Preceeding workshops:

20

description

Preceeding workshops:. 1978: Argonne National Lab, USA 1979: Abingdon, UK 1982: Brookhaven National Lab,USA 1984: Bad Honnef, Germany 1986: Montana, Switzerland 1990: Bonn, Germany 1994: Bad Honnef, Germany 1996: Vancouver, Canada. Major topics:. - PowerPoint PPT Presentation

Transcript of Preceeding workshops:

Page 1: Preceeding workshops:
Page 2: Preceeding workshops:

Preceeding workshops: • 1978: Argonne National Lab, USA• 1979: Abingdon, UK• 1982: Brookhaven National Lab,USA• 1984: Bad Honnef, Germany• 1986: Montana, Switzerland• 1990: Bonn, Germany• 1994: Bad Honnef, Germany• 1996: Vancouver, Canada

Major topics: Advances in: • Target instrumentation

• Material doping methods

• Methods for polarizing HD

• EPR spectroscopy

Polarized Targets for new particle- and nuclear physics experiments

Application of DNP in NMR spectroscopy and MR imaging

Review talks about the milestones of more than 40 years of polarized solid targets

Page 3: Preceeding workshops:

22 22 2

1 1 1 1 1( ) :

( ) ( )( )

A t

A FoM Af P t (f P ) L L

What is a good Polarized Target ?

Most simple case: Experiment measuring the target asymmetry

physAPfNN

NNA

exp# polarizable nucleons

# all nucleonsf

Relation between error A and measuring time t :

22 PfnFoM T

InstrumentationTarget Material

Page 4: Preceeding workshops:

Cryogenic Equipment

• H. Dutz (Bonn): Highlights of PST instrumentation

• Y. Usov (Dubna): Frozen spin solid targets at JINR

4He Evaporation Cryostat

3He/4He Dilution Cryostat

Continuous Mode

Cont. Polarization build-up

Solid ext. magnet needed

Moderate (high) intensities Small solid angle

SLAC, JLAB, COMPASS

Page 5: Preceeding workshops:

The COMPASS Polarized Target

K. Kondo: Polarization measurementJ. Koivuniemi: NMR line shapesY. Kisselev: Local field in polarized LiDN. Doshita: Performance of the cryostatF. Gautheron: Cryogenic control system

max 55 / 50%

/ 3.5 / 1.9 for up/down

P

P P

Page 6: Preceeding workshops:

Cryogenic Equipment

• H. Dutz (Bonn): Highlights of PST instrumentation

• Y. Usov (Dubna): Frozen spin solid targets at JINR

4He Evaporation Cryostat

3He/4He Dilution Cryostat

Continuous Mode

Cont. Polarization build-up

Solid ext. magnet needed

Moderate (high) intensities Small solid angle

SLAC, JLAB, COMPASS

Frozen Spin Mode

Pol. maintained at low B,T

Ext. or thin internal magnet

Low intensities (tagged ) Large (4) solid angle

PSI, Dubna, Mainz, Bonn

Page 7: Preceeding workshops:

heat exchanger

current leads

superconducting coilCopper carrier

reliable operation at Bh = 0.44 T @ 11.5 A, T < 1.2 KNIM A 356 (1995) 111, NIM A 418 (1998) 233

NbTi-wire : 100µm44 mm, l = 120 mm, N = 4000

d = 0.7mm

‘frozen spin polarized target’GDH – frozen spin target (internal superconducting ‘holding coil’)

PT03 Bad Honnef 7

Page 8: Preceeding workshops:

Magnets

• H. Dutz (Bonn): Highlights of PST instrumentation

• C. Djalali et al. (U. South Carol.): Design of an int. superconducting holding magnet for the Jlab Hall B frozen spin target.

Cryogenic Equipment

• H. Dutz (Bonn): Highlights of PST instrumentation

• Y. Usov (Dubna): Frozen spin solid targets at JINR

4Continuous Mode

Cont. Polarization build-up

Thin high field int. magnet

Moderate beam currents Large (4) solid angle

4He Evaporation Cryostat

3He/4He Dilution Cryostat

Continuous Mode

Cont. Polarization build-up

Solid ext. magnet needed

Moderate (high) intensities Small solid angle

SLAC, JLAB, COMPASS

Frozen Spin Mode

Pol. maintained at low B,T

Ext. or thin internal magnet

Low intensities (tagged ) Large (4) solid angle

PSI, Dubna, Mainz, Bonn

Page 9: Preceeding workshops:

minimize and integrate the large polarizing magnet in the d-cryostat

Prinzip : Reduktion des magnetischen Volumen

44 mm, l = 125 mm, N = 2560, 5 Lagen NbTi/CuNi 200µm

Bp = 2.54 Tesla , IN = 100 A , Dicke : 1.5 mm, B/B 10-4

‘4 – continuous mode target’

