PRE-SORTING OF LOGS PRIOR TO CONVERSION...

43
PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER Report on WP 2.5 STRAIGHT Project Robert Kliger, Marie Johansson 'HSDUWPHQWRI6WUXFWXUDO(QJLQHHULQJDQG0HFKDQLFV Report 04:09 6WHHODQG7LPEHU6WUXFWXUHV CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2004

Transcript of PRE-SORTING OF LOGS PRIOR TO CONVERSION...

Page 1: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER�

Report on WP 2.5 STRAIGHT Project�

Robert Kliger, Marie Johansson

�������������� �� �������������������������� Report 04:09����������������� �� ��� CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2004

Page 2: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER
Page 3: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

REPORT 04:09

PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

Report on WP 2.5 STRAIGHT Project

Robert Kliger, Marie Johansson

”The content of the present publication is the sole responsibility of its publisher(s) and in no way represents the view of the Commission and its services.”

Department of Structural Engineering and Mechanics Steel and Timber Structures

CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2004

Page 4: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER Report on WP 2.5 STRAIGHT Project ROBERT KLIGER, MARIE JOHANSSON

© ROBERT KLIGER, MARIE JOHANSSON, 2004

ISSN 1651-9035 Report 04:09 Archive no. 30 Department of Structural Engineering and Mechanics Steel and Timber Structures Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Department of Structural Engineering and Mechanics Göteborg, Sweden 2004

Page 5: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

I

PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER Report on WP 2.5 STRAIGHT Project ROBERT KLIGER, MARIE JOHANSSON Department of Structural Engineering and Mechanics Steel and Timber Structures Chalmers University of Technology

ABSTRACT

If sawn timber is to be regarded as being fit for use for the building industry, the acceptance level for twist should not exceed the limit of 4mm/100mm/2m at the moisture content at which timber is used for construction. This rigorous requirement, especially when timber is dried to a low moisture content, is difficult for many producers to fulfil. A method of sorting logs with regard to spiral grain angle measured under bark is proposed to reduce twist in sawn timber after drying.

In this study, 32 large-diameter logs (> 300 mm) were selected in four spiral-grain-angle-under-bark groups (SGA<-3°, -3°<SGA<3°, 3°<SGA<8° and SGA>8°). These logs were sawn to the maximum number of studs with dimensions of 50 x 100 x 2500 mm and dried in a commercial kiln to the target moisture content of 18%. The distance from the pith and the grain angle was measured on each stud after drying. The studs were conditioned to a moisture content of 18% without restraint in a climate-controlled room.

The results showed that studs sawn from logs with a large spiral grain angle were severely twisted. Only 11% of the studs from the logs with a spiral grain angle passed the acceptance limit for twist. The results also showed that a linear approximation of the grain angle variation from the pith to the measured value under bark was enough to predict twist in the studs. The annual ring curvature in the stud and the assumed spiral grain angle from the linear approximation explained 72% of the variation in twist.

An economic model showed that no additional profit could be obtained by grading logs in terms of spiral grain angle. However, there are several assumptions made in this calculation that might not be true and could affect the economic results. The distribution of logs in different SGA classes that was used here does not apply to all regions or all sawmills. The assumed economic values of logs, pulp logs, chips and sawn studs might not be the correct ones. Sorting in the forest would change the economic calculations by making it unnecessary to buy timber which would have to be sold again as pulp logs.

Key words: spiral grain angle, twist, economic model

Page 6: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

II

Page 7: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

III

���������

ABSTRACT I

CONTENTS III

PREFACE IV

1 INTRODUCTION 1

1.1 Background 1

1.2 Aim and objectives 1

1.3 Methods for measuring spiral grain angle 2

2 MATERIAL AND METHODS 4

3 RESULTS 6

3.1 Variation in spiral grain angle 6

3.2 Twist in the different groups 7

3.3 Prediction of twist 8

3.4 Acceptance of studs 10

3.5 Economy 10

4 DISCUSSION AND CONCLUDING REMARKS 16

5 REFERENCES 18

APPENDIX A. Material characteristics of logs and studs

APPENDIX B. Distortion values in 18% MC, 10% MC and 18% MC

Page 8: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

IV

������

The work presented in this report relates to a European shared-cost project STRAIGHT - “Measures for improving quality and shape stability of sawn softwood timber during drying and under service conditions” within the Quality of life and management of living resources programme, contract number QLK5-2001-00276. The report summarises the results of “WP 2.5 Pre-twisting during sawing”, in accordance with the technical annex of this project.

The authors would like to express their sincere gratitude to staff at the Södra Wood Products sawmill in Värö and staff from the Swedish Timber Measurement Council for their help in selecting the logs. We would also like to thank Nils Nilsson and Erik Gustavsson for measuring the spiral grain angle on the logs at Värö sawmill. Special thanks goes are extended to Skyarps trä AB and Hans Lindahl for help with sawing the logs and drying the studs.

Göteborg, November 2004

Robert Kliger

Marie Johansson

Page 9: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

1

� �������������

� � ����������

Warp (or distortion) is one of the main reasons for dissatisfaction with timber quality. Unacceptable shape or too much distortion is often expressed in the form of twist, spring (crook), bow and cup. Twist is the distortion mode that causes the most serious problems for timber when it is used as a building material. Previous work, based on studies of requirements set for different building components and the builders’ perception of timber quality (Johansson et al. 1993) suggested that the acceptance level for twist should not exceed the limit of 4mm/100mm/2m at the moisture content when timber is used for construction. This tough requirement, especially when timber is dried to low moisture content, is difficult to fulfil for many producers. However, if sawn timber is regarded as fit for use, it must fulfil this proposed limit for twist.

If it is desired to have a market for sawn lumber it is necessary to find a way to minimise warping of dried timber products. Studies shows that material sawn close to the pith will become severely twisted after drying (Mishiro and Booker 1988; Forsberg 1999; Johansson et al. 2001). One solution to the problem of twist is to avoid utilizing the material closest to the pith. Almost all material close to the pith sawn in Scandinavian sawmills will have a positive, S-shaped twist (Säll 2002). The reason is that normal pattern of spiral grain angle in Norway spruce is that spiral grain is about zero at the pith, than is slightly left-handed (2-3°) within the first 20-40 years and finally become right-handed when this tree become older (Harris 1988; Säll 2002). Some trees, however, appear to have left-handed spiral grain angle all their live and in the worst cases, this angle tend to increase with age. Material from such a tree is very prone to twist and will produce twisted sawn lumber after drying. An improved drying regime can decrease the twist of sawn timber from logs which are prone to twist. However, in most cases the decrease in twist is not enough (Taylor 1993; Sehlstedt-Persson 1995; Milota 2000, for example).

��� ���������� ����!���

The aim is to find method that can be used to produce sawn timber that fulfils the requirements of the end user in terms of twist. In this study the method of sorting logs for spiral grain angle before sawing and by this method reduce the number of twisted studs.

The objectives of this study are listed below.

�� Measure the spiral grain angle under bark of a � ���� of logs to find a �� variation in spiral grain angle.

�� Saw the logs to the maximum number of studs of dimension 50 x 100 x 2500 mm.

�� Measure the distortion of the studs after drying and conditioning to 18% MC.

�� Measure the distance from the pith and spiral grain angle for each stud.

Page 10: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

2

�� Evaluate the suitability of the assumption of a linear variation of spiral grain angle.

�� Evaluate the twist in and acceptance levels of studs in different spiral grain angle groups.

�� Use a prediction model for twist based on the linear assumption of spiral grain angle variation.

�� Evaluate the economic benefits of pre-sorting of logs based on their spiral grain angle under bark.

���� ������� ������ ������� ���� ����������

Very good prediction about straightness of sawn lumber can be obtained by measuring spiral grain (SGA) on logs under bark (Kliger 2001, Forsberg 1999). It was shown that avoiding converting logs with a fairly large left-handed spiral grain measured under bark could easily increase the number of straight studs after drying.

There are several methods for measuring grain angle. In the so-called scribing method, a sharp needle is drawn unrestrained on the tangential surface of the timber or log. It leaves a scratch, which is in the direction of the fibre. The angle between fibre direction and timber or log direction can be measured. However, this method is slow and is currently not suitable for industrial application. A method suitable in sawmills for sorting logs prior to sawing is based on the tracheids effect (Nyström and Grundberg 2003) using laser technique. A laser beam is directed and pointed perpendicular to the wood surface. The laser spot on the surface is oval in shape, with the longer axis in the direction of the fibre. The grain angle can be detected using camera technique. The disadvantage of this method is that it needs a debarked area. A third principle is used when an instrument called S-GAG is utilized, see Figure 1. A special knife is pressed on the surface of a tree or log. It orients in the fibre direction, especially when the wood is wet (above 25% moisture content). During moderate freezing temperatures (above -10°C) it appears that the measurements are still reliable. The angle between knife direction and timber or log direction can be measured. The advantage of this method is that the measurements can be made on trees/logs through the bark and, with further development, it could be suitable for industrial application.

Page 11: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

3

����� ������ ������� ��� ������ ���� �� ���� � ��� � �� � ��������������� �������� ������� ���

Page 12: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

4

�� "��#���$�����"#�%��&�

The material was selected at the sawmill, owned by Södra Wood Products, in Värö on the west coast of Sweden. About 1000 logs were screened during normal log sorting by the Swedish Timber Measurement Council (VMR) representatives at Värö. Logs expected to have large spiral grain angle were selected during this process and stored in a separate batch at the sawmill. The spiral grain angle was then measured on the logs with S-GAG by staff from Chalmers University of Technology. The aim was to find logs (with a diameter of more than 30 cm) representing various spiral grain angle (SGA) and place them in three groups; i.e. SGA<|3°|, |3°|<SGA<|8°| and SGA>|8°|. The measurements were stopped when at least 10 logs had been found in each group. At the later stage the second group was divided into two groups to separate logs with right-handed spiral grain angle (negative SGA) from left-handed (positive SGA). These four different groups were spray painted at the end with different colours: painted green SGA<-3°, painted white -3°<SGA<3°, painted blue 3°<SGA<8° and painted red SGA>8°. Table 1 shows the mean diameter and spiral grain angle under bark for the four groups of logs. The material delivered to the Södra Timber sawmill in Värö came from the south-western parts of Sweden in an area with a radius of approximately 90 km from the sawmill.

���� ����� ����������������� �������� � ������� ���������� � �� �������� ����������

Group Number of logs Mean spiral grain angle (std. dev.) [°]

Mean diameter (std. dev.) [cm]

SGA<-3° 4 -4.31 (2.56) 34.2 (3.5) -3°<SGA<3° 11 -0.36 (1.65) 38.0 (4.7) 3°<SGA<8° 7 4.57 (2.51) 38.8 (6.6) SGA>8° 10 10.53 (1.48) 34.1 (4.5)

The logs were transported to a small sawmill (Skyarps trä) for conversion into studs measuring 50 x 100 mm. Each log was sawn in such away that the maximum number of studs was obtained from each log, see Figure 2. The number of studs from each log varied from 5 to 20. A total of 282 studs were obtained. The material was dried at “normal” temperature (drying temperature of around 55°C) in a compartment kiln with standard stickering distances at the bottom of the stack. The target moisture content was 18% and the drying time was about five days. After drying, the material was transported to the laboratory at the university where the length was adjusted to 2.6 metres. At the ends of each stud, a 50 mm long section was cut to evaluate the distance from the centre of the stud to the pith. A hook was attached to one end of each stud. All the material was hung in a conditioning room to obtain uniform moisture content of 18% (at an ambient temperature of 22°C and relative humidity of 90%). The material was hung from the ceiling to avoid the effect of outer restraints on the material, i.e. to subject the material to “free warping” and, at the same time, to expose the material to the same, well-defined treatment. When the equilibrium moisture content was obtained, distortion and grain angle was measured on each stud. Twist, bow and spring were measured using a device for distortion measurements based on digital transducers developed by Perstorper et al. 2001). The grain angle was measured using mechanical scribe on the tangential face furthest away from the pith of a stud at two positions along the length of the stud.

