Predicting “Min-Bias” and the “Underlying Event” at the LHC

17
CMS-QCD Group Meeting November 10, 20 09 Rick Field – Florida/CDF/CMS Page 1 Predicting “Min-Bias” and Predicting “Min-Bias” and the the “Underlying Event” at the “Underlying Event” at the LHC LHC Rick Field University of Florida Outline of Talk Proton Proton PT (hard) O utgoing Parton O utgoing Parton U nderlying Event U nderlying Event Initial-State R adiation Final-State Radiation CMS at the LHC CDF Run 2 Relationship between the “underlying event” in a hard scattering process and “min-bias” collisions. The “underlying event” at 900 GeV and 7 TeV. Summary. UE&MB@CMS UE&MB@CMS portant 900 GeV Measurements New CDF charged multiplicity distribution and comparisons with the QCD Monte-Carlo tunes. CERN November 10, 2009 The inelastic non-diffractive cross section. “Min-Bias at 900 GeV and 2.2 TeV.

description

Predicting “Min-Bias” and the “Underlying Event” at the LHC. Important 900 GeV Measurements. Rick Field University of Florida. Outline of Talk. The inelastic non-diffractive cross section. New CDF charged multiplicity distribution and comparisons with the QCD Monte-Carlo tunes. - PowerPoint PPT Presentation

Transcript of Predicting “Min-Bias” and the “Underlying Event” at the LHC

Page 1: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 1

Predicting “Min-Bias” and the Predicting “Min-Bias” and the “Underlying Event” at the LHC“Underlying Event” at the LHC

Rick FieldUniversity of Florida

Outline of Talk

Proton Proton

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

Final-State Radiation

CMS at the LHC

CDF Run 2 Relationship between the “underlying

event” in a hard scattering process and “min-bias” collisions.

The “underlying event” at 900 GeV and 7 TeV.

Summary.UE&MB@CMSUE&MB@CMS

Important 900 GeV Measurements

New CDF charged multiplicity distribution and comparisons with the QCD Monte-Carlo tunes.

CERN November 10, 2009

The inelastic non-diffractive cross section.

“Min-Bias at 900 GeV and 2.2 TeV.

Page 2: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 2

Inelastic Non-Diffractive Cross-SectionInelastic Non-Diffractive Cross-Section

The inelastic non-diffractive cross section versus center-of-mass energy from PYTHIA (×1.2).

Inelastic Non-Diffractive Cross-Section: sHC

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14

Center-of-Mass Energy (TeV)

Cro

ss-S

ecti

on

(m

b)

RDF Preliminarypy Tune DW generator level

K-Factor = 1.2

Inelastic Non-Diffractive Cross-Section: sHC

0

10

20

30

40

50

60

70

0.1 1.0 10.0 100.0

Center-of-Mass Energy (TeV)

Cro

ss-S

ecti

on

(m

b)

RDF Preliminarypy Tune DW generator level

K-Factor = 1.2

stot = sELsSD sDD sHC

Linear scale! Log scale!

sHC varies slowly. Only a 13% increase between 7 TeV (≈ 58 mb) and 14 teV (≈ 66 mb). Linear on a log scale!

My guess!

Page 3: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 3

Charged Multiplicity Distribution

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 5 10 15 20 25 30 35 40 45 50 55

Number of Charged Particles

Pro

ba

bil

ity

CDF Run 2 <Nchg>=4.5

py64 Tune A <Nchg> = 4.1

pyAnoMPI <Nchg> = 2.6

Charged Particles (|h|<1.0, PT>0.4 GeV/c)

CDF Run 2 Preliminary

HC 1.96 TeV

Normalized to 1

Charged Multiplicity Distribution

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 5 10 15 20 25 30 35 40 45 50 55

Number of Charged Particles

Pro

ba

bil

ity

CDF Run 2 <Nchg>=4.5

Normalized to 1

CDF Run 2 Preliminary

Min-Bias 1.96 TeV

Charged Particles (|h|<1.0, PT>0.4 GeV/c)

Charged Particle MultiplicityCharged Particle Multiplicity

Data at 1.96 TeV on the charged particle multiplicity (pT > 0.4 GeV/c, |h| < 1) for “min-bias” collisions at CDF Run 2.