New concepts

PT03 Bad Honnef 9

Page 10: Preceeding workshops:

Polarization Measurement• G.R. Court (University of Liverpool): Development of NMR techniques for high precision pol. Measurement

• P. Hautle (PSI): Comparison of different NMR concepts

• G. Reicherz (Bochum): Pulsed NMR for pol. measurement

Magnets

• H. Dutz (Bonn): Highlights of PST instrumentation

• C. Djalali et al. (U. South Carol.): Design of an int. superconducting holding magnet for the Jlab Hall B frozen spin target.

Cryogenic Equipment

• H. Dutz (Bonn): Highlights of PST instrumentation

• Y. Usov (Dubna): Frozen spin solid targets at JINR

4Continuous Mode

Cont. Polarization build-up

Thin high field int. magnet

Moderate beam currents Large (4) solid angle

4He Evaporation Cryostat

3He/4He Dilution Cryostat

Continuous Mode

Cont. Polarization build-up

Solid ext. magnet needed

Moderate (high) intensities Small solid angle

SLAC, JLAB, COMPASS

Frozen Spin Mode

Pol. maintained at low B,T

Ext. or thin internal magnet

Low intensities (tagged ) Large (4) solid angle

PSI, Dubna, Mainz, Bonn

Page 11: Preceeding workshops:

Target Material

Doping Method Material Properties

• Dilution factor• Radiation hardness

• Polarized background• Handling

Organic Materials

Experiments in hadron physicswith low to moderate currentsPSI, Dubna, GDH@Bonn/Mainz

Alcohols Diols Plastics

S. Mango (PSI)

Chemical Doping

• Chemical reaction• Dissolution of free radicals

E.I. Bunyatova(Dubna)

Radiation Doping

• Point Defects by ionizing radiation

Inorganic Materials

Experiments at high energies with moderate to high intensitiesCOMPASS, SLAC, JLAB

Ammonia Lithium Hydrides HD

W. Meyer (Bochum)

J. Ball (Saclay)

Page 12: Preceeding workshops:

LDZ

e

SS

LDZ

e

SS

TDT

TDT

1

)/(2

1

1

)/(

1

min

22

Static and Dynamic Nuclear Polarization

B[T] T[mK] P(p)[%] P(d)[%]

2.5 1000 0.25 0.05

15 17 70 18

15 12 90 30

2.5 ~ 1 ~ 100 ~ 50

2 2I I

TE I dyn IL SS

B BP P

kT kT

B B

Doping with unpaired electrons

Off-resonance wave saturation

2 2 2hom inhomD D D Minimize to minimize

the spin temperatureS. Goertz et al., Bochum

DNP

Page 13: Preceeding workshops:

Magnetic Field [T]

0 1 2 3 4 5

|Pola

riza

tion| [%

]

0

10

20

30

40

50

60

70

Sample 1Sample 2

-55.1 %

-70.8 %

+45.5 %

-34.8 %

-50.3 %

S.Goertz et al., Bochum

Novel doping methods for organic deuterated materials

Radiation doping of d-butanoland deuterated polyethylene

Chemical doping of d-butanol andd-propanediol with the trityl-radical

D.G.Crabb et al., Virginia

S.Goertz et al.,Bochum

• New standard tool:

Low and high field EPR measurements

J. Heckmann et al. (Bochum): EPR spectroscopy at DNP conditions

Page 14: Preceeding workshops:

Highest deuteron polarization in a polarization experiment

nGDH @ MAMI 2003

0 50 100 150 200 250 300 350 4000

10

20

30

40

50

60

70

80

90

100

D-butanol (trityl-complex) D-butanol (porphyrexide)

d-p

ola

riza

tio

n [

%]

Time [h]

d-run 2003

Page 15: Preceeding workshops:

• BF polarization of H (D) • Forb. AFP to polarize D + • Aging of H2 (6d), D2 (18d)

2I

TE I

BP

kT

B

Polarized Hydrogen Deuterium (HD), f =1 !