Page 13: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

5

����� ���� ������ ��������������!������� �������"#�$��##�����$���� �������!������� ���

The 50 mm long section from each end was put together as they had been positioned in the log and photographed, see Figure 2. From these photos, the coordinates for the mid point of each stud was calculated using a coordinate system with origin at the pith and the axis oriented parallel to the sides of the stud cross-sections. The coordinates were used to calculate the average distance to the pith using Eq. 1. The mean value of the distance in top and bottom end of the studs was used as a value for the stud.

���� �

��$�%

�$�%&'(

22

(1)

Page 14: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

6

'� �#&�$�&�

'� � (������������)��*���������*��

The real spiral grain variation is 0° at the pith increases rapidly to a value of 2-3°, 10-20 millimetres from the pith. After this increase the spiral grain angle varies relatively linear towards the bark. To simplify the variation, the spiral grain angle was set to 2.5° at the pith and with a linear variation from this value to the value under bark, see Figure 3. If this hypothesis was true, it would be possible to know the spiral grain variation in a log by just measuring the spiral grain angle under bark. In this study the spiral grain angle under bark and the diameter of all the logs was measured. The spiral grain angle was measured on all the studs as well as the studs position relative the pith. By combining these two measurements it would be possible to check the hypothesis about the spiral grain angle variation.

��

��

��

��

��

� �� ��� ��� ���

���� ����

��������������������

�������������

���������

���

��������������� ���

���

���������������� ������

��

��

��

��

��

� �� ��� ��� ���

���� ����

��������������������

�������������

���������

���

��������������� ���

���

���������������� ������

��� ������������� ����� �� ��� ���������������� �������� ������� ������������ ���������������������������������������� ���������

The variation in spiral grain angle of the studs showed for many logs a good agreement with the assumed linear variation. Figure 4 shows the variation in spiral grain angle of the studs and the linear assumption for 2 of the 32 logs.

��

��

��

��

��

� �� ��� ��� ��� ���

���� ����

��������������������

��

��

��

��

��

� �� ��� ��� ��� ���

���� ����

��������������������

��� �� �!��������������������������������� ����������"��������������������� ���������������������

Page 15: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

7

It was possible to calculate the spiral grain angle for a single stud using its distance from the pith and the assumed linear variation in spiral grain angle. The relationship between the measured spiral grain angle on the studs and the calculated spiral grain angle using the linear relationship was good. The coefficient of determination was 0.73; see Figure 5.

�� ����� ������ ��

���

��

��

��

��� �� � � �� ��

�������������

��!

"�!�

#���

��

��

����� � "��� ���� �� ������� ����� ��� � �� �� � ������ ) ����� �������� �� ������� �������� �� �� � �������� �� ������� ����� ��� � ��� ��� �� �� �� � ���������� ��� �� ���)������������������������� ��

���� ����������������� ����� ����

Twist was measured directly after conditioning the studs in the laboratory to a moisture content of 18%. The values of measured twist for the four different SGA groups are shown in Figure 6. The results were very clear; i.e. the larger the spiral grain angle measured on logs, the larger the twist on studs after drying. The results showed that studs sawn from the logs with large spiral grain angle (SGA>8°) had much more twist than the other studs from the other logs.

Page 16: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

8

��� �� � � �� �� �� �� ��$%�&'�(()���(()�(

��

*�

��

&�

���

+��

"�,#-!�

���.&�

���/���

��/���/&����/���/��

��� �� � � �� �� �� �� ��$%�&'�(()���(()�(

��

*�

��

&�

���

+��

"�,#-!�

���.&����.&����.&�

���/������/���

��/���/&���/���/&����/���/�����/���/��

����� � *�� + �� ��� � ��� �!���� �� �� � ������ ����� �� � ���� �� �������� ��� ����� ����%,���)�� ������ ��������������������� ����������

Measurements of the spiral grain angle on logs under bark was a good indicator of the propensity of the raw material to twist after sawing and drying, see Figure 7.

����������������

��������

���

���

��

��

��

��

��

��� �� � � �� ��

�� ���� �������������

��������������� ���� �� �

��� �� #�$���������� ������� ����� %�&' � �� ������ ��� ����� ���������� �()*�+�������������������%�,-'���� ������� ��������������������

���� � ���������������

Many earlier studies have shown that spiral grain angle on the stud together with annual ring curvature (1/R) predict twist with good accuracy. The relationship between twist and spiral grain angle on the actual stud divided with the distance from the pith for the actual stud is very strong, the coefficient of determination is as high as 0.78; see Figure 8

Page 17: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

9

�� ������� ��0����� �&

�� �

�� ��

� ��

� �

� ��

� �

� ��

� �

��� ��� � �� �� �� *� ��

$1-�#�&'("

��

�)�

����� �-��( ���������� � �! � �!���� ���� ���� �� ������� �������� � ��)�� ��!���������� ������ ��������

�� ��*���� ���&���� ��

�� �

�� ��

� ��

� �

� ��

� �

� ��

� �

��� ��� � �� �� �� *� ��

$1-�#�&'("

��

�)�

����� �.��( ����������� �! � �!��������������� ����������������� ���)�� ��!���������� ������ �������

Measuring spiral grain angle on all the studs is possible using laser technique but might not be necessary if the spiral grain angle under bark is known. Figure 9 shows the relationship between twist and calculated spiral grain angle on each stud (assuming a linear variation) divided with distance to the pith. This relationship has an

Page 18: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

10

R2=0.72 which is not far from the value when using the measured spiral grain angle on each stud.

���� ������������������

The acceptance limit for twist was in this project set to 4 mm/100mm/2m at 15% MC. In this study we have the twist values at 18% and the limit were applied to the results at this moisture content. The percentage of all studs that passed the proposed limit of 4mm/100mm/2m for twist was 58%.

���� � ��� + �� ��� � ��� ������ ������� �� � ������ ���� �!���� �� ���� ������� ����� ��� ��� �����/��������

Group Accepted studs [%] at 18% MC All 58.2 SGA<-3° 44.8 -3°<SGA<3° 88.8 3°<SGA<8° 63.3 SGA>8° 11.4

Almost all of the material from the logs with small spiral grain angle under bark (-3°<SGA<3°) were within the limits of acceptable twist.

In order to propose boundary limits in terms of spiral grain angle (SGA) measured on logs under bark, various percentages of studs that passed the limit of 4 mm are presented in Table 3. Boundary for SGA is presented as lower limit (right-handed spiral grain) and upper limit (left-handed spiral grain). Number of studs included in the analysis decreases with more stringent boundary in terms of SGA.

���� ����0�����%����������� ���������������������� �1���2�� ���� ����������� �����/� ��� � �� ��� � ��� ������ ����� ���� �� �� � ������ ��� 3� ��4�##��4��� ���� �!����� ���� ������-5�������� ���� ����

SGA Lower limit

SGA Upper limit

Accepted in % (Number included)

all all 58.2 (282) -7 12 61.3 (266) -7 10 69.0 (234) -7 7 77.4 (199) -6 6 78.2 (193) -5 5 83.7 (178) -4 4 84.6 (162) -3 3 88.8 (125) -2 2 90.5 (105)

���� ������

Introducing the pre-sorting of logs in terms of SGA measured under bark requires either changes in the requirements set for logs delivered to the sawmill or the rejection of some logs prior to normal production. The initial cost for a sawmill of installing

Page 19: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

11

laser equipment to measure SGA after debarking (if logs are graded at the sawmill) is estimated to be about 5000 Euros. At present, SGA is not measured during the harvesting process. No harvesters are equipped with a device that can be used to measure SGA. However, this cost will be included as part of the grading and screening costs at a sawmill. It is very difficult to estimate all the costs involved in sawmill operation in order to make a reasonable assessment of whether the pre-sorting of logs in terms of SGA is profitable.

Based on a degree project by Ragnarsson 2003), additional information obtained from Säll 2004) and the economic situation for various sawmills in Sweden in 2002-2003, the values that are used for sawmill operations now follow (exchange rate 1�� ��9SEK). Cost of raw material is estimated to 73���3 (spruce logs class 2 or 3 and top diameter over 29 cm, 560 SEK/m3 including transportation, grading and screening costs (50 and 40 SEK/m3)). The sawing yield is 62% of the total log volume when sawing logs with diameters which vary between 29 and 50 cm. These logs are sawn to studs with dimensions of 50 x 100 mm. The income from bark and chips as a result of sawing is 18���3 and the income from pulp logs as a result of rejecting these logs because the SGA is too large is 28���3. These rejected logs could be suitable for use as pulpwood or sawn for some low-quality products. The production costs are estimated to 40���3 sawn timber, which includes measuring of the SGA on logs and sorting the logs. The cost assessment (agreed in this project) for sawn timber is based on prices of 200 ���3 for studs which fulfil the requirement limit of 4mm/100mm/2m for twist and 140 ���3 for studs which do not fulfil this requirement.

An example of a calculation of possible profit is shown in Figure 9 for logs with an SGA equal to or less than 2°. Note that the distribution of logs of top diameter ranging from 29 to 50 cm (in per cent) for each boundary group of SGA within 1° is based on Ragnarsson 2003), see Table 4, column B. The procedure of calculating the profit as a result of grading logs in terms of spiral grain angle and rejecting these logs which exceeds certain SGA for some lower quality products (to be sold for a lower price, i.e. 140 ���3) is based on the example in Figure 9 and shown for various boundaries of SGA from 0° to 6° in Table 4.

Based on this calculation and the distribution of logs in different SGA classes, as shown in Table 4, it appears that there is no additional profit to be made from grading logs in term of SGA. When widening the boundaries from 1° to 4° the profit increases the more material is sawn. Widening the boundaries further increases the profit but in rather small steps. Sawing all material however means that 27% of all the studs will have a twist that does not pass the acceptance limit.