Proton AntiProton

“Minumum Bias” Collisions

The data are compared with PYTHIA Tune A and Tune A without multiple parton interactions (pyAnoMPI).

No MPI! Tune A!7 decades!

Page 4: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 4

Charged Particle MultiplicityCharged Particle Multiplicity

Data at 1.96 TeV on the charged particle multiplicity (pT > 0.4 GeV/c, |h| < 1) for “min-bias” collisions at CDF Run 2.

Proton AntiProton

“Minumum Bias” Collisions

The data are compared with PYTHIA Tune A and Tune A without multiple parton interactions (pyAnoMPI).

No MPI!Tune A!

Charged Multiplicity Distribution

0.00

0.05

0.10

0.15

0.20

0 2 4 6 8 10 12 14 16

Number of Charged Particles

Pro

ba

bil

ity

CDF Run 2 <Nchg>=4.5

py64 Tune A <Nchg> = 4.1

pyAnoMPI <Nchg> = 2.6

Charged Particles (|h|<1.0, PT>0.4 GeV/c)

CDF Run 2 Preliminary

HC 1.96 TeV

Normalized to 1

Charged Multiplicity Distribution

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 5 10 15 20 25 30 35 40 45 50 55

Number of Charged Particles

Pro

ba

bil

ity

CDF Run 2 <Nchg>=4.5

pyS320 <Nchg> = 4.2

Charged Particles (|h|<1.0, PT>0.4 GeV/c)

CDF Run 2 Preliminary

HC 1.96 TeV

Normalized to 1

Tune S320!

Charged Multiplicity Distribution

0.00

0.05

0.10

0.15

0.20

0 2 4 6 8 10 12 14 16

Number of Charged Particles

Pro

ba

bil

ity

CDF Run 2 <Nchg>=4.5

py64 Tune A <Nchg> = 4.1

py64DW <Nchg> = 4.2

pyS320 <Nchg> = 4.2

pyP329 <Nchg> = 4.4

Charged Particles (|h|<1.0, PT>0.4 GeV/c)

CDF Run 2 Preliminary

HC 1.96 TeV

Normalized to 1

Page 5: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 5

The “Underlying Event”The “Underlying Event”

Proton Proton

Select inelastic non-diffractive events that contain a hard scattering

Proton Proton

Proton Proton +

Proton Proton

+ + …

“Semi-hard” parton-parton collision(pT < ≈2 GeV/c)

Hard parton-parton collisions is hard(pT > ≈2 GeV/c) The “underlying-event” (UE)!

Multiple-parton interactions (MPI)!

Given that you have one hard scattering it is more probable to have MPI! Hence, the UE has more activity than “min-bias”.

Page 6: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 6

The Inelastic Non-Diffractive The Inelastic Non-Diffractive Cross-SectionCross-Section

Proton Proton

Proton Proton +

Proton Proton

Proton Proton

+

Proton Proton +

+ …

“Semi-hard” parton-parton collision(pT < ≈2 GeV/c)

Occasionally one of the parton-parton collisions is hard(pT > ≈2 GeV/c)

Majority of “min-bias” events!

Multiple-parton interactions (MPI)!

Page 7: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 7

The “Underlying Event”The “Underlying Event”

Proton Proton

Select inelastic non-diffractive events that contain a hard scattering

Proton Proton

Proton Proton +

Proton Proton

+ + …

“Semi-hard” parton-parton collision(pT < ≈2 GeV/c)

Hard parton-parton collisions is hard(pT > ≈2 GeV/c) The “underlying-event” (UE)!

Multiple-parton interactions (MPI)!

Given that you have one hard scattering it is more probable to have MPI! Hence, the UE has more activity than “min-bias”.

