Precipitation unit 2

100
UNIT- 2 PRECIPITATION

Transcript of Precipitation unit 2

Page 1: Precipitation unit 2

UNIT- 2PRECIPITATION

Page 2: Precipitation unit 2

DEFINITION All types of moisture reaching the surface of

earth from atmosphere.Precipitation is the basic input to the hydrology.

Factors determining precipitation or the amount of atmospheric moisture over a region

Climate Geography

Ocean surfaces is the chief source of moisture for precipitation

Page 3: Precipitation unit 2

MECHANISM OF PRECIPITATION There are different kinds of

precipitation :

CONVECTIONAL: In this process, a fluid is heated by a warm surface ,expands and rises creating an upward flow. Convectional precipitation results from the heating of the earth's surface.

As the air warms the air becomes "lighter” and rises rapidly into the atmosphere.

Page 4: Precipitation unit 2

(2) OROGRAPHIC : Orographic precipitation results when warm moist air moving across the ocean is forced to rise by large mountains. As the air rises, it cools at higher elevation results in cooler temperatures and deeper clouds.

Page 5: Precipitation unit 2

CYCLONIC OR FRONTAL PRECIPITATION

Cyclonic or Frontal precipitation results when the leading edge of a warm, moist air mass(warm front) meets a cool

The warmer air mass is forced up over the cool air. As it rises, the warm air cools, the water vapour in the air condenses, and clouds and precipitation result.

This type of system is called Frontal Precipitation because the moisture tends to occur along the front of the air mass.

Page 6: Precipitation unit 2

FORMS OF PRECIPITATION

Page 7: Precipitation unit 2

RAIN Rain is the most common type of

precipitation in our atmosphere. Rain is when liquid droplets fall to the surface of the Earth.

There are two different forms of rain, either in the form of

showers drizzles

Showers are heavy, large drops of rain and usually only last a period of time.

Drizzles however usually last longer and are made up of smaller droplets of water.

Rain can either be formed as ice crystals melt or it can be smaller water droplets.

LightI = 2.5mm/hr

ModerateI =

2.6-7.5mm/hr

HeavyI > 7.5 mm/hr

Page 8: Precipitation unit 2

SNOW Snow is the second most common precipitation in

the North East. Snow forms when water vapor turns directly into

ice without ever passing through a liquid state. This happens as water condenses around an ice crystal.

Density of freshly fallen snow varies between 125-500mm of snow required to equal 25mm of liquid water

Average density (specific gravity) = 0.1

Page 9: Precipitation unit 2

HAIL Hail is created when moisture and wind are together. Inside the

cumulonimbus clouds ice crystals form, and begin to fall towards the surface of Earth. When this starts to happen wind gusts start to pick up the ice crystals pushing them up high into the clouds. As they start to fall down again they continue to grow in size. A wind gust might catch the hail stone again which will push it back up into the cloud. This whole process gets repeated several times before the hail stone becomes so big that it is too heavy for the wind to carry so it must fall towards Earth.

Shapes of hail particles1. Spherical2. Conical3. Irregular

Diameter range 5 to 125 mmSpecific gravity = 0.8

Average density (specific gravity) = 0.1

Page 10: Precipitation unit 2

FOG

There are four main types of fog,  radiation fog advection fog upslope fog evaporation fog

There is really no different between fog and the clouds that are high in the sky. In simple terms fog is a cloud that has formed near the surface of the Earth.

Page 11: Precipitation unit 2

DEW The small drops of water which can be found on

cool surfaces like grass in the morning. This is the result of atmospheric vapor condensing

on the surface in the colder night air. Dew Point is the temperature in which

condensation starts to take place or when dew is created.

Page 12: Precipitation unit 2

MIST / DRIZZLEMist is a bunch of small droplets of water which are in

the air. This occurs with cold air when it is above a warm surface, for example water.

Fog and mist are very similar, the only difference is their visibility. If you cannot see 1 kilometer or less you know you're dealing

with fog. You can see visuals through mist and it is more haze looking

than a thicker substance.