Page 20: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

12

����� �.���� $���� ��������������������������� ��������������!����������!���������� 6���� ��� ��� � ��� �����7�� 0���� � �� ��� �� ����� � ��� � ��� �� � ���� � 3� � ��!�

1000 m logs - cost 73���

Logs to be sawn = 401+270 = 671 m

3 3

3

Income from bark & chips671 x (1-0.62) x 18������������3

Logs to be sawn to studs671 x 0.62 = 416 m

Logs for pulpwood = 1000-401-270 = 329Income from pulwood logs

329 x 28�����������

$2#�!-,"2(�74 + 6.4 +4.6 + 9.2 = 94.2 k�

�2�#� of raw material & production73 + 416 x 40 �������������3

+�23-#40* ��&0 ��* �56

3

3

3Share of logs à 200 ���0.62 x (401 x 0.914 + 270 x 0.855) = 370 m3

3Share of logs à 140 ���0.62 x [401 x (1-0.914) + 270 x (1-0.855)] = 46 m3

3Income from logs à 200 ���370 x 200 = 74 k�

Income from logs à 140 ���46 x 140 = 6.4 k�

3

7

8� 8�

9

:

Page 21: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��

���

��

�, ������������� �������� ������

, Rep

ort 0

4:09

15

���� �3��8��� ���� ��������� �%������)���)�������������� �������� ����� ���������� ������������� �����/���������!���������������###�

��4% ��������!����� ����� ����� �����������!������������������������������ �� 6��� � ��������!��������##�94�

������3#�94�

��� �� ���) �%���� �

������������� ���:�%� ���#�*�,�����������!���� �����;�94�

�,����� ���������/�����������-94�

�,����� ��������� ����������������-94�

�����

�������������������3#94�

����

��

��

��

��

��

��

��

���

��

Log

s w

ithi

n bo

unda

ries

of

SG

A

(abs

olut

e va

lues

)

Dis

trib

utio

n of

logs

for

ea

ch

inte

rval

of

SGA

(Rag

nars

son

and

Säll

)

Dis

trib

utio

n of

acc

epte

d st

uds

for

each

in

terv

al o

f SG

A

(mea

sure

d in

this

pr

ojec

t)

Sha

re o

f lo

gs to

be

saw

n to

st

uds

for

200�

Sha

re o

f lo

gs to

be

saw

n to

st

uds

for

140�

Inco

me

from

stu

ds

[in

k��

Inco

me

from

pu

lp

logs

[in

k��

Inco

me

from

ba

rk

and

chip

s

[in

k��

Cos

t of

raw

m

ater

ial a

nd

prod

uctio

n

[in

k��

��

����

������

��

���

���������

����

���� ��

���!���

"���

�#�� �

$�#� ��

0° to

0.40

1 0.

914

0.36

7 0.

034

48.4

16

.8

2.7

82.9

%&'()�

)*����&*�

1° to

0.27

0 0.

855

0.59

7 0.

074

80.5

9.

2 4.

6 89

.6

+(,�

)*����-*�

2° to

0.18

4 0.

375

0.66

6 0.

189

99.0

4.

1 5.

8 94

.2

&+(.�

)*����/*�

3° to

0.06

3 0.

778

0.71

5 0.

203

106.

3 2.

3 6.

3 95

.8

&0(&�

)*����+*�

4° to

0.05

3 0.

143

0.72

3 0.

248

111.

2 0.

8 6.

6 97

.1

-&(,�

)*����'*�

5° to

0.02

6 0.

125

0.72

6 0.

271

113.

6 0.

08

6.8

97.7

--

(.�

)*����,*�

>7°

0.

003

0.12

1 0.

727

0.27

3 11

3.8

6.

8 97

.8

--(0�

�##*

Page 22: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

16

+� ��&��&&���� ���� ����$����,��#"��-&�

If sawn timber is regarded as fit for use for the building industry, the acceptance level for twist should not exceed the limit of 4mm/100mm/2m at the moisture content when timber is used for construction. This tough requirement, especially when timber is dried to low moisture content, is difficult to fulfil for many producers. A method of sorting logs with regards to spiral grain angle measured under bark is proposed to reduce twist in sawn timber after drying.

The results of this study showed that sawing logs with a large spiral grain angle under bark results in a very high percentage of studs with unacceptable amounts of twist. In the group with spiral grain angles under bark larger than 8° only 11.4% of the studs had a twist that passed the twist acceptance limit at 18% MC.

A linear approximation of the spiral grain angle variation for each log, based on a value of 2,5° at the pith and the measured value under bark, was shown to work very well. By using these estimated spiral grain angles for each stud and the studs position in the log it was possible to explain 72% of the variation in twist. Using the measured spiral grain angle on the stud and the position of the stud it was possible to explain 78% of the variation in twist. This showed that for Norway spruce timber it is enough to know the spiral grain angle under bark to be able to predict its variation within the log and the effect it will have on twist of the sawn studs.

Based on the assumptions and economic calculations made in this study there is no additional profit to be made from grading logs in terms of SGA. However, some of the assumptions made in this calculation might not be true. A more relevant distribution of logs in terms of SGA is not available, the economic outcome may not be representative for all regions or all sawmills. The percentage of accepted studs from the results obtained in this study is also shown for the same groups of SGA as the distribution for logs. It should also be observed that each log can produce various numbers of studs and these distributions are not related to diameter. The profit from sawing studs from large-diameter logs increases when the boundaries of SGA are widened. However, the difference when sawing all logs (boundary of SGA > 7°) and for boundary of SGA of 5° or 6° is very small.

According to interviews with some small and medium-sized Swedish sawmills, the income from pre-sorting logs would be much larger than that shown in this table. They claim that their investment pays for itself very quickly as logs with large spiral grain angle are excluded. The reason is that the few logs with large spiral grain angle cause less production problems than logs with small spiral grain angle. Sawing the large diameter logs to other dimensions, larger dimensions than studs, might result in a higher prices than these assumed above for studs. The economic value of goodwill when producing better quality sawn timber in terms of straightness is another important issue that has not been included in this cost estimate.

If the logs with spiral grain angle could be sorted out already in the forest the economic outcome would probably be different. That would mean that logs would not have to be bought for timber price and sold for pulp log price. It would be possible to

Page 23: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

17

equip the logging machine with a grain angle measuring device and in this way sort out the logs already in the forest.

Page 24: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

18

.� ���������

Forsberg, D. (1999). Warp, in particular twist, of sawn wood of Norway spruce (Picea abies). Doctoral thesis, Swedish University of Agricultural Sciences, Dept. of Forest Management and Products, Silvestria 119, Uppsala, Sweden.

Harris, J. M. (1988). Spiral grain and wave phenomena in wood formation. Springer series in wood science, Springer-Verlag, Berlin.

Johansson, G., Kliger, R., and Perstorper, M. (1993). Inköpsregler för byggnadsvirke : byggbranschens kvalitetskrav (Rules for purchase of structural timber, only in Swedish). R / Byggforskningsrådet, 1993:20, Statens råd för byggnadsforskning, Stockholm.

Johansson, M., Perstorper, M., Kliger, R., and Johansson, G. (2001). Distortion of Norway spruce timber - Part 2. Modelling twist. Holz als Roh- und Werkstoff, 59, 155-162.

Kliger, I. R. (2001). Spiral grain on logs under bark reveals twist-prone raw material. Forest Products Journal, 51(6), 67-73.

Milota, M. R. (2000). Warp and shrinkage of hem-fir stud lumber dried at conventional and high temperature. Forest Products Journal, 50(11/12), 79-84.

Mishiro, A., and Booker, R. E. (1988). Warping in New Crop Radiata Pine 100 x 50 mm (2 by 4) Boards. Bulletin of the Tokyo University Forests, 80, 37-68.

Nyström, J., and Grundberg, S. (2003). Industrial measurements of spiral grain on debarked sawlogs, prediction of twist on center planks after drying.

Perstorper, M., Johansson, M., Kliger, R., and Johansson, G. (2001). Distortion of Norway spruce timber - Part 1. Variation of relevant wood properties. Holz als Roh- und Werkstoff, 59, 94-103.

Ragnarsson, M. (2003). Växtvridenhet hos gran och fibervinkelns variation mellan bestånd (Spiral grain in Norway spruce, and grain angle variation between stands, in Swedish). Masters thesis, Avdelningen för skogs- och träteknik, IPS 024/2003, Växjö Universitet, Växjö.

Sehlstedt-Persson, S. M. B. (1995). High-temperature drying of Scots pine. A comparision between HT- and LT-drying. Holz als Roh- und Werkstoff, 53, 95-99.

Säll, H. (2002). Spiral grain in Norway Spruce. PhD, School of Industrial Engineering, 22/2002, Växjö University, Växjö.

Säll, H. (2004). Personal Communication.

Taylor, F. W. (1993). Warp threat unafected by higher drying temps. Wood technology / lumber & panels, remanufactured & engineered wood produtcs, 120(3), 36-37.

Page 25: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

19

���#���/�

Page 26: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER
Page 27: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

�������������� ������� ���� ����������������������������� ����� ��� �����

������������� ��� ��� ��

!������� ���� �������

1 1 1 .1 325 6.5 89.5 5.9 4.61 2 1.2 325 6.5 45.9 4.4 3.41 3 1.3 325 6.5 45.9 3.9 3.41 4 1.4 325 6.5 87.5 3.6 4.51 5 1.5 325 6.5 102.5 4.0 5.01 6 1.6 325 6.5 70.8 1.0 4.22 1 2.1 345 5 102.4 2.7 4.02 2 2.2 345 5 108.1 2.7 4.02 3 2.3 345 5 111.7 2.7 4.12 4 2.4 345 5 94.4 3.3 3.82 5 2.5 345 5 78.5 4.4 3.62 6 2.6 345 5 39.5 4.0 2.92 7 2.7 345 5 97.8 3.7 3.93 1 3.1 367.5 -3 55.2 1.6 1.03 2 3.2 367.5 -3 87.1 -2.9 0.03 3 3.3 367.5 -3 97.5 -1.7 -0.43 4 3.4 367.5 -3 93.0 -1.3 -0.23 5 3.5 367.5 -3 137.8 -4.9 -1.53 6 3.6 367.5 -3 96.4 -2.6 -0.33 7 3.7 367.5 -3 53.7 1.4 1.03 8 3.8 367.5 -3 86.7 0.04 1 4.1 300 12 120.3 6.7 9.94 2 4.2 300 12 67.9 7.5 6.34 3 4.3 300 12 94.9 7.8 8.34 4 4.4 300 12 61.1 7.3 5.94 5 4.5 300 12 34.9 5.4 3.85 1 5.1 360 -1.5 34.0 1.7 2.15 2 5.2 360 -1.5 124.0 1.4 -0.25 3 5.3 360 -1.5 109.4 1.4 0.15 4 5.4 360 -1.5 108.3 2.4 0.15 5 5.5 360 -1.5 52.9 1.7 1.55 6 5.6 360 -1.5 150.8 0.6 -0.85 7 5.7 360 -1.5 74.7 1.3 1.05 8 5.8 360 -1.5 98.1 2.0 0.46 1 6.1 302.5 10.5 96.2 7.1 7.56 2 6.2 302.5 10.5 51.2 6.0 4.96 3 6.3 302.5 10.5 43.5 3.6 4.16 4 6.4 302.5 10.5 105.8 6.7 7.96 5 6.5 302.5 10.5 89.3 8.7 7.06 6 6.6 302.5 10.5 107.8 5.0 8.16 7 6.7 302.5 10.5 78.9 8.2 6.47 1 7.1 325 8.5 35.9 3.9 3.27 2 7.2 325 8.5 90.6 4.1 5.77 3 7.3 325 8.5 85.6 2.7 5.67 4 7.4 325 8.5 78.5 2.4 5.3

Page 28: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

���� ����� ��� ����������

�������� ��� ��� ��

!������� ���� �������

7 5 7.5 325 8.5 45.2 4.4 3.87 6 7.6 325 8.5 77.1 2.3 5.18 1 8.1 390 11.5 143.5 3.0 9.18 2 8.2 390 11.5 96.1 7.3 6.78 3 8.3 390 11.5 79.5 3.1 6.18 4 8.4 390 11.5 48.8 5.4 4.38 5 8.5 390 11.5 138.5 6.6 8.98 6 8.6 390 11.5 72.8 1.9 5.68 7 8.7 390 11.5 156.2 9.68 8 8.8 390 11.5 161.8 9.6 9.88 9 8.9 390 11.5 130.0 7.4 8.48 10 8.10 390 11.5 36.1 3.4 3.28 11 8.11 390 11.5 138.6 8.9 8.99 1 9.1 290 -7.25 46.7 0.6 0.19 2 9.2 290 -7.25 87.5 -3.6 -3.09 3 9.3 290 -7.25 50.0 -0.9 0.09 4 9.4 290 -7.25 82.8 -3.1 -2.7