1. Polarization via `Brute Force Method´ using the `Switching Mechanism´

HYDILE target for the GRAAL facility at ESRF

Pmax (p) = 60%, Pmax (D) = 14%, > 1 week

J.P. Didelez et al. (IN2P3, INFN):

X. Wei et al. (BNL, Athens, Virginia S.U., Madison U.):

Pmax (p) = 70%, Pmax (D) = 18% Pmax (p) = 30%, Pmax (D) = 6% after transfer to IBC

SPHICE target at BNL‘s LEGS facility

2. Dynamic polarization via radiation induced creation of atomic hydrogen

E. Radtke (Bochum): Efforts towards a dynamically polarized HD-target

Page 16: Preceeding workshops:

Further new achievements in polarized target material research

B. Van den Brandt et al. (PSI): DNP with the free radicals deuterated TEMPO and deteurated oxo-TEMPO

New record polarization in d-polystyrene doped with 2x1019 spins/cm3 TEMPO-d18

Pmax = +34% / -40 % (+10%) at 2.5T / 100mK

EXP. Lab Year Proton Deuteron

E 143 SLAC 1993/94 15NH315ND3

E 155 SLAC 1997 15NH36LiD

Gen98 JLab 1998 - 15ND3

E155x SLAC 1999 15NH36LiD

Gen01 JLab 2001 - 15ND3

RSS JLab 2002 15NH315ND3

NH3 ND3

P.M. McKee (Virginia): Observation of radiation damage and recovery in ammonia

• NH3 is still THE polarized proton material for intense particle beams !• ND3 shares the leading role with 6LiD depending on physics demands.

Essentially no un-anneable radiation damage in ND3 NH3

Page 17: Preceeding workshops:

M. Iio et al. (Miyazaki, Osaka, Nagoya, Chubu, Tsukuba, Yamagata, Tokyo): Development of a polarized target for nuclear fusion experiments

Measurement of D(d,p)T using the 20 MeV beam of the UTTAC tandem accelerator

T. Wakui et al. (Tokyo, Osaka):

Optimization of laser parameters for polarizing protons in naphtalene crystals

T. Uesaka et al. (CNS Tokyo, RCNP Osaka):

The CNS polarized proton target for radioactive isotope beam experiments

First succesful application of the CNS PT at the RI beam at RIKEN: Vector analysing power for the proton-6He elastic scattering

Polarized Targets for new particle- and nuclear physics experiments

O. Zimmer et al. (München, PSI, Saclay):

The spin-dependent nd scattering length – a proposed high accuracy measurement

• Measurement of the `incoherent´ nd scattering length bi,d (ai,d)• High accuracy (10-3) relative to the well known bi,p of the proton

Equipment: Cold neutron beam at PSI Ramsay apparatus for pseudomagnetic precession Proton and deuteron polarized target

Allows extraction of important parameters for effective field theories

Page 18: Preceeding workshops:

J.H. Ardenkjaer-Larsen et al. (Amersham Health, Malmö, Sweden): Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

• NMR spectroscopy, analytical technique

• MRI, non-invasive clin. imaging method

Low senisitivity at room temperature

Is it possible to generate dynamically polarized nuclei in a solvent at room temperature ? YES !

1 min…

in glycerol + OX063

13C-urea

13C coronal projection image of a rat 1s 3s

Heart

Vascular treeof the lung

Aorta

Kidneys

Page 19: Preceeding workshops:

48 participants from 10 countries and 23 universities and instutions all over the world :

Amersham Health R&D, Malamö, Sweden Laboratoire Saturne LNS/SAP, Gif-sur-Yvette, FranceCEA Sackay, Gif-sur-Yvette, FranceUnisersity of Bielefeld, GermanyJoint Institute of Nuclear Research, Moscow, RussiaUniversity of Liverpool, UKUniversity of Virginia, Charlottes, USAInstitut de Physique Nucleaire, Orsay, FranceUniversity of South Carolina, Columbia, USACERN, SwitzerlandUniversity of Bonn, GermanyCharles University Prague, Czech Republic

Ruhr-University Bochum, GermanyPaul Scherrer Insitut, Villigen, SwitzerlandMiyazaki University, JapanUniversity of Michigan, Ann Arbor, USAUniversity of Mainz, GermanyCzech Technical University, Prag, Czech Rep.Institut de Biologie, Grenoble, FranceUniversity of Tokyo, JapanRIKEN, JapanBrookhaven National Lab, New York, USATechnical University München, Germany

Page 20: Preceeding workshops:

The Process of Dynamic Nuclear Polarization

The Microscopic Picture

Degrees of freedom of the electron and nuclear spin system

? The Macroscopic Picture

Observation of spin diffusion by SANSat PSI, at ILL Grenoble and at Saclay

P. Hautle / J. Kohlbrecher et al. (PSI)

2

Idyn I I I I

SS

BP

kT

B B