Diameter range between 0.1 and 0.5 mm/hr

Page 13: Precipitation unit 2

GLAZE Glaze is the ice coating, generally

clear and smooth, formed on exposed surfaces by the freezing of super cooled water deposited by rain or drizzle.Specific gravity may be as high as 0.8-

0.9

Page 14: Precipitation unit 2

RIME Rime is the white opaque deposit

of ice granules more or less separated by trapped air and formed by rapid freezing of super cooled water drops impinging on exposed objects.Specific gravity may be as low as 0.2-

0.3

Page 15: Precipitation unit 2

SLEET Sleet consists of transparent, globular, solid

grains of ice formed by the freezing of raindrops or freezing of largely melted ice crystals falling through a layer of sub freezing air near the earth’s surface.

Page 16: Precipitation unit 2
Page 17: Precipitation unit 2

MEASUREMENT OF PRECIPITATION Rainfall and other forms of precipitation are

measured in terms of depth, the values being expressed in millimeters and 10th of millimeters.

One millimeter of precipitation represents the quantity of water needed to cover the land with a 1mm layer of water, taking into account that nothing is lost through drainage, evaporation or absorption.

Instrument used to collect and measure the precipitation is called rain gauge.

Page 18: Precipitation unit 2

MEASUREMENT OF PRECIPITATION

1. Amount of precipitation

2. Intensity of precipitation

3. Duration of precipitation

4. Arial extent of precipitation

Page 19: Precipitation unit 2

MEASUREMENT METHODSMeasurement of precipitation (Rain and

Snow) can be done by various devices. These measuring devices and techniques are :

Rain GaugesSnow GaugesRadarsSatellitesScratching of snow packs Water equivalent in snow packs

Page 20: Precipitation unit 2

RAIN GAUGES Rain gages are most commonly used for the

measurement of precipitation, both in terms of rain fall and snow. The rain gauge is also known as hyeto meter .

Rain gauges have been used historically to provide rainfall quantities and rates at a single point in space

The volume of water collected in a cylinder is divided by the area of the cylinder opening and converted into a depth or rain.

Page 21: Precipitation unit 2
Page 22: Precipitation unit 2

TYPES OF RAIN GAUGES There are two main types of rain

gages which are used to measure the precipitation. These are:

1. Non recording rain gages

2. Recording rain gages

Page 23: Precipitation unit 2

NON RECORDING RAIN GAUGES These are basic storage

devices that measure the cumulative amount of rain. A common type of these gauges is called the 8-inch Standard Rain Gauge (SRG) which has been used by the weather offices of US National Weather Service (NWS) for over 100 years. The standard gauge is simply a large cylinder with a funnel and a plastic measuring tube inside the cylinder.

Page 24: Precipitation unit 2

The non-recording rain gauge used in India is the Symons's rain gauge .

It consists of a funnel with a circular rim of 12.7 cm diameter and a glass bottle as a receiver.

The cylindrical metal casing is fixed vertically to the masonry foundation with the level rim 30.5 cm above the ground surface.

The rain falling into the funnel is collected in the receiver and is measured in a special measuring glass graduated in mm of rainfall; when full it can measure 1.25 cm of rain.

The rainfall is measured every day at 08.30 hours IST. The collector is of size 100 to 200 cm.

Page 25: Precipitation unit 2

During heavy rains, it must be measured three or four times in the day, lest the receiver fill and overflow, but the last measurement should be at 08.30 hours IST and the sum total of all the measurements during the previous 24 hours entered as the rainfall of the day in the register.

Usually, rainfall measurements are made at 08.30 hr IST and sometimes at 17.30 hr IST also.

Thus the non-recording or the Symons rain gauge gives only the total depth of rainfall for the previous 24 hours (i.e., daily rainfall) and does not give the intensity and duration of rainfall during different time intervals of the day.

It is often desirable to protect the gauge from being damaged by cattle and for this purpose a barbed wire fence may be erected around it.

Page 26: Precipitation unit 2

RECORDING RAIN GAUGEThis is also called self-recording, automatic or integrating rain gauge.

This type of rain gauge has an automatic mechanical arrangement consisting of a clockwork, a drum with a graph paper fixed around it and a pencil point, which draws the mass curve of rainfall. From this mass curve, the depth of rainfall in a given time, the rate or intensity of rainfall at any instant during a storm, time of onset and cessation of rainfall, can be determined.