10 1 10.1 350 8.75 96.1 5.0 5.810 2 10.2 350 8.75 155.7 5.1 8.010 3 10.3 350 8.75 95.0 6.0 5.810 4 10.4 350 8.75 94.6 3.9 5.810 5 10.5 350 8.75 51.5 3.6 4.010 6 10.6 350 8.75 42.7 4.7 3.610 7 10.7 350 8.75 80.0 8.5 5.211 1 11.1 397.5 8.75 155.2 4.0 7.311 2 11.2 397.5 8.75 135.0 5.3 6.711 3 11.3 397.5 8.75 85.7 5.0 5.111 4 11.4 397.5 8.75 46.6 3.3 3.711 5 11.5 397.5 8.75 107.0 1.9 5.711 6 11.6 397.5 8.75 69.7 3.4 4.511 7 11.7 397.5 8.75 85.8 4.3 5.111 8 11.8 397.5 8.75 107.2 5.811 9 11.9 397.5 8.75 115.5 5.0 6.011 10 11.10 397.5 8.75 144.7 7.011 11 11.11 397.5 8.75 48.5 5.0 3.712 1 12.1 355 12.5 110.9 9.0 8.512 2 12.2 355 12.5 91.9 10.8 7.612 3 12.3 355 12.5 116.6 8.5 8.912 4 12.4 355 12.5 83.9 10.3 7.112 5 12.5 355 12.5 145.0 6.6 10.612 6 12.6 355 12.5 58.1 7.4 5.412 7 12.7 355 12.5 32.5 7.0 3.312 8 12.8 355 12.5 66.2 9.5 5.913 1 13.1 410 0 121.0 1.113 2 13.2 410 0 99.7 1.0 1.313 3 13.3 410 0 66.2 1.0 1.7

Page 29: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

���� ����� ��� ����������

�������� ��� ��� ��

!������� ���� �������

13 4 13.4 410 0 113.6 -0.1 1.113 5 13.5 410 0 152.1 0.6 0.713 6 13.6 410 0 126.6 1.3 1.013 7 13.7 410 0 146.1 0.713 8 13.8 410 0 75.7 0.0 1.613 9 13.9 410 0 104.2 0.3 1.313 10 13.10 410 0 127.8 1.013 11 13.11 410 0 50.3 3.1 2.113 12 13.12 410 0 150.4 -2.1 0.713 13 13.13 410 0 59.6 2.1 1.814 1 14.1 375 4 74.3 2.0 3.114 2 14.2 375 4 124.1 0.6 3.514 3 14.3 375 4 109.4 3.0 3.314 4 14.4 375 4 116.5 0.6 3.414 5 14.5 375 4 77.6 1.1 3.114 6 14.6 375 4 117.5 0.4 3.414 7 14.7 375 4 56.8 1.9 2.914 8 14.8 375 4 66.8 2.1 3.015 1 15.1 400 2 118.7 2.1 2.215 2 15.2 400 2 36.1 1.1 2.415 3 15.3 400 2 116.9 2.3 2.215 4 15.4 400 2 71.1 1.4 2.315 5 15.5 400 2 123.2 1.3 2.215 6 15.6 400 2 49.2 1.3 2.415 7 15.7 400 2 93.6 2.3 2.315 8 15.8 400 2 122.8 0.7 2.215 9 15.9 400 2 74.9 2.4 2.315 10 15.10 400 2 123.6 2.216 1 16.1 500 3.5 152.7 3.116 2 16.2 500 3.5 143.1 2.3 3.116 3 16.3 500 3.5 155.5 3.116 4 16.4 500 3.5 88.9 1.4 2.816 5 16.5 500 3.5 119.5 3.016 6 16.6 500 3.5 135.9 1.3 3.016 7 16.7 500 3.5 115.7 2.1 2.916 8 16.8 500 3.5 179.0 0.7 3.216 9 16.9 500 3.5 166.3 0.9 3.216 10 16.10 500 3.5 128.1 3.016 11 16.11 500 3.5 80.5 1.4 2.816 12 16.12 500 3.5 95.1 3.1 2.916 13 16.13 500 3.5 138.8 2.1 3.116 14 16.14 500 3.5 186.0 3.3 3.216 15 16.15 500 3.5 141.2 3.116 16 16.16 500 3.5 151.2 3.116 17 16.17 500 3.5 50.2 2.1 2.716 18 16.18 500 3.5 167.5 3.2

Page 30: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

���� ����� ��� ����������

�������� ��� ��� ��

!������� ���� �������

16 19 16.19 500 3.5 32.1 2.4 2.616 20 16.20 500 3.5 65.8 0.7 2.717 1 17.1 485 0 142.8 0.0 1.017 2 17.2 485 0 132.9 1.117 3 17.3 485 0 126.8 1.217 4 17.4 485 0 66.3 1.6 1.917 5 17.5 485 0 119.9 1.317 6 17.6 485 0 53.1 1.3 2.017 7 17.7 485 0 178.8 0.717 8 17.8 485 0 134.4 0.9 1.117 9 17.9 485 0 87.9 1.0 1.617 10 17.10 485 0 87.6 1.3 1.617 11 17.11 485 0 97.5 1.0 1.517 12 17.12 485 0 154.9 0.4 0.917 13 17.13 485 0 116.9 0.3 1.317 14 17.14 485 0 169.6 0.817 15 17.15 485 0 194.0 -1.0 0.517 16 17.16 485 0 143.0 -0.9 1.117 17 17.17 485 0 33.2 0.7 2.317 18 17.18 485 0 160.0 -0.4 0.917 19 17.19 485 0 110.2 0.7 1.418 1 18.1 445 0.5 59.3 -0.4 2.018 2 18.2 445 0.5 151.4 1.118 3 18.3 445 0.5 59.7 1.0 2.018 4 18.4 445 0.5 156.9 0.4 1.118 5 18.5 445 0.5 159.9 2.0 1.118 6 18.6 445 0.5 100.6 2.0 1.618 7 18.7 445 0.5 122.1 1.418 8 18.8 445 0.5 119.7 1.6 1.518 9 18.9 445 0.5 169.6 -1.0 1.018 10 18.10 445 0.5 109.7 1.9 1.518 11 18.11 445 0.5 162.6 1.7 1.118 12 18.12 445 0.5 108.2 0.9 1.618 13 18.13 445 0.5 40.6 0.6 2.218 14 18.14 445 0.5 72.8 1.1 1.918 15 18.15 445 0.5 148.4 -1.0 1.218 16 18.16 445 0.5 107.7 0.1 1.519 1 19.1 360 -1.75 123.6 -0.419 2 19.2 360 -1.75 65.5 0.0 1.019 3 19.3 360 -1.75 114.2 0.7 -0.219 4 19.4 360 -1.75 100.5 -0.1 0.219 5 19.5 360 -1.75 103.0 -2.1 0.219 6 19.6 360 -1.75 69.2 -0.3 1.019 7 19.7 360 -1.75 113.5 -0.6 -0.119 8 19.8 360 -1.75 57.6 1.3 1.319 9 19.9 360 -1.75 41.4 2.1 1.8

Page 31: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

���� ����� ��� ����������

�������� ��� ��� ��

!������� ���� �������

19 10 19.10 360 -1.75 161.1 0.4 -1.219 11 19.11 360 -1.75 127.7 -0.520 1 20.1 395 -3.5 127.4 -2.7 -1.320 2 20.2 395 -3.5 101.4 -0.6 -0.520 3 20.3 395 -3.5 48.3 0.4 1.320 4 20.4 395 -3.5 76.0 0.320 5 20.5 395 -3.5 94.2 -0.9 -0.220 6 20.6 395 -3.5 39.6 1.6 1.620 7 20.7 395 -3.5 79.4 0.220 8 20.8 395 -3.5 123.4 -2.6 -1.220 9 20.9 395 -3.5 150.7 -3.0 -2.121 1 21.1 320 0 130.6 0.6 0.521 2 21.2 320 0 81.8 2.3 1.321 3 21.3 320 0 39.5 1.3 2.121 4 21.4 320 0 89.2 -0.6 1.121 5 21.5 320 0 88.1 0.1 1.221 6 21.6 320 0 78.5 0.9 1.321 7 21.7 320 0 40.7 0.7 2.022 1 22.1 405 4 104.6 1.7 3.322 2 22.2 405 4 110.2 0.6 3.322 3 22.3 405 4 103.0 2.7 3.222 4 22.4 405 4 62.2 2.6 2.922 5 22.5 405 4 96.4 2.6 3.222 6 22.6 405 4 40.1 2.6 2.722 7 22.7 405 4 110.2 2.4 3.322 8 22.8 405 4 64.6 2.7 2.923 1 23.1 325 0.75 128.3 1.1 1.223 2 23.2 325 0.75 88.4 2.3 1.623 3 23.3 325 0.75 77.3 0.0 1.723 4 23.4 325 0.75 88.8 1.7 1.623 5 23.5 325 0.75 47.5 2.0 2.123 6 23.6 325 0.75 38.6 0.6 2.224 1 24.1 345 -1.5 36.5 -1.4 1.924 2 24.2 345 -1.5 114.0 0.1 -0.124 3 24.3 345 -1.5 118.0 -2.6 -0.224 4 24.4 345 -1.5 52.8 0.6 1.524 5 24.5 345 -1.5 118.3 0.3 -0.224 6 24.6 345 -1.5 95.5 -0.6 0.324 7 24.7 345 -1.5 69.4 -0.1 1.025 1 25.1 295 10.25 40.9 4.3 4.025 2 25.2 295 10.25 72.5 7.4 6.225 3 25.3 295 10.25 50.9 9.7 4.825 4 25.4 295 10.25 93.0 9.2 7.325 5 25.5 295 10.25 80.1 8.7 6.426 1 26.1 365 10.5 83.6 10.6 5.926 2 26.2 365 10.5 41.4 7.4 3.8

Page 32: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

���� ����� ��� ����������

�������� ��� ��� ��

!������� ���� �������

26 3 26.3 365 10.5 40.3 4.7 3.826 4 26.4 365 10.5 147.5 7.0 8.926 5 26.5 365 10.5 76.7 9.9 5.826 6 26.6 365 10.5 95.0 7.1 6.626 7 26.7 365 10.5 86.3 6.7 6.126 8 26.8 365 10.5 151.7 9.126 9 26.9 365 10.5 137.9 6.1 8.427 1 27.1 280 12 54.5 8.7 5.627 2 27.2 280 12 33.9 8.1 3.627 3 27.3 280 12 73.3 8.4 7.128 1 28.1 375 2 129.1 0.0 2.228 2 28.2 375 2 129.6 0.7 2.228 3 28.3 375 2 75.3 0.9 2.328 4 28.4 375 2 91.4 0.3 2.328 5 28.5 375 2 82.9 0.7 2.328 6 28.6 375 2 124.3 2.228 7 28.7 375 2 121.7 0.9 2.228 8 28.8 375 2 81.9 1.4 2.328 9 28.9 375 2 38.8 2.4 2.428 10 28.10 375 2 47.3 0.7 2.429 1 29.1 380 8.5 117.5 3.6 6.129 2 29.2 380 8.5 72.7 4.4 4.729 3 29.3 380 8.5 99.2 4.0 5.529 4 29.4 380 8.5 69.7 3.6 4.529 5 29.5 380 8.5 35.5 2.7 3.129 6 29.6 380 8.5 52.8 3.9 3.929 7 29.7 380 8.5 95.9 2.3 5.530 1 30.1 350 -5.5 111.1 -6.4 -2.530 2 30.2 350 -5.5 57.9 -0.1 0.130 3 30.3 350 -5.5 102.8 -6.1 -2.130 4 30.4 350 -5.5 42.3 -2.0 1.130 5 30.5 350 -5.5 64.2 -1.7 -0.230 6 30.6 350 -5.5 107.5 -4.3 -2.230 7 30.7 350 -5.5 67.8 -4.4 -0.330 8 30.8 350 -5.5 112.4 -6.8 -2.531 1 31.1 410 -0.5 79.3 -0.7 1.431 2 31.2 410 -0.5 90.1 1.6 1.231 3 31.3 410 -0.5 78.2 1.1 1.431 4 31.4 410 -0.5 49.8 2.7 2.031 5 31.5 410 -0.5 129.1 -0.4 0.631 6 31.6 410 -0.5 138.0 -2.4 0.531 7 31.7 410 -0.5 87.6 1.3 1.331 8 31.8 410 -0.5 135.9 -0.1 0.631 9 31.9 410 -0.5 45.6 2.032 1 32.1 365 -1.5 120.3 -1.4 -0.132 2 32.2 365 -1.5 85.0 1.7 0.7