Page 8: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 8

Charged Multiplicity Distribution

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 5 10 15 20 25 30 35 40 45 50 55

Number of Charged Particles

Pro

ba

bil

ity

CDF Run 2 <Nchg>=4.5

py64 Tune A <Nchg> = 4.1

pyA 900 GeV <Nchg> = 3.3

py64A LHC22 <Nchg> = 4.1

Charged Particles (|h|<1.0, PT>0.4 GeV/c)

CDF Run 2 Preliminary

Min-Bias

Normalized to 1

Charged Particle MultiplicityCharged Particle Multiplicity

Data at 1.96 TeV on the charged particle multiplicity (pT > 0.4 GeV/c, |h| < 1) for “min-bias” collisions at CDF Run 2. The data are compared with PYTHIA Tune A and Tune A without multiple parton interactions (pyAnoMPI).

Proton AntiProton

“Minumum Bias” Collisions

Proton Proton

“Minumum Bias” Collisions

Prediction from PYTHIA Tune A for proton-proton collisions at 900 GeV and 2.2 TeV.

Tune A prediction at 900 GeV!

Charged Multiplicity Distribution

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 5 10 15 20 25 30 35 40 45 50 55

Number of Charged Particles

Pro

ba

bil

ity

CDF Run 2 <Nchg>=4.5

py64 Tune A <Nchg> = 4.1

pyAnoMPI <Nchg> = 2.6

Charged Particles (|h|<1.0, PT>0.4 GeV/c)

CDF Run 2 Preliminary

HC 1.96 TeV

Normalized to 1

No MPI! Tune A! Tune A prediction at 2.2 TeV!

The charged multiplicity distributiondoes not change between

1.96 and 2.2 TeVand proton-proton is the same as

proton-antiproton!

Page 9: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 9

LHC Predictions: 900 GeVLHC Predictions: 900 GeV

Proton Proton

“Minumum Bias” Collisions

Charged multiplicity distributions for proton-proton collisions at 900 GeV (|h| < 2) from PYTHIA Tune A, Tune DW, Tune S320, and Tune P329.

Proton Proton

“Minumum Bias” Collisions

Charged Multiplicity Distribution

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 10 20 30 40 50 60 70 80

Number of Charged Particles

Pro

ba

bil

ity

RDF Preliminary

HC 900 GeV

Normalized to 1

Charged Particles (|h|<2.0)

pT > 0.5 geV/c

<Nchg> ~ 5

All pT

<Nchg> ~ 14

Charged Multiplicity Distribution

0.00

0.02

0.04

0.06

0.08

0 5 10 15 20 25 30 35 40

Number of Charged Particles

Pro

ba

bil

ity

pyA 900 GeV <Nchg> = 14.2

pyDW 900 GeV <Nchg> = 14.4

pyS320 900 GeV <Nchg> = 14.2

pyP329 900 GeV <Nchg> = 14.7

HC 900 GeV

Normalized to 1 Charged Particles (|h|<2.0, all pT)

RDF Preliminary

Charged Multiplicity Distribution

0.00

0.04

0.08

0.12

0.16

0 2 4 6 8 10 12 14 16

Number of Charged Particles

Pro

ba

bil

ity

pyA <Nchg> = 5.0 STdev = 4.5

pyDW 900 GeV <Nchg> = 5.3

pyS320 900 GeV <Nchg> = 5.2

pyP329 900 GeV <Nchg> = 5.3

RDF Preliminary

HC 900 GeV

Normalized to 1

Charged Particles (|h|<2.0, PT>0.5 GeV/c)

Charged Transverse Momentum Distribution

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0.0 1.0 2.0 3.0 4.0 5.0

Transverse Momentum (GeV/c)

d<

Nc

hg

>/d

pT

1/(

GeV

/c)

py64DW <Nchg> = 14.4 <pT> = 787 MeV/c

pyS320 <Nchg> = 14.2 <pT> = 778 MeV/c

pyP329 <Nchg> = 14.7 <pT> = 795 MeV/c

RDF Preliminary

HC 900 GeV Charged Particles (|h|<2.0)