The gauge is installed on a concrete or masonry platform 45 cm square in the observatory enclosure by the side of the ordinary rain gauge at a distance of 2-3 m from it. The gauge is so installed that the rim of the funnel is horizontal and at a height of exactly 75 cm above ground surface. The self-recording rain gauge is generally used in conjunction with an ordinary rain gauge exposed close by, for use as standard, by means of which the readings of the recording rain gauge can be checked and if necessary adjusted.

Page 27: Precipitation unit 2

TYPES OF RECORDING RAIN GAUGES

There are three main types of recording rain gauges

1. Float type rain gauges

2. Tipping bucket type rain gauges

3. Weighing type rain gauges

Page 28: Precipitation unit 2

FLOAT TYPE RAIN GAUGE In this type, as the rain is

collected in a float chamber, the float moves up which makes a pen to move on a chart wrapped round a clock driven drum. When the float chamber fills up, the water siphons out automatically through a siphon tube kept in an interconnected siphon chamber. The clockwork revolves the drum once in 24 hours. The clock mechanism needs rewinding once in a week when the chart wrapped round the drum is also replaced. This type of gauge is used by IMD.

Page 29: Precipitation unit 2
Page 30: Precipitation unit 2

The graphic rain gauge 1-receiver 2-floater 3-siphon 4-recording needle5-drum with diagram6-clock mechanism

Page 31: Precipitation unit 2

The rise of float with increasing catch of rainfall is recorded. Some gauges must be emptied manually while others are emptied automatically using self starting siphons.

In most gauges oil or mercury is the float and is placed in the receiver, but in some cases the receiver rests on a both of oil or mercury and the float measures the rise of oil or mercury displaced by the increasing weight of the receiver as the rainfall catch freezes. Float may get damaged by rainfall catch freezer

Page 32: Precipitation unit 2

Disadvantages of float gauge :

They are costlier than other non recording rain gauges Mechanical defects sometimes gives erroneous results

Page 33: Precipitation unit 2

TIPPING BUCKET RAIN GAUGE This consists of a cylindrical receiver 30 cm

diameter with a funnel inside .

Just below the funnel a pair of tipping buckets is pivoted such that when one of the bucket receives a rainfall of 0.25 mm it tips and empties into a tank below, while the other bucket takes its position and the process is repeated.

The tipping of the bucket actuates on electric circuit which causes a pen to move on a chart wrapped round a drum which revolves by a clock mechanism. This type cannot record snow.

Page 34: Precipitation unit 2

A tipping bucket rain gauge is used for

measurement of rainfall. It measures the rainfall with a least count of 1 mm and gives out one electrical pulse for every millimeter of rainfall

Page 35: Precipitation unit 2

Advantage of tipping bucket :

it is the only recording gauge which can be used in remote places by installing the recorder at a convenient and easily accessible location

Disadvantages of tipping bucket :

If the bucket is designed to tip at a convenient frequency for a particular intensity of rainfall , they will tip either too soon or too late for other intensities

Page 36: Precipitation unit 2
Page 37: Precipitation unit 2

WEIGHING TYPE RAIN GAUGE In this type of rain-gauge, when a

certain weight of rainfall is collected in a tank, which rests on a spring-lever balance, it makes a pen to move on a chart wrapped round a clock driven drum. The rotation of the drum sets the time scale while the vertical motion of the pen records the cumulative precipitation.

Page 38: Precipitation unit 2
Page 39: Precipitation unit 2

Disadvantages of weighing type rain gauge :

in heavy precipitation there is good chance that bucket will overflow

these instruments are costlier too

Advantages of weighing type rain gauge : it can measure all forms of precipitation

including snow and rain

Page 40: Precipitation unit 2

ERRORS IN PRECIPITATION MEASUREMENT BY RAIN GAUGES

Instrumental errors Errors in scale reading Dent in receivers Dent in measuring cylinders About 0.25mm of water is initially required to wet the

surface of gauge Rain gauges splash from collector Frictional effects Non verticality of measuring cylinders (10° inclination gives

1.5% less precipitation) Loss of water by evaporation Leakage in measuring cylinder Wind speed reduces measured amount of rain in the rain

gauges.

Page 41: Precipitation unit 2

LOCATION OF RAIN GAUGES The amount of rainfall collected by a rain gauge depends on its

exposure conditions and there fore great care must be taken for selecting suitable site for a rain gauge.