Page 33: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��������, ������������� �������� ������, Report 04:09

���� ����� ��� ����������

�������� ��� ��� ��

!������� ���� �������

32 3 32.3 365 -1.5 131.6 0.3 -0.432 4 32.4 365 -1.5 74.5 -0.3 0.932 5 32.5 365 -1.5 96.2 -0.4 0.532 6 32.6 365 -1.5 53.6 0.6 1.632 7 32.7 365 -1.5 40.7 1.3 1.932 8 32.8 365 -1.5 114.0 0.3 0.132 9 32.9 365 -1.5 66.6 2.1 1.2

Page 34: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER
Page 35: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��

��

��

��

, �����������

�� ���

���

�� ���

���

, Rep

ort 0

4:09

�""#��$%

�&��

����

�����

'���

�����

�()*

�+,�(

-*�

+����

�()*

�+�

��

���

��

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

���

��

��!

��

��

�!�

��

� �

!!�

� "

#$

�!�

��

� "

�%

�!�

��

� "

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

1 1

1.1

7335

.6

8.1

-0.3

-1

.2

6793

.7

19.2

-2

.5

-3.3

71

80.7

12

.1

-1.1

-1

.8

1 2

1.2

6649

.5

10.6

4.

1 -3

.0

6175

.7

27.2

4.

9 -5

.9

6530

.0

17.5

4.

7 -3

.5

1 3

1.3

6402

.8

13.0

-3

.6

1.6

5936

.7

31.4

-8

.2

2.2

6284

.2

18.9

-5

.2

1.6

1 4

1.4

6296

.1

3.3

0.3

-1.4

58

47.8

12

.6

-1.3

-3

.3

6200

.3

7.4

0.3

-1.8

1

5 1.

5 65

77.5

3.

7 1.

1 1.

8 60

87.5

12

.4

-0.5

2.

1 64

47.5

7.

3 1.

0 1.

9 1

6 1.

6 64

76.6

2.

1 -1

.0

-0.6

59

84.2

9.

6 -3

.4

-2.8

63

33.7

5.

6 -1

.5

-1.3

2

1 2.

1 52

26.6

4.

4 1.

3 0.

0 48

31.7

9.

4 0.

0 -0

.7

5126

.7

5.8

1.5

-0.5

2

2 2.

2 54

14.1

3.

6 0.

8 -0

.6

5013

.2

7.4

-1.2

-2

.0

5316

.4

5.2

0.5

-0.8

2

3 2.

3 52

69.4

5.

2 0.

6 0.

3 48

73.5

10

.1

-1.5

-1

.6

5171

.7

6.1

-0.5

-0

.3

2 4

2.4

5425

.6

7.4

2.1

0.9

5021

.2

16.6

0.

3 0.

7 53

32.8

10

.1

1.9

1.2

2 5

2.5

5100

.2

6.8

1.7

-0.5

47

27.0

14

.5

1.5

-2.1

50

18.9

8.

9 2.

0 -1

.0

2 6

2.6

5261

.5

15.4

1.

2 -3

.7

4881

.4

32.9

0.

5 -5

.7

5159

.5

21.9

1.

6 -4

.1

2 7

2.7

5614

.5

4.1

0.3

1.0

5185

.2

9.2

-1.2

0.

7 55

02.1

6.

0 0.

1 1.

2 3

1 3.

1 61

64.0

-0

.8

-0.1

-2

.9

5738

.5

1.0

-3.2

-4

.6

6066

.7

-0.6

-0

.5

-3.1

3

2 3.

2 64

41.9

-9

.2

4.1

1.5

5987

.7

-17.

6 2.

7 1.

2 63

27.0

-1

2.8

4.0

1.9

3 3

3.3

7053

.5

-3.2

-2

.1

-1.7

65

55.7

-8

.2

-6.0

-1

.7

6926

.3

-6.1

-2

.6

-0.4

3

4 3.

4 57

58.1

-7

.4

1.0

2.2

5349

.8

-14.

3 1.

1 1.

9 56

55.8

-1

0.4

1.3

2.2

3 5

3.5

6280

.8

-9.3

1.

7 0.

9 58

49.7

-1

8.5

2.7

0.5

6163

.5

-13.

1 2.

8 1.

1 3

6 3.

6 61

96.2

-6

.3

1.3

-0.2

57

81.4

-1

1.7

-0.1

-1

.6

6090

.3

-9.0

1.

3 -0

.4

3 7

3.7

5791

.2

-2.9

-0

.8

4.6

5384

.4

-3.1

-3

.8

4.2

5676

.6

-3.1

-0

.9

4.8

3 8

3.8

6119

.1

-5.4

3.

6 2.

1 56

96.5

-1

1.4

2.5

2.0

5993

.4

-8.1

3.

2 2.

7 4

1 4.

1 63

59.7

3.

9 1.

8 1.

7 58

75.2

9.

5 5.

1 2.

0 62

06.4

5.

9 2.

4 1.

5 4

2 4.

2 62

97.2

9.

4 -2

.0

-1.0

58

19.7

21

.1

-3.6

-2

.4

6146

.0

14.9

-1

.9

-1.5

4

3 4.

3 63

52.0

10

.5

3.1

1.0

5895

.7

19.3

4.

3 0.

3 62

27.3

13

.1

3.2

1.1

4 4

4.4

6229

.6

16.4

4.

6 -5

.8

5784

.3

39.5

8.

1 -8

.0

6102

.3

27.0

6.

7 -6

.7

4 5

4.5

5867

.7

18.0

4.

2 5.

2 54

64.0

37

.1

4.2

5.4

5793

.6

22.9

4.

1 5.

3 5

1 5.

1 58

42.5

7.

6 2.

2 2.

2 54

51.0

15

.5

0.6

0.9

5751

.7

10.4

1.

5 2.

2 5

2 5.

2 61

51.8

-0

.3

-1.5

1.

3 57

36.6

0.

1 -4

.0

0.6

6046

.2

-0.3

-2

.0

1.1

5 3

5.3

5732

.7

1.4

-0.1

0.

6 53

56.0

2.

5 -1

.6

-1.1

56

54.3

1.

5 -0

.4

0.3

5 4

5.4

5670

.2

0.2

2.0

-0.8

52

96.6

1.

1 2.

1 -3

.0

5584

.2

-0.2

1.

4 -1

.0

5 5

5.5

5888

.1

2.6

1.7

-2.1

54

90.5

5.

5 0.

0 -2

.8

5797

.1

3.1

1.3

-2.0

5

6 5.

6 67

19.6

-0

.1

-1.5

0.

3 62

47.1

-1

.1

-7.0

-1

.3

6578

.4

-0.8

-2

.2

0.2

5 7

5.7

5487

.0

1.1

-0.3

2.

4 51

24.5

2.

0 -1

.5

1.6

5402

.9

1.0

-0.1

2.

1

Page 36: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��

��

��

��

, �����������

�� ���

���

�� ���

���

, Rep

ort 0

4:09

�""#��$%

�&��

����

�����

'���

�����

�()*

�+,�(

-*�

+����

�()*

�+�

��

���

��

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

���

��

��!

��

��

�!�

��

� �

!!�

� "

#$

�!�

��

� "

�%

�!�

��

� "

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

5 8

5.8

6068

.8

0.1

2.3

-1.2

56

51.9

0.

8 1.

1 -2

.9

5966

.5

-0.1

2.

2 -1

.6

6 1

6.1

7374

.5

6.7

-0.6

-0

.3

6862

.3

15.7

-1

.0

-1.5

72

64.1

10

.5

-0.1

-0

.9

6 2

6.2

6122

.9

15.7

2.

2 -6

.0

5714

.2

36.3

3.

2 -8

.0

6064

.4

21.5

2.

8 -6

.6

6 3

6.3

5959

.2

19.5

5.

7 7.

5 55

60.4

30

.2

5.5

12.0

58

74.0

23

.7

4.5

9.1

6 4

6.4

6811

.2

11.5

-0

.3

1.0

6350

.9

28.3

0.

2 -0

.4

6730

.2

17.2

0.

8 0.

7 6

5 6.

5 69

44.3

13

.1

3.9

-1.9

64

63.6

30

.2

7.0

-3.0

68

13.6

18

.5

5.8

-2.0

6

6 6.

6 73

84.3

7.

2 -2

.3

-0.9

68

88.6

18

.0

-3.9

-4

.0

7263

.7

11.5

-2

.9

-1.2

6

7 6.

7 65

71.1

14

.9

1.0

3.1

6120

.3

30.5

-1

.2

4.9

6489

.4

20.5

1.

6 2.

8 7

1 7.

1 56

28.1

9.

1 2.

0 0.

4 52

57.2

22

.9

0.9

-0.3

55

50.5

14

.3

2.2

0.2

7 2

7.2

6425

.6

7.1

-0.7

0.

0 59

79.3

12

.9

-4.7

0.

1 63

05.8

8.

9 -1

.7

0.2

7 3

7.3

6496

.6

6.4

1.7

1.5

6048

.5

13.2

-0

.5

0.5

6381

.4

9.2

1.7

1.4

7 4

7.4

6162

.6

0.1

-1.5

-0

.1

5750

.9

3.5

-4.2

-0

.7

6059

.8

1.2

-2.1

-0

.2

7 5

7.5

5726

.0

16.4

1.

7 -0

.2

5347

.3

35.0

1.

9 0.

0 56

46.4

24

.1

2.9

0.0

7 6

7.6

6300

.1

-0.7

-0

.9

0.8

5857

.6

2.2

-2.5

-0

.2

6179

.6

1.1

-0.9

0.

1 8

1 8.

1 60

76.9

8.

8 -1

.4

-0.1

56

10.3

21

.5

-4.4

-3

.1

5928

.3

14.5

-1

.2

-0.4

8

2 8.

2 57

54.3

7.

2 1.

5 1.

6 53

09.3

16

.1

2.8

0.8

5608

.6

11.9

2.

5 1.

1 8

3 8.

3 62

75.2

4.

5 -1

.8

0.3

5790

.8

10.1

0.

2 -0

.5

6115

.1

7.1

-1.7

-0

.1

8 4

8.4

5348

.2

11.0

1.

3 3.

0 49

52.6

22

.8

1.7

1.9

5233

.2

15.5

1.

