l.Zlc

?hE-

01

l.aiu

E-ni

9.

19&7

S-01

-3

.U52

4E-0

2 1.

4CM

4E-0

1 1.

4hO

bt-0

1 9.

15ew

-01

-5.7

lUYE

-IJZ

l.OH

25E-

01

I .2

23vF

.-01

').lh

fluF-

Ul

-h.H

524E

-02

I .4

3Jlli-

01

l.SEl

YIE-

01

9.14

t(lE-

01

-3.S

l74E

-02

H.

l534

E-02

e.

e7v7

t-02

9.14

74E-

ni

-1.2

15x-

01

l.JfB

5t-0

1 1.

8377

E-01

9.

ln22

E-O

l S.

,!Rl4

E-02

5.

232l

E-o2

7.

434x

-02

9.14

17F-

01

-2.3

093E

-01

1.49

1ut-0

1 2.

7493

E-01

9,

.U5l

YE-0

1 1.

55hW

-lJ1

3.4l

h4E-

01

3.75

44E-

01

R.9

P54E

-01

-3.O

YZZE

-01

3.63

47E-

VI

4.77

20E-

01

VT/V

0 Y/

D

.I250

.1

2so

.250

0 .2

500

.375

0 .

J750

.5

000

.500

0 .I?

250

.625

0

Z/D

.375

0 .5

000

.375

0 .s

ooo

.zso

o .5

000

.250

0 .5

000

.250

0 .5

000

(v)

Page

24

Figu

re

15.-

Con

tinue

d.

Page 170: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

~TR

4TFO

Ull

5EPa

Rbl

lnN

C

UIT

FOIU

N

11,4

’.‘lN

dr)

F 15

1

SIJM

MAI

JY O

F PR

E5Sl

JUT:

U

ISTR

l4U

rlUN

AN

ll SE

PAU

ATIU

N

l Y

qlnE

: Y

2 sr

4GN

4rrm

PT

. o.

ano

-.590

M

IN.

Wt

SSIJ

Rf

1.77

4 -.o

on

5EP4

~4Tl

nN

l.75J

.O

!lA

-I SI

DE:

2

Sf46

NbT

ION

PT

. -.l

SS

.Sw

I *IN

. PR

FSSW

F -1

.774

.o

oo

SEPA

sATl

ON

-1

.753

.O

AR

= .II

Z97h

POlN

fS

UN

IiW

Y .

. .

wr4

9R

C

0.00

0 ,2

74

YO.O

OIJ

l.V

74

92.R

b2

2.O

h5

RtT

4 AR

C

194.

130

.274

27

0.00

0 I.9

74

267.

138

2.06

5

a =

5.60

CP

CP’

. 4

01

-.229

0.

000

-.210

.n

ls

CIJ

C

P’

-.I58

-.2

29

0.00

0 -.I

?10

.Ol5

INIT

IAL

POSl

llON

S AN

D

STR

ENG

THS

OF

SHED

VU

RTl

CllY

AT

X

= 5.

600

NV

GAH

/V

HIK

I Y

2 BE

TA

VT/V

YC

l y

SID

E:

5 .4

0.35

.IA

A4

I.941

1 .0

970

V2.0

b23

.735

9 1.

4696

-Y

SIC

K:

6 -.4

015

.I004

-1

.941

1 .0

970

267.

1377

.7

359

-1.4

696

DC

P’/U

X

0.00

0 .J

43

DC

P’/D

X

0.00

0 .3

43

2C

RG

/R

.142

9 1.

2491

.142

9 1.

2491

CEN

TRO

ID

OF

VOH

TIC

ITY

GAW

V 1.

5Oi7

6 z

l Y

flmr:

1.21

609

.h34

7b

-Y

RO

DY!

-1

.276

09

-1.5

0176

.6

3474

. . .

. . .

. . ..

*.***

...*..

...*.*

.....*

*...**

C

ON

TRIH

UTI

ON

O

F N

OSE

SE

tlIO

N

TO

TOTA

L LO

ADS

l ~~

94.~

..~~.

W*.~

~~~*

~.~~

~~~~

~~~4

~.~~

~~~~

~

STR

ENG

THS

AND

PO

SITI

ON

S O

F Vf

JHTl

CE5

41

EN

D

OF

NO

SE

SEC

TIO

N

A=

2.00

00

I G

4WW

4/7P

IV4

YO/A

20

/A

1 .I0

155

.75o

v .3

114

2 -.I

0155

-.7

509

.Jl7

4

CO

RC

E AN

D

MO

MEN

T C

OEF

FIC

IEN

TS

IN

UN

RO

LLED

R

OD

Y C

OO

UU

INAT

ES

CZO

C

HYO

C

YO

CM

10

CH

XO

.3B7

51

1.20

011

.ooo

oo

-.ono

on

-.ooo

oo

CL

= .3

59

cn

= .I3

1

(w)

Page

30

Figu

re

15.-

Con

clud

ed.