According to Indian standards the following precautions must be taken while selecting a site for a rain gauge station :

1) The site should be on level ground,i.e, sloping ground, hill tops or hill slopes are not suitable

2) The site should be an open space.3) Horizontal distance between the rain gauge and the nearest object

should be twice the height of the object 4) Site should be away from continuous wind forces.

Page 42: Precipitation unit 2

5) Other meteorological object and the fencing of the site should maintain the horizontal distance between the rain gauge and the nearest object twice the height of object.

6) The site should be easily accessible.7) The gauge should be truly vertical.8) 10% of total number of rain gauge stations of any basin

should be self recording.9) The observer must visit the site regularly to ensure its

proper readiness for measurement.

Page 43: Precipitation unit 2

PLACEMENT OF RAIN GAUGES

Gauges are affected by wind pattern, eddies, trees and the gauge itself, therefore it is important to have the gauge located and positioned properly.

• 1m above ground level is standard - all gauges in a catchment should be the same height

• 2 to 4 times the distance away from an isolated object (such as a tree or building) or in a forest a clearing with the radius at least the tree height or place the gauge at canopy level

Page 44: Precipitation unit 2

PLACEMENT OF RAIN GAUGESshielded to protect gauge in windy sites or if obstructions are numerous they will reduce the

wind- speed, turbulence and eddies.

Page 45: Precipitation unit 2

·For sloping ground the gauge should be placed with the opening parallel to the ground·The rainfall catch volume (mm3) is then divided by the opening area that the rain can enter

PLACEMENT OF RAIN GAUGES

Page 46: Precipitation unit 2

ANALYSIS AND INTERPRETATION OF RAINFALL DATA

The precipitation process is essentially random in nature. We can’t predict with certainty what will be the rainfall for any given period in future.

The rainfall magnitudes can be estimated only with some probability attached to them. Therefore the analysis of rainfall data obtained over a long period in the past would help the hydrologist to make reasonable probabilistic estimates of rainfall to be used in various designs

The rainfall obtained from single rain gauge station is known as the point rainfall or station rainfall.

If the data at the station covers a period of more than 30 years, the normal annual rainfall, or the normal monthly rainfall for any month can be computed

The normal monthly rainfall of a station is computed as the arithmetic average of the monthly rainfall or yearly rainfall in last 30 years.

Page 47: Precipitation unit 2

Hyetograph – it is a chart or graphic representation of average distribution of rain over the earth.

& It is a plot of intensity of rain fall

against time interval the hyetograph is derived from mass

curve and is usually represented as bar chart

Rainfall intensity progressively increases until it reaches a maximum and then gradually decreases.

Where this maximum occurs and

how fast the maximum is reached is what differentiates one distribution from another.

Page 48: Precipitation unit 2
Page 49: Precipitation unit 2

Q. A storm commenced at 7:00 hours. The ordinates of the rainfall mass-curve of the storm in mm as recommended by a recording rain gauge at 15 min intervals are –

0,9.5,17,27,40.5,49,63,84,95,102,110,112,112

construct a hyetograph of this storm for a uniform interval of 15 min ?

Page 50: Precipitation unit 2

time Ordinate of mass curve(mm)

Rainfall in 15 min interval (mm)

Rainfall intensity i (mm/hr)

7:00 0 0 07:15 9.5 9.5 9.5/(1/4) =387:30 17 7.5 7.5/(1/4) = 307:45 27 10 10/(1/4) = 408:00 40.58:15 498:30 638:45 849:00 959:15 1029:30 1109:45 11210:00 112

Page 51: Precipitation unit 2
Page 52: Precipitation unit 2

RAINFALL HYETOGRAPH

Page 53: Precipitation unit 2

Q. For the storm commenced at 7:00 hours. The ordinates of the rainfall mass-curve of the storm in mm as recommended by a recording rain gauge at different time intervals are –

0,9.5,17,27,40.5,49,63,84,95,102,110,112, 112

calculate the maximum rainfall intensities for durations of 15,30,45,60,90,120 & 180 min and plot the intensity duration graph.