6 2.

7 8

5 8.

5 61

31.4

11

.6

0.7

0.6

5626

.0

24.8

0.

9 -1

.1

5945

.2

17.8

2.

1 0.

2 8

6 8.

6 61

41.7

4.

1 3.

3 -2

.8

5686

.2

10.9

8.

6 -1

.8

6006

.8

7.0

3.8

-2.6

8

7 8.

7 60

70.3

11

.2

0.2

0.4

5573

.4

23.7

-1

.7

0.0

5915

.6

16.0

0.

8 0.

9 8

8 8.

8 62

61.1

9.

2 3.

0 -1

.1

5751

.7

17.5

3.

0 -4

.5

6076

.8

12.0

3.

3 -3

.0

8 9

8.9

6116

.1

9.9

-1.1

-2

.2

5648

.5

21.5

-3

.4

-4.7

59

65.8

15

.4

-0.4

-3

.0

8 10

8.

10

5371

.4

13.0

2.

8 -1

.5

4955

.5

29.0

1.

4 -0

.9

5243

.4

19.2

2.

7 -1

.7

8 11

8.

11

6240

.6

8.4

2.0

1.7

5766

.5

18.2

0.

1 1.

8 60

88.9

12

.8

2.2

1.9

9 1

9.1

6940

.2

-1.3

5.

3 -0

.8

6456

.7

-3.0

3.

8 -1

.6

6776

.6

-2.5

5.

0 -0

.8

9 2

9.2

7528

.4

-5.9

0.

7 2.

5 70

13.8

-1

6.5

1.6

2.3

7355

.7

-11.

2 1.

7 2.

7 9

3 9.

3 75

97.5

-6

.3

-0.4

2.

0 70

77.1

-1

5.9

-3.3

1.

9 73

98.4

-1

2.1

-1.0

2.

5 9

4 9.

4 76

80.3

-5

.1

-0.6

-0

.1

7154

.0

-14.

5 -1

.0

-2.1

74

93.0

-1

0.3

-0.6

-0

.5

10

1 10

.1

6035

.9

6.5

-0.6

-3

.0

5620

.1

15.3

-2

.7

-3.1

59

39.4

9.

7 -1

.0

-2.7

10

2

10.2

65

25.2

10

.7

2.9

-0.4

60

36.3

17

.6

2.1

0.7

6381

.3

12.5

2.

5 0.

1 10

3

10.3

65

17.5

10

.0

0.3

1.9

6051

.4

19.6

-0

.1

3.0

6397

.5

12.9

0.

5 2.

4 10

4

10.4

64

05.0

3.

2 4.

2 -1

.4

5941

.1

8.9

7.7

-1.0

62

89.1

5.

0 4.

2 -1

.3

Page 37: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��

��

��

��

, �����������

�� ���

���

�� ���

���

, Rep

ort 0

4:09

�""#��$%

�&��

����

�����

'���

�����

�()*

�+,�(

-*�

+����

�()*

�+�

��

���

��

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

���

��

��!

��

��

�!�

��

� �

!!�

� "

#$

�!�

��

� "

�%

�!�

��

� "

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

10

5 10

.5

5956

.3

13.6

1.

1 -3

.2

5511

.9

31.4

-0

.5

-2.8

58

21.3

20

.8

1.3

-3.1

10

6

10.6

60

43.9

17

.0

3.0

2.8

5606

.8

38.9

4.

6 0.

8 59

38.5

25

.3

4.0

2.4

10

7 10

.7

6429

.7

8.6

4.0

2.2

5945

.4

19.1

4.

4 0.

2 62

95.3

11

.5

4.2

1.2

11

1 11

.1

6966

.1

4.9

0.6

0.0

6438

.7

9.7

-1.4

-2

.9

6804

.7

7.0

-1.0

-0

.9

11

2 11

.2

6445

.8

7.7

1.3

0.9

5955

.6

13.2

-0

.6

-0.1

62

96.1

9.

8 0.

9 0.

6 11

3

11.3

59

78.0

6.

8 -0

.9

4.1

5543

.2

14.9

-3

.5

4.7

5866

.0

9.4

-1.1

4.

2 11

4

11.4

60

11.3

14

.4

1.3

-4.4

55

73.9

34

.1

-0.5

-7

.2

5880

.0

23.6

2.

0 -5

.0

11

5 11

.5

6274

.5

3.8

-1.5

-0

.5

5824

.4

10.3

-7

.1

-1.3

61

32.9

6.

9 -2

.7

-0.9

11

6

11.6

59

38.9

4.

3 0.

1 -0

.5

5518

.6

13.5

-1

.5

-0.9

58

11.4

9.

3 0.

1 -0

.8

11

7 11

.7

6014

.1

3.8

-1.6

-2

.3

5567

.6

10.7

-3

.9

-4.0

58

70.3

7.

3 -1

.7

-2.9

11

8

11.8

64

49.9

6.

8 1.

7 1.

1 59

77.5

12

.6

0.6

-0.8

62

99.1

9.

1 1.

6 0.

6 11

9

11.9

64

40.7

5.

8 1.

6 -0

.1

5969

.5

12.5

0.

5 -1

.5

6285

.7

8.9

1.7

-0.7

11

10

11

.10

6369

.8

4.1

1.6

-2.2

58

89.5

8.

8 0.

5 -3

.4

6203

.3

6.4

1.4

-2.4

11

11

11

.11

5906

.9

11.0

0.

5 6.

7 54

74.0

26

.5

-1.0

9.

2 57

97.0

17

.3

1.2

7.8

12

1 12

.1

6972

.7

16.9

4.

3 0.

7 64

25.9

33

.6

3.4

0.7

6778

.0

21.3

3.

7 1.

1 12

2

12.2

59

66.4

6.

0 -2

.1

0.1

5540

.1

21.7

-3

.3

-0.5

58

51.5

13

.0

-2.0

-0

.2

12

3 12

.3

6718

.1

12.4

2.

3 1.

3 62

05.4

30

.7

0.9

2.1

6546

.3

21.5

2.

7 1.

4 12

4

12.4

63

87.9

13

.8

1.2

-2.0

59

51.2

28

.2

-0.5

-5

.7

6277

.3

19.4

1.

2 -3

.6

12

5 12

.5

7189

.9

9.8

-0.9

0.

3 65

84.8

23

.3

-4.9

-0

.6

6942

.2

18.3

-1

.4

-0.3

12

6

12.6

55

83.1

13

.6

-0.7

-0

.8

5188

.8

37.7

1.

4 -0

.2

5484

.8

22.0

0.

9 0.

1 12

7

12.7

53

45.0

24

.9

-0.1

2.

2 49

87.5

61

.3

-3.7

1.

0 52

65.4

35

.0

-1.8

2.

3 12

8

12.8

56

66.3

14

.8

2.4

4.2

5280

.6

36.1

2.

2 5.

1 55

72.7

22

.2

2.6

4.5

13

1 13

.1

6293

.3

1.4

1.5

-0.6

58

76.7

2.

3 -0

.4

-1.4

61

90.0

1.

6 0.

8 -0

.6

13

2 13

.2

6125

.0

0.3

-0.2

0.

7 56

34.4

0.

5 -0

.5

0.7

5935

.9

0.3

-0.3

0.

7 13

3

13.3

60

46.0

0.

2 -0

.4

0.6

5625

.7

1.1

-3.6

-1

.4

5930

.2

0.8

-1.2

0.

1 13

4

13.4

62

28.1

-1

.1

0.4

-0.1

58

12.1

-2

.1

-1.6

-1

.5

6120

.6

-1.5

-0

.4

-0.5

13

5

13.5

64

22.9

-0

.8

2.8

0.1

5875

.9

-1.3

1.

6 -3

.0

6187

.9

-1.7

2.

3 -1

.5

13

6 13

.6

6267

.6

0.3

0.9

0.8

5788

.5

1.1

-0.8

2.

5 60

92.8

0.

4 0.

7 2.

1 13

7

13.7

59

87.6

1.

5 2.

3 0.

0 55

65.7

-0

.3

2.2

-2.5

58

69.8

0.

6 2.

5 -0

.7

13

8 13

.8

6000

.8

1.2

-0.3

-0

.4

5591

.7

2.9

-2.7

-0

.8

5892

.8

1.6

-1.2

-0

.4

13

9 13

.9

6241

.6

0.2

1.9

1.3

5825

.1

1.4

1.2

0.3

6142

.0

0.3

2.1

1.1

13

10

13.1

0 63

18.4

0.

7 -0

.4

1.5

5873

.5

1.3

-2.8

-0

.4

6188

.1

0.9

-1.3

1.

0 13

11

13

.11

5987

.0

3.9

0.6

-0.1

55

59.6

11

.1

-2.2

-1

.4

5865

.8

7.0

0.2

-0.1

Page 38: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��

��

��

��

, �����������

�� ���

���

�� ���

���

, Rep

ort 0

4:09

�""#��$%

�&��

����

�����

'���

�����

�()*

�+,�(

-*�

+����

�()*

�+�

��

���

��

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

���

��

��!

��

��

�!�

��

� �

!!�

� "

#$

�!�

��

� "

�%

�!�

��

� "

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

13

12

13.1

2 63

48.6

-1

.3

1.3

2.4

5879

.5

-4.9

1.

9 4.

1 62

08.5

-3

.4

1.8

3.6

13

13

13.1

3 61

06.2

6.

5 -0

.9

1.5

5674

.2

12.8

-5

.0

1.2

5984

.2

8.9

-2.0

1.

5 14

1

14.1

55

56.6

3.

5 -0

.2

-2.9

51

54.2

6.

4 -2

.2

-4.2

54

38.9

4.

6 -0

.6

-2.8

14

2

14.2

56

21.3

0.

1 -1

.3

1.1

5214

.3

1.3

-3.0

0.

3 55

02.9

0.

6 -1

.5

0.9

14

3 14

.3

5930

.6

3.1

-3.2

-0

.1

5505

.5

6.3

-6.1

-0

.4

5802

.1

3.8

-4.2

0.

1 14

4

14.4

61

44.6

2.

3 2.

5 -0

.3

5687

.2

6.2

2.1

-1.7

59

83.6

3.

7 2.

6 -0

.7

14

5 14

.5

5286

.1

0.0

-0.5

0.

7 49

10.3

0.

5 -2

.8

-1.8

51

56.7

0.

5 -0

.6

0.1

14

6 14

.6

5906

.9

0.2

2.1

-0.6

54

72.4

0.

7 0.

2 -2

.9

5755

.7

0.5

1.4

-1.3

14

7

14.7

48

49.5

8.

9 -5

.6

2.3

4502

.4

18.6

-7

.7

-0.1

47

49.5

12

.1

-6.0

1.

5 14

8

14.8

53

42.0

4.

6 0.

9 -0

.9

4954

.4

11.3

-0

.2

-1.0

52

20.9

7.

2 0.

0 -0

.6

15

1 15

.1

5941

.0

1.6

2.0

2.2

5507

.1

2.7

1.0

2.9

5794

.5

2.3

2.1

2.7

15

2 15

.2

5006

.4

4.1

3.4

2.0

4657

.9

10.2

2.

4 0.

2 49

12.9

6.

3 3.

5 1.

6 15

3

15.3

60

26.6

1.

1 -1

.6

0.5

5589

.3

2.1

-4.5

-0

.5

5905

.3

1.5

-2.0

0.

4 15

4

15.4

55

26.4

1.

4 -0

.5

1.4

5128

.0

3.9

-2.2

1.

1 54

17.1

2.