Page 171: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

083

02

5 OJ

0

T

4 bo = 116

a, = O0

- z 0 EXPEWWT (REFi21)

-THEORY

x/D

Figure 16. - Measured and predicted pressure distribution on an ogive-cylinder at CL=OO.

164

Page 172: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

003

OB2

011

0

8

M,= 213

Q = 0’ C

0 EXPERIKENT (REF, 21

-THEORY

-011 0 1 2 3 4 5 6 7

x/D

(b> M,= 203

Figure 16. - Continued.

165

Page 173: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

013

082

Oal

0.

-011

8 M,= 2196 Q = O"

C

0 EXPERIFiENT (REF,21)

-THEORY

0 1 2 3 4 5 6 7

x/D

Cc) Mm= 2m96

Figure 16. - Concluded.

166

Page 174: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

. 8

. 6'

.4

C P

. 2

0

-. 2

~

t

i -

I I I I I I I

MO3 = 1.6

aEXPERIMENT (Ref. 21) -Theory

1--- - . 4 -~----I I 1 I 1 x/D = 2.8

0 EXPERIMENT (Ref. 21) . 2 0 -Theory

0 20 40 60 80 100 120 140 160 180 8, degrees

(a) x/D = 0.8 and 2.8

Figure 17.- Measured and predicted circumferential pressure distribution on an ogive-cylinder body

at K, = 1.6, cxc = 20°.

167

Page 175: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

.

. 1 21) / ,= j

x/D = 5.1

0 EXPERIMENT (Ref. - Theory, with separation / /

--- Theory, no separation ,'

-I - --e-

-. 3 I I 0

I 1 I I

0 20 40 60 80 100 120 140 160 180 8, degrees

(b) x/D = 5.1

Figure 17.- Concluded.

168

Page 176: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

c

c

C .

c .

c .

CX

c .

c .

Centroid of vorticity

OEXPERIMENT

r nDV,

I V,.sincl,

Figure 18.- Predicted vortex wake on the lee side of an ogive cylinder.

169

Page 177: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

r -- TDV,

.4

. 3

.2

. 1

0 8

x/D 10 12

(a) M, = 2.0 . 4

. 3

r .2 TDV,

0

M, = 3

El

4 6 8 10 x/D

(b) M, = 3.0

12 14

Figure 19.- Measured and predicted body vortex strength on an ogive cylinder.

170

Page 178: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

I

w I

t -Location

v I of data

x/D = 7

-Theory I I I I I I I

W v, -* 2

-. 4 0 EXPERIMENT (Ref. 20) - Theory

-. 6 I I I I I I I

-.

W

v,

-.

-.

O- I I

2-

x/D = 13

4- 0 EXPERIMENT (Ref. 20)

- Theory 6 I I I I I I I

0 .2 .4 .6 .8 1.0 1.2 1.4 1.8

z/D

Figure 20.- Measured and predicted downwash distribution on the lee side of an ogive cylinder

at M, = 2, oLc = 15'.

171

Page 179: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

.6

.4

.2

W -

VW. 0

-. 2 (

Location of data

-. 4 - I I I !. A

0 .1 .2 .3 .4 .5 .6 .7 .8

z/D = .75

OEXPERIMENT (Ref. 20) - Theory

Y/D

(a) z/D = .75 .6 1 I I I I I 1 I

Location W ,cDf data 0

. 4 t 0

- 0

0 o-

W .2 - - z/D = 1.05' VW 0 EXPERIMENT (Ref. 20)

0 vortex

centroid 0

I 0 0 -. 2 I 1 +

1 1 I I

0 .1 .2 .3 .4 .5 .6 .7 .8 Y/D

(b) z/D = 1.05

Figure 21.- Measured and predicted downwash distribution on the lee side of an ogive cylinder

at M, = 2, ac = 15', x/D = 10.

172

Page 180: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

W

v,

. 1

0

-. 1

-. 2

x/D = 7

0 EXPERIMENT -Theory (Ref.

/

0 20)

0 W

t 1 Location I of data I I

Z

0 -L Y

0 W

VW

-. 2

-. 4 I I I I I I I I

.2 , I 1 I I I I I 1

0 EXPERIMENT (Ref. 20) 0- Theory

W - x/D = 13 VW 0

-. 2 -

-. 4 I I I I I I I 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6

z/D

Figure 22.- Measured and predicted downwash distribution on the lee side of an ogive cylinder

at M, = 3, ccc = 15O.

173

Page 181: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Location of data

.

.

.

.