Page 54: Precipitation unit 2

time Ordinate of mass curve (mm)

rainfall for a period of

15 (min)

30 45 60 90 120 180

7:00 0 07:15 9.5 9.57:30 17 7.5 177:45 27 10 17.

527

8:00 40.5 13.5 23.5

31 40.5

8:15 49 8.5 22 32 39.5

8:30 63 14 22.5

36 46 63

8:45 84 21 35 43.5

57 74.5

9:00 95 11 32 46 54.5

78 95

9:15 102 7 18 39 53 75 92.59:30 110 8 15 26 47 69.

593

9:45 112 2 10 17 28 63 8510:00 112 0 2 10 17 49 71.5 112

Page 55: Precipitation unit 2

time Ordinate of mass curve (mm)

rainfall for a period of

15 (min)

30 45 60 90 120 180

7:00 0 07:15 9.5 9.57:30 17 7.5 177:45 27 10 17.

527

8:00 40.5 13.5 23.5

31 40.5

8:15 49 8.5 22 32 39.5

8:30 63 14 22.5

36 46 63

8:45 84 21 35 43.5

57 74.5

9:00 95 11 32 46 54.5

78 95

9:15 102 7 18 39 53 75 92.59:30 110 8 15 26 47 69.

593

9:45 112 2 10 17 28 63 8510:00 112 0 2 10 17 49 71.5 112

Page 56: Precipitation unit 2
Page 57: Precipitation unit 2

Maximum intensity for 15 min duration = 21/(1/4) mm/hr =84 mm/hr

Maximum intensity for 30 min duration = mm/hr Maximum intensity for 45 min duration = mm/hr Maximum intensity for 60 min duration = mm/hr Maximum intensity for 90 min duration = mm/hr Maximum intensity for 120 min duration = mm/hr

Maximum intensity for 180 min duration =112/3 =37.5 mm/hr

Page 58: Precipitation unit 2
Page 59: Precipitation unit 2

Maxi(mm/hr)

0 TIME (hours)

Page 60: Precipitation unit 2

INTENSITY DURATION GRAPH

Page 61: Precipitation unit 2

The maximum intensity varies inversely with the duration and generally an equation of form is assumed between (I &T)

I=C/(t+a)b

The values of C,a & b are obtained from regression analysis

Page 62: Precipitation unit 2

POINT RAINFALL Point rainfall is also known as station

rainfall refers to rainfall data of a station ,depending upon the need data may be listed as Daily,weekly,monthly,seasonal or annual values

Page 63: Precipitation unit 2

MOVING AVERAGE Moving average is a technique for smoothening

out the high frequency fluctuations of time series and to enable the trend.

The range of m years is selected starting from first set of m years of data.

The average of data of m years is calculated and placed in middle year of range m.

The process is repeated for next year. Normally 3 or more years are taken, usually an

odd value. More the years more smooth curve will be

obtained.

Page 64: Precipitation unit 2

RAINGAUGE NETWORK Since the catching area of rain gauge is very

small compared to areal extent of storm. To cover large catchment area a number

of rain gauges would be required as large as possible

More the rain gauge more the accuracy. Economic considerations and other

considerations such as topography, accessibility etc restrict number of rain gauges to some extent.

Page 65: Precipitation unit 2

RAINGAUGE DENSITY The World Meteorological Organisation (W.M.O)

recommends the following densities-

In flat regions of tempreture,mediterranean and tropical zones

IDEAL: 1 station for 600 to 900 km2

ACCEPTABLE: 1 station for 900 to 3000 km2

IN mountaneous region of temperature IDEAL: 1 station for 100 to 250 km2

ACCEPTABLE: 1 station for 25 to 1000 km2

In Arid & Polar zones --1 station for 1500 to 10,000 km2

Page 66: Precipitation unit 2

RAIN-GAUGE DENSITY In India, on an average, there is 1 rain-

gauge station for every 500 km2, while in more

developed countries, it is 1 station. for 100 km2.Area Rain gauge density

Plains 1 in 520 Km2

Elevated regions 1 in 260-390 Km2

Hilly and very heavy rainfall areas

1 in 130 Km2 with 10% of recording R.G

Page 67: Precipitation unit 2

ADEQUACY OF RAIN GAUGE STATIONS The optimum number of stations that

should exist to have %age error in estimation of mean rainfall

N= (CV/P)2 N =Optimal number of stationsP = Allowable degree of error in %CV=Coefficient of variation of rainfall values at existing m stations in %