7 -0

.3

1.3

15

5 15

.5

5762

.0

0.9

-0.8

0.

4 53

33.0

2.

6 -1

.2

-1.2

56

18.9

1.

4 -0

.6

0.0

15

6 15

.6

5165

.6

6.7

1.8

-2.7

48

01.1

14

.2

2.9

-4.9

50

63.2

9.

2 2.

6 -3

.1

15

7 15

.7

5546

.2

2.5

-1.9

-1

.3

5148

.7

6.5

-6.4

-2

.8

5421

.2

3.5

-3.4

-1

.5

15

8 15

.8

5479

.4

1.4

-1.6

-0

.2

5094

.5

4.7

-4.4

-0

.8

5364

.9

2.4

-2.0

0.

0 15

9

15.9

55

40.4

1.

6 1.

8 1.

9 51

52.2

4.

9 1.

6 1.

1 54

24.4

3.

0 1.

8 1.

6 15

10

15

.10

5515

.0

2.5

0.6

-2.5

51

30.8

3.

8 -1

.3

-6.5

54

04.3

3.

0 0.

2 -3

.4

16

1 16

.1

5654

.8

2.0

1.9

-0.6

52

37.1

5.

0 0.

7 -1

.6

5529

.0

4.2

2.0

-0.9

16

2

16.2

56

77.5

2.

9 -0

.8

1.8

5264

.5

6.7

-1.9

1.

0 55

56.8

4.

5 -0

.6

1.3

16

3 16

.3

5696

.8

4.3

1.0

0.7

5296

.6

6.8

0.4

-1.1

55

90.7

5.

6 1.

3 0.

2 16

4

16.4

55

49.0

3.

6 1.

4 0.

4 51

62.4

6.

5 0.

1 -0

.7

5445

.0

4.8

1.2

0.1

16

5 16

.5

5960

.2

0.6

-2.6

1.

4 55

23.1

3.

5 -3

.0

0.6

5832

.2

1.6

-2.1

1.

3 16

6

16.6

58

43.2

1.

2 3.

6 2.

6 54

24.5

3.

9 2.

9 4.

5 57

29.4

2.

4 3.

3 3.

6 16

7

16.7

57

48.0

3.

2 -0

.5

-0.2

53

27.8

5.

8 -2

.0

-0.3

56

21.9

3.

9 -0

.6

0.0

16

8 16

.8

6135

.5

2.6

2.7

2.5

5644

.7

5.3

3.0

4.3

5961

.4

4.0

3.5

3.7

16

9 16

.9

6118

.4

2.9

1.6

0.6

5647

.2

4.6

0.8

0.6

5959

.9

3.9

1.7

0.9

16

10

16.1

0 56

90.5

2.

7 0.

0 -0

.4

5268

.3

6.0

-0.1

-2

.4

5563

.5

4.1

0.3

-0.8

16

11

16

.11

5923

.0

2.3

1.2

0.6

5504

.9

5.5

1.1

0.3

5812

.3

3.6

2.0

0.6

16

12

16.1

2 56

26.7

4.

5 2.

9 1.

8 52

24.4

6.

1 1.

7 0.

9 55

13.4

4.

3 2.

1 1.

6 16

13

16

.13

5676

.6

1.3

-1.3

0.

8 52

74.3

4.

0 -2

.4

0.2

5568

.9

2.0

-1.6

0.

9

Page 39: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��

��

��

��

, �����������

�� ���

���

�� ���

���

, Rep

ort 0

4:09

�""#��$%

�&��

����

�����

'���

�����

�()*

�+,�(

-*�

+����

�()*

�+�

��

���

��

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

���

��

��!

��

��

�!�

��

� �

!!�

� "

#$

�!�

��

� "

�%

�!�

��

� "

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

16

14

16.1

4 58

14.5

0.

8 -0

.4

1.2

5377

.4

2.2

-1.8

0.

5 56

76.3

1.

5 -0

.9

1.0

16

15

16.1

5 58

46.3

3.

6 2.

2 0.

9 53

91.2

6.

8 0.

7 -0

.4

5697

.2

5.0

2.1

0.5

16

16

16.1

6 60

84.9

2.

5 2.

5 2.

8 55

99.9

4.

8 0.

6 3.

5 59

13.8

3.

9 2.

2 3.

6 16

17

16

.17

5777

.6

6.9

-0.9

0.

6 53

83.5

13

.8

-2.5

-0

.5

5685

.4

9.0

-1.5

0.

5 16

18

16

.18

5738

.1

-4.1

0.

7 1.

1 52

75.4

3.

0 1.

0 0.

4 55

73.2

2.

1 1.

7 1.

1 16

19

16

.19

5744

.7

7.6

-0.6

-0

.6

5345

.2

16.7

-2

.4

-1.2

56

43.5

11

.0

-0.8

-0

.7

16

20

16.2

0 57

05.3

3.

0 -0

.7

-0.8

53

08.6

6.

6 -2

.0

-0.8

56

02.8

5.

0 -0

.2

-0.7

17

1

17.1

51

25.0

0.

1 0.

0 0.

0 47

71.8

0.

4 -0

.7

-0.2

50

35.7

0.

0 -0

.4

0.2

17

2 17

.2

5181

.0

0.1

0.7

0.3

4812

.5

-0.6

-0

.2

-1.5

50

83.1

-0

.5

0.5

-0.1

17

3

17.3

50

86.8

1.

2 0.

3 0.

3 47

41.7

1.

5 -1

.0

-0.1

50

04.0

1.

4 0.

3 0.

1 17

4

17.4

44

83.0

0.

7 1.

5 0.

9 41

86.7

2.

6 0.

8 -0

.5

4419

.4

1.2

0.7

0.7

17

5 17

.5

4945

.9

0.0

-0.3

-0

.2

4615

.0

0.2

-1.3

-1

.1

4871

.0

0.2

-0.2

0.

0 17

6

17.6

45

46.7

1.

9 0.

6 -0

.8

4242

.3

5.6

-1.2

-1

.5

4477

.2

2.6

0.1

-0.8

17

7

17.7

53

80.4

-1

.4

2.2

-0.1

50

02.1

-1

.5

2.2

-0.6

52

81.1

-1

.3

2.2

0.2

17

8 17

.8

5134

.2

-1.1

1.

4 0.

1 47

74.5

-0

.6

2.0

-0.5

50

39.2

-1

.1

1.4

0.0

17

9 17

.9

4820

.8

0.8

-0.1

-0

.1

4504

.4

1.5

-1.7

-1

.4

4751

.4

1.3

-0.3

-0

.4

17

10

17.1

0 50

15.1

2.

1 0.

8 0.

0 46

86.7

4.

2 -0

.8

-0.7

49

44.5

3.

1 0.

4 -0

.3

17

11

17.1

1 47

78.2

-0

.9

0.2

-0.1

44

63.8

0.

1 -2

.6

-1.1

47

09.0

-1

.1

-0.4

-0

.4

17

12

17.1

2 51

58.8

0.

6 0.

1 0.

5 47

86.0

0.

7 -0

.9

-0.2

50

48.7

0.

7 -0

.1

0.5

17

13

17.1

3 50

58.0

-0

.9

0.6

0.3

4718

.7

-0.7

-0

.6

-1.0

49

75.2

-0

.6

0.2

0.1

17

14

17.1

4 52

85.1

-0

.3

0.6

0.2

4901

.3

-2.4

-0

.5

-0.7

51

73.6

-1

.2

-0.1

-0

.3

17

15

17.1

5 55

86.8

-4

.0

0.0

-0.1

51

89.9

-6

.3

-0.9

-1

.7

5473

.2

-5.2

-0

.5

-0.3

17

16

17

.16

5369

.1

-2.6

0.

9 0.

5 50

10.2

-3

.1

-0.6

-1

.0

5283

.9

-2.8

0.

9 0.

2 17

17

17

.17

5287

.5

3.9

-1.1

0.

2 49

34.3

9.

5 -2

.4

0.3

5204

.2

5.7

-1.3

0.

8 17

18

17

.18

5372

.2

-1.2

-0

.7

0.4

4965

.1

-4.6

-3

.2

-0.6

52

40.2

-2

.8

-1.4

0.

1 17

19

17

.19

5318

.2

1.0

1.4

0.6

4949

.3

1.1

-0.7

0.

1 52

13.9

0.

8 0.

5 0.

5 18

1

18.1

52

40.9

4.

5 4.

2 0.

2 48

80.8

8.

9 5.

1 -0

.5

5146

.0

6.0

4.8

0.0

18

2 18

.2

4677

.0

1.8

2.0

0.6

4356

.6

3.5

1.5

-0.2

45

94.7

2.

3 2.

1 0.

6 18

3

18.3

51

01.1

1.

6 0.

4 -0

.8

4746

.1

4.7

0.6

-3.1

50

04.2

2.

6 0.

3 -1

.1

18

4 18

.4

5319

.0

2.1

-1.2

-1

.5

4936

.1

3.7

-0.3

-4

.8

5202

.8

3.0

0.0

-2.3

18

5

18.5

47

98.0

1.

6 -0

.9

0.2

4453

.2

3.6

-0.9

-0

.9

4709

.7

2.4

-0.5

0.

1 18

6

18.6

54

91.0

0.

7 -0

.3

1.7

5108

.4

2.7

-1.0

2.

5 53

87.9

1.

2 -0

.4

2.0

18

7 18

.7

5337

.7

0.5

1.9

-1.4

49

57.9

1.

9 -2

.2

-3.8

52

29.7

1.

1 0.

3 -2

.0

Page 40: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��

��

��

��

, �����������

�� ���

���

�� ���

���

, Rep

ort 0

4:09

�""#��$%

�&��

����

�����

'���

�����

�()*

�+,�(

-*�

+����

�()*

�+�

��

���

��

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

���

��

��!

��

��

�!�

��

� �

!!�

� "

#$

�!�

��

� "

�%

�!�

��

� "

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

18

8 18

.8

4708

.2

1.6

0.9

-0.5

43

72.0

4.

0 -0

.5

-0.8

46

14.5

2.

2 0.

6 -0

.3

18

9 18

.9

4864

.1

0.8

0.9

0.6

4494

.9

2.3

-1.2

0.

2 47

56.6

1.

2 0.

2 0.

6 18

10

18

.10

4803

.4

1.8

-0.7

0.

5 44

57.2

3.

6 -1

.2

-0.3

47

17.3

2.

7 -0

.1

0.5

18

11

18.1

1 46

86.6

2.

9 0.

8 0.

8 43

45.3

4.

1 -1

.6

0.9

4586

.7

3.0

0.5

1.2

18

12

18.1

2 48

80.4

2.

6 2.

0 -0

.7

4523

.9

4.8

0.0

-1.1

47

78.0

3.

4 1.

4 -0

.7

18

13

18.1

3 49

39.6

3.

8 3.

3 -0

.9

4594

.0

8.9

1.7

-2.6

48

47.8

5.

9 3.

0 -0

.9

18

14

18.1

4 48

66.2

1.

4 -2

.9

-0.9

45

15.0

3.

1 -5

.0

-1.8

47

77.1

1.

7 -3

.1

-1.0

18

15

18

.15

5266

.5

1.4

-0.9

1.

9 49

06.5

3.

5 -1

.3

3.1

5192

.3

1.4

-0.8

2.

3 18

16

18

.16

5238

.9

1.2

2.2

-1.7

48

62.3

2.

6 3.