Charged Transverse Momentum Distribution

0

10

20

30

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Transverse Momentum (GeV/c)

d<

Nc

hg

>/d

pT

1/(

GeV

/c)

py64DW <Nchg> = 14.4 <pT> = 787 MeV/c

pyS320 <Nchg> = 14.2 <pT> = 778 MeV/c

pyP329 <Nchg> = 14.7 <pT> = 795 MeV/c

RDF Preliminary

HC 900 GeV

Charged Particles (|h|<2.0)

Page 10: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 10

““Transverse” Charged DensityTransverse” Charged Density

PTmax Direction

“Toward”

“Transverse” “Transverse”

“Away”

Shows the charged particle density in the “transverse” region for charged particles (pT > 0.5 GeV/c, |h| < 2) at 900 GeV as defined by PTmax from PYTHIA Tune DW and Tune S320 at the particle level (i.e. generator level).

"Transverse" Charged Particle Density: dN/dhd

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14 16 18 20

PTmax (GeV/c)

"Tra

ns

ve

rse

" C

ha

rge

d D

en

sit

y

Charged Particles (|h|<2.0, PT>0.5 GeV/c) HC 900 GeV

RDF Preliminarygenerator level

pyS320

pyDW

PTmax Direction

“Toward”

“Transverse” “Transverse”

“Away”

PTmax > 5 GeV/c!

"Transverse" Charged Particle Multiplicity

0.00

0.06

0.12

0.18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Charged Particles

Pro

ba

bil

ity

py64DW <Nchg> = 3.5 <NchgDen> = 0.42

pyS320 <Nchg> = 3.4 <NchgDen> = 0.41

RDF Preliminarygenerator level

HC 900 GeV PTmax > 5 GeV/c

Charged Particles (|h|<2.0, PT>0.5 GeV/c)

Shows the charged particle multiplicity distribution in the “transverse” region (pT > 0.5 GeV/c, |h| < 2) at 900 GeV as defined by PTmax from PYTHIA Tune DW and Tune S320 at the particle level (i.e. generator level).

Page 11: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 11

Charged Particle MultiplicityCharged Particle Multiplicity

PTmax Direction

“Toward”

“Transverse” “Transverse”

“Away”

"Transverse" Charged Particle Multiplicity

0.00

0.06

0.12

0.18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Charged Particles

Pro

ba

bil

ity

py64DW <Nchg> = 3.5 <NchgDen> = 0.42

pyS320 <Nchg> = 3.4 <NchgDen> = 0.41

RDF Preliminarygenerator level

HC 900 GeV PTmax > 5 GeV/c

Charged Particles (|h|<2.0, PT>0.5 GeV/c)

Charged Multiplicity Distribution

0.00

0.04

0.08

0.12

0.16

0 2 4 6 8 10 12 14 16

Number of Charged Particles

Pro

ba

bil

ity

pyA <Nchg> = 5.0 STdev = 4.5

pyDW 900 GeV <Nchg> = 5.3

pyS320 900 GeV <Nchg> = 5.2

pyP329 900 GeV <Nchg> = 5.3

RDF Preliminary

HC 900 GeV

Normalized to 1

Charged Particles (|h|<2.0, PT>0.5 GeV/c)

Proton Proton

“Minumum Bias” Collisions

NchgDen = 0.21The “underlying event” is twice as active as an average HC collision!

Shows the charged particle multiplicity distribution in the “transverse” region (pT > 0.5 GeV/c, |h| < 2) at 900 GeV as defined by PTmax from PYTHIA Tune DW and Tune S320 at the particle level (i.e. generator level).

Shows the charged particle multiplicity distribution in HC collisions (pT > 0.5 GeV/c, |h| < 2) at 900 GeV PYTHIA Tune A, Tune DW, Tune S320, and Tune P329 at the particle level (i.e. generator level).

Page 12: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 12

ssHCHC: PTmax > 5 GeV/c: PTmax > 5 GeV/c

The inelastic non-diffractive PTmax > 5 GeV/c cross section (|h| < 1) versus center-of-mass energy from PYTHIA (×1.2).

stot = sELsSD sDD sHC

Linear scale! Log scale!