Page 68: Precipitation unit 2

N= (CV/P)2 , cv=(sx / x ) × 100 , sx2 = ∑(xi x 2)

(m 1)

x = Mean rainfall of m number of stationsSx = Standard deviation of rainfallsCV = Coefficient of variation of rainfall values at existing m stations in % m = Existing number of stationsxi = Rainfall at ith station

If N<m no more gauges required N>m (N m) additional gauges required

Note: Additional gauges are evenly distributed over entire catchment area

Page 69: Precipitation unit 2

Q- The average annual rainfall in cm at 4 existing rain gauge stations at a basin are 105,79,70 & 66 cm.if the average depth of rainfall over the basin is to be estimated within 10% error , determine the additional number of gauges required.Sol- mean of the rainfalls at the existing gauges is given by x = ∑xi /m = (105+79+70+66)/4 = 80 cm The standard deviation of rainfall is given bysx

2 = ∑(xi x 2)/(m 1)

={ (105-80)2+(79-80)2+ (70-80)2 +(60-80)2 } /(4-1)

sx2 = (922/3) =307.33

sx = 17.53 cm

cv=(sx / x ) × 100 = (17.53/80) × 100 = 21.91 cm

N= (CV/P)2 = (21.91/10) 2 = 4.80 , P=10 %

(N=4.80 > 4=m)So number of additional gauges required =(N-m) = (4.80 - 4) = 0.80 1 say

Page 70: Precipitation unit 2

Q- A catchment area has six rain gauge stations. In a year, the annual rainfall recorded by the gauges are as follows:

For a 10% error in the estimation of the mean rainfall, calculate the optimum number of stations in a catchment.Sol- mean of the rainfalls at the existing gauges is given by x = ∑xi /m

= (82.6+102.6+180.3+110.3+98.8+136.7)/6 = 118.6 cm

The standard deviation of rainfall is given bysx

2 = ∑(xi x 2)/(m 1)

={ (82.6-118.6)2+(102.6-118.6)2+ (180.3-118.6)2 +(110.3-118.6)2 + (98.8.3-118.6)2 +(136.7-118.6)2 } /(6-1)

Station A B C D E FRainfall(cm) 82.6 102.6 180.3 110.3 98.8 136.7

Page 71: Precipitation unit 2

sx2 = 1227.584

sx = 35.04 cm

cv=(sx / x ) × 100 = (35.04 /118.6) × 100 = 29.54 cm

N= (CV/P)2 = (29.54/10) 2 = 8.726 , P=10 %

(N=8.726 > 6=m)So number of additional gauges required =(N-m) = (8.726 - 6) = 2.726 3 say

Page 72: Precipitation unit 2

AVERAGE ANNUAL RAINFALL The mean of yearly rainfall observed for a period of 35

consecutive years is called the average annual rainfall (a.a.r.) as used in India

The A.A.R of a place depends upon:

1) Distance from the ocean.2) Direction of prevailing winds.3) The mean annual temperature.4) Altitude of place5) Topography

Page 73: Precipitation unit 2

INTERPRETATION OF PRECIPITATION DATAInterpretation of precipitation data includes:

 1) Estimating missing precipitation data at a

station

2) Checking inconsistency in particular data at a station

3) Averaging precipitation over an area

Page 74: Precipitation unit 2

1. ESTIMATING MISSING PRECIPITATION DATA AT A STATION Missing precipitation data is estimated

by two commonly used methods.

Arithmetic Mean Method

Normal Ratio Method (NRM)

Page 75: Precipitation unit 2

ARITHMETIC MEAN METHOD If the normal annual precipitation at the adjacent

station under consideration is within 10% of the normal annual rainfall of that station under consideration then the missing rainfall data can be easily estimated by arithmetic average of rainfall at that adjacent station. This method is least accurate however.