W -

VW

-. x/D = 10

z/D = .75

0 EXPERIMENT (Ref. 20) -Theory

(a) z/D = .75

Figure 23.- Measured and predicted downwash distribution on the lee side of an ogive cylinder at

M, = 3, crc = 15', X/D = 10.

174

Page 182: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

.5

.4

. 3

.2

w .1 - VW

0

-. 1

-. 2

(

-. 3

e----

Location of data

.

x/D = 10

z/D = 1.05

0 EXPERIMENT (Ref. 20)

0 - Theory

vortex 0 centroid

I v I I I I 0 .2 .4 .6 . 8 1.0 1.2

Y/D

(b) z/D = 1.05

Figure 23.- Concluded.

175

Page 183: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Vapo

r sc

reen

x/L

= 0.

32

EXPE

RIM

ENT

(Ref

. 23

) -

m-c

;‘- -,

Theo

ry

x/L

= 0.

64

83

(a)

$I =

00

x/

L.

Y 1.

0

261

Figu

re

24.-

Mea

sure

d an

d pr

edic

ted

vorte

x pa

ttern

s on

a

3:l

ellip

tic

cros

s se

ctio

n bo

dy

at

M,

= 2.

5 an

d c1

c =

2o".

Page 184: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Vapo

r sc

reen

-0

.036

2

X/L

= 0.

32

- EX

PER

IMEN

T (R

ef.

23)

--c-

Theo

ry

0.18

3

x/L

= 0.

64

2 (b

) Q

=

45"

x/L-

" 1.

0 \

Figu

re

24.

-Con

clud

ed.

Page 185: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

-,

0 EXPERlMENT

0 40 80 120 160 200 240 280 320 360 8, degrees

(a) 4 = 0'

x/L =

EXPERIMENT Theory

0.60

4 I I I -.

I I I I I

0 40 80 120 160 200 240 280 320 360 8, degrees

(b) + = 45'

Figure 25.- Measured and predicted circumferential distribution on a 3:l elliptic cross section

missle at M, = 2.5, ac = 20°, x/L = 0.60.

178

Page 186: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

1

.6 (

.4

.2

cP

O

-. 2

-. 4

x/L

= .2

5

. a

EXPE

RIM

ENT

(Ref

. 17

)

- Th

eory

, w

ith

sepa

ratio

n

---

Theo

ry,

no

sepa

ratio

n

U

LU

4u

60

8U

100

120

140

160

180

8,

degr

ees

(a)

x/L

= 0.

25

Figu

re

26.-

Mea

sure

d an

d pr

edic

ted

circ

umfe

rent

ial

pres

sure

di

strib

utio

n on

a

3:l

ellip

tic

cone

fo

rebo

dy

at

M,

= 1.

7,

CQ

=

20.3

5O.

Page 187: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

.6 (

-. 6

0 20

40

60

80

10

0 12

0 14

0 16

0 18

0

P,

degr

ees

(b)

x/L

= 0.

50

Figu

re

26.-

Con

clud

ed.

Page 188: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

1

Figu

re

27.-

Pred

icte

d vo

rtex

patte

rns

on

a 3:

l el

liptic

co

ne

fore

body

at

M

, =

1.7,

~1

~ =

20.3

5O,

X/L

= 0.

25.

Page 189: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

--

---

--w

.- X

TO

P VI

I3

Figu

re

28.

- 2:

l el

l.ipt

ic

cros

s se

ctio

n bo

dy.(R

efer

ence

22

)

Page 190: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

0,4

b

on2

Cl

-9,s

-aa- I

bo = la5

cr, = 15O

c3 = o"

x/D = 087

0 EXPERIKEFjT (REFi22)

---THEORY

I f x/D -' 291

2- Y 0 EXPERIKEVT

- THEORY

20 40 60 80 - 1(

& DEGREES

30 120 140

(a) 4 = O"

160 180

Figure 29.- Measured and predicted circumferential pressure distribution on a 2~1 elliptic cross section body

at M, = 1.5, lxc = 15O.

183

Page 191: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

--.... _..- --- - ,.-.- -- -. . . . . ,--- --. ,..,,.,., . . . . . . . . . . . - . _ .._---. I

on4

CP

O&2

0

-0,2

0 r, .L

L = 1.5

a, = 15'

0 = 229

-- I I I I I

x/D= 0,7

0 EXPERIKENT (REF,22)

-THEORY

-0 EXPEJIMT

200 ,240 280 320 36!l 6, DEGREES

(b) $I = 22.5"

Figure 29.- Continued.

184

Page 192: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

- -

flco = 1*5

a, = 15"

0 EXPERIKENT (REF, 22)

~I- I I I I I I I 40 80 120 160 200 240 230 320

B, DEGREES

(c) cp = 45O

Figure 29.- Concluded.