Inelastic HC Cross-Section: PTmax > 5 GeV/c

0.0

0.5

1.0

1.5

0 2 4 6 8 10 12 14

Center-of-Mass Energy (TeV)

Cro

ss-S

ecti

on

(m

b)

RDF Preliminarypy Tune DW generator level

K-Factor = 1.2

Charged Particles (PTmax > 5 GeV/c |h| < 1)

Inelastic HC Cross-Section: PTmax > 5 GeV/c

0.0

0.4

0.8

1.2

1.6

0.1 1.0 10.0 100.0

Center-of-Mass Energy (TeV)

Cro

ss-S

ecti

on

(m

b)

RDF Preliminarypy Tune DW generator level

K-Factor = 1.2

Charged Particles (PTmax > 5 GeV/c |h| < 1)

sHC(PTmax > 5 GeV/c) varies more rapidly. Factor of 2.3 increase between 7 TeV (≈ 0.56 mb) and 14 teV (≈ 1.3 mb). Linear on a linear scale!

HC Cross-Section: Fraction PTmax > 5 GeV/c

0.0%

0.5%

1.0%

1.5%

2.0%

0 2 4 6 8 10 12 14

Center-of-Mass Energy (TeV)

Per

cen

t o

f E

ven

ts

Charged Particles (PTmax > 5 GeV/c |h| < 1)

RDF Preliminarypy Tune DW generator level

Number of Events in 1/nb: PTmax > 5 GeV/c

0

500,000

1,000,000

1,500,000

0 2 4 6 8 10 12 14

Center-of-Mass Energy (TeV)

Nu

mb

er o

f E

ven

tsRDF Preliminary

py Tune DW generator level

Charged Particles (PTmax > 5 GeV/c |h| < 1)

K-Factor = 1.2

Still lots of events!

In 1,000,000 HC collisions at 900 GeV you get 940 with

PTmax > 5 GeV/c!

Page 13: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 13

PTmax Cross-Section 900 GeVPTmax Cross-Section 900 GeV

The inelastic non-diffractive PTmax > 5 GeV/c cross section (|h| < 2) at 900 GeV from PYTHIA Tune DW and Tune S320.

stot = sELsSD sDD sHC

Differential Cross-Section: ds/dPTmax

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0 2 4 6 8 10 12 14 16 18 20

PTmax (GeV/c)

ds /

dP

T (

mb

/Ge

V/c

)

RDF Preliminarygenerator level

K-Factor = 1.2

Charged Particles (|h|<2.0, PT>0.5 GeV/c)

pyDW

pyS320

HC 900 GeV

Number of Events with PTmax > PT0

10

100

1,000

10,000

100,000

1,000,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PT0 (GeV/c)

Nu

mb

er

of

Ev

en

ts

pyDW 1,885 Events with PTmax > 5 GeV/c

pyS320 3,160 Events with PTmax > 5 GeV/c

1,000,000 HC Collisions

HC 900 GeV

RDF Preliminarygenerator level

Charged Particles (|h|<2.0)

Number of events with PTmax > PT0 (|h| < 2) for 1,000,000 HC collisions at 900 GeV from PYTHIA Tune DW and Tune S320.

In 1,000,000 HC collisions at 900 GeV you get ~3,000 with

PTmax > 5 GeV/c!

Need about 10,000 HC events with PTmax > 5 GeV/c to do a nice analysis!

If we get 3,400,000 HC collisionsat 900 GeV we could do both

“min-bias” AND the “underlying event”and compare them!

Very important to do BOTH“soft” and “hard” physics!

Page 14: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 14

Min-Bias “Associated”Min-Bias “Associated”Charged Particle DensityCharged Particle Density

Shows the “associated” charged particle density in the “transverse” region as a function of PTmax for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) for “min-bias” events at 0.2 TeV, 0.9 TeV, 1.96 TeV, 7 TeV, 10 TeV, 14 TeV predicted by PYTHIA Tune DW at the particle level (i.e. generator level).