Where: Px = precipitation at the missing location P1 to Pm = precipitation at the m surrounding rain gauge stations M = number of rain gauges

Page 76: Precipitation unit 2

NORMAL RATIO METHOD (NRM) Normal ratio method (NRM) is used when the normal annual

precipitation at any of the index station differs from that of the interpolation station by more than 10%. In this method, the precipitation amounts at the index stations are weighted by the ratios of their normal annual precipitation data in a relationship of the form:

Where: Px = precipitation at the missing location

P1 to Pm = precipitation at m surrounding rain gauge stations

N1 to Nm = normal annual rainfall at the m surrounding gauge stations Nx = normal annual rain at gauge station x M = number of rain gauges

Page 77: Precipitation unit 2

The normal annual rainfall at stations A,B,C & D in the basin are 80.97,67.59,76.28 & 92.01 cm respectively. In the year 1975 the station D was inoperative and the stations A,B,C recorded annual precipitations of 91.11,72.23 & 79.89 respectively. Estimate the rainfall at station D In that year.

Sol- As the normal rainfall values vary more than 10% the normal ratio method is adopted. ND=92.01, M=3 PA=91.11, PB=72.23,PC=79.89 NA=80.97,NB=67.59,NC=76.28 PD = PD= (92.01/3) × { (91.11/80.79)+(72.23/67.59)+(79.89/76.28) }= 99.41 cm.

Page 78: Precipitation unit 2

CHECKING INCONSISTENCY IN A PARTICULAR DATA RECORD AT A STATION

Double Mass Curve Analysis. It is used to check the consistency of many

kinds of hydrologic data By comparing date for a single station with

that of a pattern composed of the data from several other stations in the area

The double-mass curve can be used to adjust inconsistent precipitation data

Page 79: Precipitation unit 2

COMMON CAUSES OF INCONSISTENCY OF RECORD

1) Shifting of rain gauge station at a new location.

2) The neighborhood of a station is undergoing a marked change.

3) Change in the ecosystem due to calamities such as Forest fires, Land slides etc.

4) Occurrence of observational error from a certain date.

Page 80: Precipitation unit 2

DOUBLE MASS CURVE ANALYSISThe theory of the double-mass

curve is based on the fact that a plot of the two cumulative quantities during the same period exhibits a straight line so long as the proportionality between the two remains unchanged,

The slope of the line represents the proportionality. This method can smooth a time series and suppress random elements in the series, and thus show the main trends of the time series.

Page 81: Precipitation unit 2

AVERAGING PRECIPITATION OVER AREA

It is the amount of precipitation which can be assumed uniform over an area. If the average precipitation over an area is known than total rain volume of water can be computed for that area.

Rain volume = Pavg × A 

Page 82: Precipitation unit 2

METHODS FOR COMPUTING AVERAGE PRECIPITATION OVER AN AREA There are some widely used methods to

compute average precipitation over an area, but the most common of these used are:

Arithmetic mean method

Theissen polygon method

Isohyetal method

Page 83: Precipitation unit 2

ARITHMETIC MEAN METHOD This is the simplest of three methods,this method

is also known as unweighted mean method since the same weightage is given to rainfall record at all the gauges irrespective of their locations.

Arithmetic mean method is used when area is flat & normal annual precipitation is within 10% of the gauge for which data are being reconstructed. This method is least accurate however.

Where: Px = precipitation at the missing location

Pi = precipitation at index station iM = number of rain gauges

Page 84: Precipitation unit 2

• The method of Thiessen polygons consists of attributing to each station an influence zone in which it is considered that the rainfall is equivalent to that of the station.

• The influence zones are represented by convex polygons.

• These polygons are obtained using the mediators of the segments which link each station to the closest neighboring stations

Method of Thiessen polygons

Page 85: Precipitation unit 2

Thiessen polygons ……….

Page 86: Precipitation unit 2

Thiessen polygons ……….

A1A2

A3A4

A5

A6

A7

A8 P1

P2

P3

P4

P5

P6P7

P8

Page 87: Precipitation unit 2

mmm

AAAAPAPAP

P

..........

21

2211

M

i

ii

total

i

M

ii

AAP

A

APP

1

1

Thiessen polygons ……….

Generally for M station

The ratio is called the weightage factor of station iA

Ai

Page 88: Precipitation unit 2

THEISSEN POLYGON METHOD

Divide the region (area A) into sub-regions centered about each rain gauge;

Determine the area of each sub-region (Ai) and compute sub-region weightings (Wi) using: Wi = Ai/A

Compute total aerial rainfall using Rainfall recorded at each station is given a weight age based on the area closest to the station.