185

Page 193: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

. 8 .4

cP

.2 0

-. 2

-.4

x/L

= 0.

5

a EX

PER

IMEN

T (R

ef.

17)

-- Th

eory

, w

ith

sepa

ratio

n

--'Th

eory

, no

se

para

tion

0 20

40

60

80

10

0 12

0 14

0 16

0 18

0

13,

degr

ees

Figu

re

30.-

Mea

sure

d an

d pr

edic

ted

circ

umfe

rent

ial

pres

sure

di

strib

utio

n on

a

2:l

ellip

tic

cone

fo

rebo

dy

at

M,

= 1.

7,

~1~

= 20

.35"

, x/

L =

0.5.

Page 194: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

. 6

I I

I I

I I

I I

x/L

= 0.

5

EXPE

RIM

ENT

(Ref

. 18

) -

Theo

ry

@

I

B

t V,si

ncxc

0 20

40

60

80

10

0 12

0 14

0 16

0 18

0

8,

degr

ees

Figu

re

31.-

Mea

sure

d an

d pr

edic

ted

circ

umfe

rent

ial

pres

sure

di

strib

utio

n on

a

2:l

ellip

tic

fore

body

at

M

, =

1.7,

C

+ =

20.3

6",

x/L

= 0.

5.

Page 195: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

.8

Ji

( . .

6 .4

C P

. 2 0

-. 2

I I

I I

I I

I I

x/L

= -1

4

0 EX

PER

IMEN

T (R

ef.

18)

Theo

ry

Q

B

t V,s

intic

0

Figu

re

>

20

40

60

80

100

120

B,

degr

ees

(a)

x/L

= .1

4

32.-

Mea

sure

d an

d pr

edic

ted

pres

sure

di

strib

utio

n se

ctio

n bo

dy

at

M,

= 1.

7,

ac

= 20

.36'

.

140

160

180

on

a lo

bed

cros

s

Page 196: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

. .

-. -.

6 6 I I

I I I I

I I I I

I I I I

I I 1

x/L

= 0.

5

EXPE

RIM

ENT

(Ref

. 18

) -

Theo

ry

4 4 1

I I I I

I I I I

I I I I

I I I I

I

0 0 20

20

40

40

60

60

80

10

0 80

10

0 12

0 12

0 14

0 14

0 16

0 16

0 18

0 18

0 8,

8,

de

gree

s de

gree

s

(b)

x/L

= .5

Figu

re

32.-

Con

clud

ed.

Page 197: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

Figure 33.- Predicted vortex wake on a lobed body at M, = 1.7, ac = 20.36', x/L = 0.50.

190

Page 198: Prediction of Vortex Shedding From Circular and ... · PDF fileNASA Contractor Report 3754 Prediction of Vortex Shedding From Circular and Noncircular Bodies in Supersonic Flow M.

1. Rewrt No. 2. Govcrnmcnt Accarion No. 3. iiecipcnt’s Gtalog No.

NASA CR-3754 4. Title and Subt;tlt 5. Report Date

PREDICTION OF VORTEX SHEDDING FROM CIRCULAR January 1984

AND NONCIRCULAR BODIES, IN SUPERSONIC FLOW 6. Performing Organization Code

815/C 7. Author(s)

M. R. Mendenhall and S. C. Perkins, Jr. 8. Pepfarming Orpnization Report No.

NEAR TR 307

g. Performinq Organization Name and Address

10. Work Unit No.

Nielsen-Engineering & Research, Inc. 510 Clyde Avenue Mountain View, CA 94043 I I I. ~onrrac: or Grant No.

NASl-17027

12. Sponsoring Agency Name and Address

13. Typ of Repon and PC tried Cavered

Contractor Report National Aeronauticsand Space Administration 14.SponsoringAgcncyC;ode Washington, DC 20546 t-

I I 5. Stippkmcntary Nores

I Langley Technical Monitor: Jerry M. Allen I Final Report

15. Absrract

An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by .discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aero- dynamic chararacteristics are presented for bodies with circular and noncircular cross-sectional shapes.

17. Key Words (Suggested by Author(s) 1

Supersonic Flow 18. Distribution Statcmenl

Unclassified - Unlimited Vortex Shedding Elliptic Bodies

Subject Category ‘02

Missile Aerodynamics

19. Sxurity Oassif. (of thlr report1 20. Security Classif. (of this pge) 21. No. of Pages 22. Rice

Unclassified Unclassified 200 A09

For yle by the Nation4 la&tier! Informrtign Slrvicr. Sprinpfirld. Virgima 22161

aU.S.COVERNMENTPRMTINGOFFlCE:1984 -739-01CU 47 REGION NO. 4