PTmax Direction

“Toward”

“Transverse” “Transverse”

“Away”

PTmax Direction

“Toward”

“Transverse” “Transverse”

“Away”

RHIC Tevatron

0.2 TeV → 1.96 TeV (UE increase ~2.7 times)

PTmax Direction

“Toward”

“Transverse” “Transverse”

“Away”

LHC

1.96 TeV → 14 TeV (UE increase ~1.9 times)

Linear scale!

"Transverse" Charged Particle Density: dN/dhd

0.0

0.4

0.8

1.2

0 5 10 15 20 25

PTmax (GeV/c)

"Tra

ns

vers

e"

Ch

arg

ed D

en

sity

Charged Particles (|h|<1.0, PT>0.5 GeV/c)

RDF Preliminarypy Tune DW generator level

Min-Bias 14 TeV

1.96 TeV

0.2 TeV

7 TeV

0.9 TeV

10 TeV

"Transverse" Charged Particle Density: dN/dhd

0.0

0.4

0.8

1.2

0 2 4 6 8 10 12 14

Center-of-Mass Energy (TeV)

"Tra

ns

vers

e"

Ch

arg

ed D

ensi

ty RDF Preliminarypy Tune DW generator level

Charged Particles (|h|<1.0, PT>0.5 GeV/c)

PTmax = 5.25 GeV/c

RHIC

Tevatron900 GeV

LHC7

LHC14

LHC10

Page 15: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 15

Min-Bias “Associated”Min-Bias “Associated”Charged Particle DensityCharged Particle Density

Shows the “associated” charged particle density in the “transverse” region as a function of PTmax for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) for “min-bias” events at 0.2 TeV, 0.9 TeV, 1.96 TeV, 7 TeV, 10 TeV, 14 TeV predicted by PYTHIA Tune DW at the particle level (i.e. generator level).

Log scale!

"Transverse" Charged Particle Density: dN/dhd

0.0

0.4

0.8

1.2

0 5 10 15 20 25

PTmax (GeV/c)

"Tra

ns

vers

e"

Ch

arg

ed D

en

sity

Charged Particles (|h|<1.0, PT>0.5 GeV/c)

RDF Preliminarypy Tune DW generator level

Min-Bias 14 TeV

1.96 TeV

0.2 TeV

7 TeV

0.9 TeV

10 TeV

"Transverse" Charged Particle Density: dN/dhd

0.0

0.4

0.8

1.2

0.1 1.0 10.0 100.0

Center-of-Mass Energy (TeV)

"Tra

ns

vers

e"

Ch

arg

ed D

ensi

ty RDF Preliminarypy Tune DW generator level

Charged Particles (|h|<1.0, PT>0.5 GeV/c)

PTmax = 5.25 GeV/c

RHIC

Tevatron

900 GeV

LHC7

LHC14LHC10

PTmax Direction

“Toward”

“Transverse” “Transverse”

“Away”

PTmax Direction

“Toward”

“Transverse” “Transverse”

“Away”

LHC7 LHC14

7 TeV → 14 TeV (UE increase ~20%)

Linear on a log plot!

Page 16: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 16

““Transverse” Charge DensityTransverse” Charge Density

PTmax Direction

“Toward”

“Transverse” “Transverse”

“Away”

PTmax Direction

“Toward”

“Transverse” “Transverse”

“Away”

LHC 900 GeV

LHC7 TeV

900 GeV → 7 TeV (UE increase ~ factor of 2.1)

"Transverse" Charged Particle Density: dN/dhd

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14 16 18 20

PTmax (GeV/c)

"Tra

ns

ve

rse

" C

ha

rge

d D

en

sit

y

Charged Particles (|h|<2.0, PT>0.5 GeV/c) HC 900 GeV

RDF Preliminarygenerator level

pyS320

pyDW

"Transverse" Charged Particle Density: dN/dhd

0.0

0.4

0.8

1.2

0 2 4 6 8 10 12 14 16 18 20

PTmax (GeV/c)

"Tra

nsv

ers

e"

Ch

arg

ed

De

ns

ity

Charged Particles (|h|<2.0, PT>0.5 GeV/c)

RDF Preliminarypy Tune DW generator level

900 GeV

7 TeV

Shows the charged particle density in the “transverse” region for charged particles (pT > 0.5 GeV/c, |h| < 2) at 900 GeV as defined by PTmax from PYTHIA Tune DW and Tune S320 at the particle level (i.e. generator level).

factor of 2!