Page 89: Precipitation unit 2

THEISSEN POLYGON METHOD Consider a catchment area

Catchment area is drawn to scale and position of these 6 stations is plotted on it. Stations are joined so as to get a network of triangles. Perpendicular bisectors are drawn to each of the sides of these triangles. These bisectors form a polygon around each station. If the boundary of catchment cuts the bisectors, then boundary is taken as outer limit of polygon. These bounding polygons are called Thiessen Polygons. The area of these polygons is measured with a planimeter or by grid overlay

Page 90: Precipitation unit 2
Page 91: Precipitation unit 2
Page 92: Precipitation unit 2
Page 93: Precipitation unit 2

PLANIMETER FOR AREA MEASUREMENT

Page 94: Precipitation unit 2
Page 95: Precipitation unit 2

• An isohyet is a line joining points of equal rainfall magnitude.

Isohyetal Method

F

B

EA

CD12

9.2

4.0

7.0

7.2

9.1 10.0

10.0

12

8

8

6

6

4

4

a1a1

a2

a3

a4

a5

Page 96: Precipitation unit 2

• P1, P2, P3, …. , Pn – the values of the isohytes• a1, a2, a3, …., a4 – are the inter isohytes area

respectively • A – the total catchment area• - the mean precipitation over the

catchment

Isohyetal Method

P

A

PPa

PPa

PPa

P

nnn

2

...22

11

322

211

The isohyet method is superior to the other two methods especially when the stations are large in number.

NOTE

Page 97: Precipitation unit 2

ISOHYETAL METHOD

Plot gauge locations on a map;

Subjectively interpolate between rain amounts between gauges at a selected interval;

Connect points of equal rain depth to produce lines of equal rainfall amounts (isohyets);

 

Page 98: Precipitation unit 2

ISOHYETAL METHOD Compute aerial rain using Isohyets – It is a line joining points of equal rainfall

magnitude. The catchment area is drawn to scale and

the rain gauge stations are marked on it. The recorded rainfall values for which aerial average is to determined are marked at the respective stations.

Neighboring stations outside the catchment are also considered. Taking point rainfall values as the guide, isohyets of different rainfall values are drawn (similar to drawing contours based on spot levels.

The area between adjacent isohyets is measured using a planimeter. If isohyets go out of the catchment, the catchment boundary is used as the bounding line.

It is assumed that the average value of rainfall indicated by two isohyets acts over the inter isohytal area

Page 99: Precipitation unit 2

STEPS FOR ISOHYETAL METHOD Step 1: Draw the area under study to scale Mark rain gauges on it. Put the recorded values of rainfall at the station, for the period within

which the average is required to be determined

Step 2: Draw the isohyets of various values by considering the point rainfall data as guidelines and interpolating between them. Also, incorporate the knowledge of orographic effects.

Step 3: Determine the area between each pair of the isohyet lines, either by a planimeter or by converting the areas into smaller regular geometric shapes.

Step4: Calculate the average rainfall using the following formula:Pi = Value of Isohyet lines , Ai = Area between pair of isohyet lines.Pav = A1 (P1 + P2)/2 + A2 (P2 + P3)/2 + . . . + An-1(Pn-1 + Pn)/2 (A1 + A2 + . . . + An)

Page 100: Precipitation unit 2

COMPARISON BETWEEN THE THREE METHODS: Arithmetic mean method: 1) This is the simplest and easiest method to compute average rainfall. 2) In this method every station has equal weight regardless its location. 3) If the recording stations and rainfall is uniformly distributed over the entire

catchment, then this method is equally accurate.

Thiessen method 1) This method is also mechanical 2) In this method the rainfall stations located at a short distance beyond the

boundary of drainage are also used to determine the mean rainfall of the basin, but their influence diminishes as the distance from the boundary increases.

3) It is commonly used for flat and low rugged areas.

Isohyetal method: 1) It is the best method for rugged areas and hilly regions. 2) It is the most accurate method if the contours are drawn correctly. However to

obtain the best results good judgment in drawing the isohyets and in assigning the proper mean rainfall values to the area between them is required.

3) Other points are as for Thiessen method.