Page 17: Predicting “Min-Bias” and the  “Underlying Event” at the LHC

CMS-QCD Group Meeting November 10, 2009

Rick Field – Florida/CDF/CMS Page 17

Charged Multiplicity Distribution

0.00

0.02

0.04

0.06

0.08

0 5 10 15 20 25 30 35 40

Number of Charged Particles

Pro

bab

ilit

y

pyA 900 GeV <Nchg> = 14.2

pyDW 900 GeV <Nchg> = 14.4

pyS320 900 GeV <Nchg> = 14.2

pyP329 900 GeV <Nchg> = 14.7

HC 900 GeV

Normalized to 1 Charged Particles (|h|<2.0, all pT)

RDF Preliminary

Important 900 GeV Measurements

Proton Proton

“Minumum Bias” Collisions

Proton Proton

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

Final-State Radiation

PTmax Direction

“Toward”

“Transverse” “Transverse”

“Away”

The amount of activity in “min-bias” collisions (multiplicity distribution, pT distribution, PTsum distribution, dNchg/dh).

The amount of activity in the “underlying event” in hard scattering events (“transverse” Nchg distribution, “transverse” pT distribution, “transverse” PTsum distribution for events with PTmax > 5 GeV/c).

We should map out the energy dependence of the “underlying event” in a hard scattering process from 900 GeV to 14 TeV!

Proton Proton

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

Final-State Radiation

PTmax Direction

“Toward”

“Transverse” “Transverse”

“Away”

"Transverse" Charged Particle Density: dN/dhd

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14 16 18 20

PTmax (GeV/c)

"Tra

nsv

erse

" C

har

ged

Den

sity

Charged Particles (|h|<2.0, PT>0.5 GeV/c) HC 900 GeV

RDF Preliminarygenerator level

pyS320

pyDW

Charged Multiplicity Distribution

0.00

0.04

0.08

0.12

0.16

0 2 4 6 8 10 12 14 16

Number of Charged Particles

Pro

ba

bil

ity

pyA <Nchg> = 5.0 STdev = 4.5

pyDW 900 GeV <Nchg> = 5.3

pyS320 900 GeV <Nchg> = 5.2

pyP329 900 GeV <Nchg> = 5.3

RDF Preliminary

HC 900 GeV

Normalized to 1

Charged Particles (|h|<2.0, PT>0.5 GeV/c)

"Transverse" Charged Particle Multiplicity

0.00

0.06

0.12

0.18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Charged Particles

Pro

bab

ilit

y

py64DW <Nchg> = 3.5 <NchgDen> = 0.42

pyS320 <Nchg> = 3.4 <NchgDen> = 0.41

RDF Preliminarygenerator level

HC 900 GeV PTmax > 5 GeV/c

Charged Particles (|h|<2.0, PT>0.5 GeV/c)

"Transverse" Charged Particle Density: dN/dhd

0.0

0.4

0.8

1.2

0.1 1.0 10.0 100.0

Center-of-Mass Energy (TeV)

"Tra

nsv

erse

" C

har

ged

Den

sity RDF Preliminary

py Tune DW generator level

Charged Particles (|h|<1.0, PT>0.5 GeV/c)

PTmax = 5.25 GeV/c

For every 1,000 events here

We get 3 events here!

It is very important to measureBOTH “min-bias” and the and the

“underlying event” at 900 GeV!To do this we need to collect

about 5,000,000 CMS min-bias triggers!