3 -4

.0

5146

.9

2.6

2.7

-2.4

19

1

19.1

59

60.5

-1

.0

1.4

0.9

5530

.3

-4.2

-0

.2

-0.2

58

20.0

-2

.7

1.1

0.7

19

2 19

.2

5756

.9

0.9

0.2

0.7

5365

.4

2.4

-3.0

-0

.6

5650

.7

1.1

-0.7

0.

6 19

3

19.3

58

31.2

-0

.1

-1.0

0.

7 54

08.7

-0

.3

-2.4

2.

6 57

01.6

-0

.2

-1.1

1.

9 19

4

19.4

60

93.3

-1

.4

4.0

-0.3

56

60.0

-3

.4

5.2

-1.3

59

41.4

-2

.3

5.1

-0.5

19

5

19.5

60

72.6

-5

.4

3.9

1.8

5613

.0

-11.

9 3.

1 2.

1 59

13.0

-8

.5

4.1

2.3

19

6 19

.6

5766

.1

-0.7

-1

.4

1.7

5373

.7

-0.9

-3

.6

0.5

5658

.1

-0.1

-1

.1

1.7

19

7 19

.7

5858

.9

0.8

0.3

0.5

5451

.7

0.1

-0.6

-1

.2

5742

.9

0.3

0.3

0.2

19

8 19

.8

5761

.3

0.0

-0.8

-1

.7

5340

.5

0.0

-1.4

-2

.1

5626

.2

0.1

-0.3

-1

.6

19

9 19

.9

5862

.2

4.2

1.4

2.9

5406

.4

8.2

0.1

2.9

5699

.8

5.4

0.9

3.3

19

10

19.1

0 59

04.0

0.

0 3.

0 0.

9 55

00.2

0.

1 3.

4 -0

.3

5795

.9

-0.5

3.

4 0.

8 19

11

19

.11

5864

.8

-2.7

0.

3 0.

9 54

50.4

-5

.4

-1.9

0.

4 57

53.3

-4

.0

-0.2

0.

8 20

1

20.1

62

48.7

-2

.4

-1.8

-2

.1

5822

.1

-6.6

-4

.9

-5.0

61

27.4

-4

.5

-2.3

-2

.5

20

2 20

.2

6158

.1

-2.7

-4

.7

-0.3

57

33.7

-5

.5

-7.1

-1

.9

6032

.6

-4.4

-4

.7

-0.4

20

3

20.3

60

84.6

-0

.7

-1.7

-0

.8

5654

.5

0.6

-3.0

-1

.4

5956

.1

-0.2

-1

.3

-0.8

20

4

20.4

61

36.3

1.

6 -2

.8

2.1

5717

.8

1.3

-4.7

3.

3 60

24.1

1.

0 -2

.7

3.0

20

5 20

.5

6021

.6

-2.2

-1

.6

-0.8

55

85.8

-5

.6

-2.3

-3

.4

5883

.5

-4.1

-0

.5

-1.7

20

6

20.6

58

80.3

-0

.9

3.2

0.4

5425

.4

-1.1

3.

0 -2

.5

5716

.0

-1.8

3.

4 0.

1 20

7

20.7

59

71.2

-3

.0

6.5

-0.5

55

95.4

-4

.2

7.3

-3.4

58

90.2

-2

.9

6.2

-1.2

20

8

20.8

64

00.0

-3

.2

1.4

-3.1

59

64.5

-8

.9

1.7

-7.2

63

08.5

-5

.7

2.0

-3.5

20

9

20.9

63

52.5

-6

.6

1.1

0.2

5896

.6

-12.

8 -0

.1

-0.8

62

06.4

-9

.0

0.7

0.3

21

1 21

.1

6745

.3

-1.5

0.

4 -0

.2

6264

.5

-2.1

-2

.2

-2.2

65

89.7

-1

.8

-0.3

-0

.1

21

2 21

.2

6955

.5

-1.0

-0

.5

-0.2

64

90.3

0.

4 2.

4 -3

.0

6840

.7

-0.9

0.

6 -0

.6

21

3 21

.3

7056

.0

-2.6

3.

0 0.

1 65

86.1

-1

.5

2.3

0.9

6937

.3

-2.5

2.

8 0.

5 21

4

21.4

70

75.5

-1

.1

1.3

1.3

6597

.8

-0.9

-0

.8

1.7

6945

.7

-1.0

0.

3 1.

4

Page 41: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��

��

��

��

, �����������

�� ���

���

�� ���

���

, Rep

ort 0

4:09

�""#��$%

�&��

����

�����

'���

�����

�()*

�+,�(

-*�

+����

�()*

�+�

��

���

��

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

���

��

��!

��

��

�!�

��

� �

!!�

� "

#$

�!�

��

� "

�%

�!�

��

� "

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

21

5 21

.5

7117

.3

-1.1

3.

2 2.

2 66

32.3

-2

.2

1.3

1.6

6985

.5

-1.6

2.

3 2.

3 21

6

21.6

67

95.5

1.

3 -3

.0

-1.8

63

56.2

1.

9 -5

.3

-3.2

66

75.3

1.

1 -3

.3

-1.6

21

7

21.7

70

05.7

2.

9 -3

.1

1.7

6533

.9

7.9

-5.1

0.

3 68

81.9

4.

5 -3

.4

1.5

22

1 22

.1

5946

.9

1.0

2.2

0.5

5529

.7

1.1

1.0

-0.1

58

38.9

0.

6 1.

2 0.

6 22

2

22.2

59

24.7

1.

9 0.

6 1.

1 55

06.5

4.

7 0.

0 2.

1 58

19.4

3.

1 1.

0 1.

8 22

3

22.3

60

02.8

2.

8 0.

2 -1

.0

5584

.1

7.7

-1.1

-2

.9

5897

.1

4.7

0.5

-1.4

22

4

22.4

60

10.9

7.

4 -0

.9

-1.2

55

88.3

17

.1

-4.3

-2

.4

5912

.5

10.9

-1

.3

-1.4

22

5

22.5

57

80.4

3.

4 1.

2 0.

5 53

69.7

6.

9 0.

1 -0

.8

5679

.6

4.2

0.8

0.3

22

6 22

.6

5994

.9

8.5

1.3

0.2

5575

.9

20.6

-0

.2

-1.3

58

86.4

13

.2

1.7

0.3

22

7 22

.7

6047

.9

2.5

4.5

4.5

5605

.6

4.2

3.0

9.6

5923

.0

3.1

3.2

6.3

22

8 22

.8

6114

.4

3.9

-0.1

1.

8 56

90.1

8.

0 -1

.1

2.5

6006

.7

5.3

-0.2

1.

8 23

1

23.1

65

83.7

-0

.1

-6.2

1.

9 61

20.1

-0

.9

-8.6

4.

5 64

76.6

-0

.9

-6.7

2.

6 23

2

23.2

56

77.8

2.

7 -1

.0

-3.8

52

81.4

4.

8 -5

.3

-8.0

55

65.1

3.

6 -1

.8

-4.2

23

3

23.3

58

93.3

-0

.6

1.5

2.9

5485

.4

-0.4

1.

5 6.

0 57

84.7

-0

.4

1.6

3.5

23

4 23

.4

5500

.8

-0.8

0.

1 5.

1 51

11.8

-2

.2

-1.2

4.

2 54

17.7

-1

.9

0.2

5.0

23

5 23

.5

5374

.6

6.3

-0.6

-5

.9

4995

.1

13.2

-0

.5

-7.5

53

10.7

7.

8 0.

4 -6

.4

23

6 23

.6

5377

.6

1.4

7.6

6.4

5001

.4

5.4

7.3

8.7

5273

.3

3.1

7.9

6.6

24

1 24

.1

5471

.7

1.7

3.2

2.5

5093

.5

3.5

2.2

3.6

5378

.2

2.0

2.8

2.7

24

2 24

.2

5719

.2

-1.1

1.

6 0.

7 53

19.3

-2

.8

0.3

0.6

5599

.1

-2.0

2.

0 1.

0 24

3

24.3

56

75.5

-2

.0

2.8

0.7

5263

.1

-3.3

1.

6 -0

.2

5555

.1

-2.4

2.

3 0.

6 24

4

24.4

56

62.9

-2

.7

0.7

0.7

5265

.0

-4.1

-3

.0

0.4

5557

.6

-4.1

-0

.1

0.6

24

5 24

.5

5825

.7

-0.1

-0

.3

0.3

5414

.3

-1.4

-4

.1

-1.4

57

13.0

-1

.3

-0.7

0.

3 24

6

24.6

56

73.7

-3

.5

2.1

1.3

5282

.6

-6.8

1.

4 0.

3 56

03.1

-5

.0

2.0

1.0

24

7 24

.7

5463

.4

1.0

2.0

0.0

5094

.6

2.9

-0.6

-0

.9

5377

.9

2.2

1.8

0.0

25

1 25

.1

5063

.7

23.4

1.

8 -2

.0

4729

.0

49.2

3.

0 -1

.3

5012

.6

30.1

2.

3 -1

.7

25

2 25

.2

5184

.2

6.4

2.1

-0.4

48

37.5

17

.2

1.9

-1.0

50

98.6

10

.3

2.6

-0.4

25

3

25.3

52

38.7

6.

9 2.

8 2.

7 48

97.4

17

.7

3.2

2.0

5161

.1

12.0

3.

7 2.

8 25

4

25.4

49

70.0

7.

5 0.

3 -2

.3

4633

.6

20.1

1.

9 -3

.1

4889

.4

12.8

1.

7 -2

.2

25

5 25

.5

5255

.3

14.7

2.

5 0.

4 49

08.5

32

.7

3.0

0.4

5175

.2

20.9

3.

3 0.

6 26

1

26.1

53

47.3

11

.3

2.8

0.3

4988

.0

24.3

2.

7 -0

.1

5266

.8

15.4

2.

3 0.

2 26

2

26.2

50

51.9

22

.2

1.8

0.4

4700

.9

47.0

3.

9 0.

9 49

63.1

30

.8

2.8

0.7

26

3 26

.3

5045

.9

20.5

5.

3 0.

0 46

97.1

44

.5

5.0

-1.9

49

54.4

29

.3

5.2

-0.6

26

4

26.4

62

56.6

7.

7 -0

.3

1.0

5808

.5

19.2

-1

.1

4.1

6130

.7

13.3

0.

7 2.

2

Page 42: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��

��

��

��

, �����������

�� ���

���

�� ���

���

, Rep

ort 0

4:09

�""#��$%

�&��

����

�����

'���

�����

�()*

�+,�(

-*�

+����

�()*

�+�

��

���

��

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

���

��

��!

��

��

�!�

��

� �

!!�

� "

#$

�!�

��

� "

�%

�!�

��

� "

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

26

5 26

.5

5464

.9

7.5

0.4

3.2

5091

.3

18.2

-1

.0

6.6

5366

.4

11.4

0.

4 4.

5 26

6

26.6

53

15.6

6.

6 0.

8 0.

8 49

55.6

19

.1

2.4

0.6

5233

.5

12.5

3.

1 1.

2 26

7

26.7

54

44.0

4.

1 4.

1 -0

.3

5064

.7

10.1

11

.1

-1.3

53

56.3

5.

9 5.

7 -0

.3

26

8 26

.8

5790

.0

9.9

-2.5

1.

0 54

06.8

19

.4

-2.5

-2

.7

5709

.1

12.5

-2

.1

0.5

26

9 26

.9

5914

.2

3.1

1.1

2.1

5511

.4

10.1

0.

4 3.

2 58

22.0

5.

7 1.

2 2.

5 27

1

27.1

63

01.7

21

.2

4.2

1.9

5843

.6

52.9

10

.4

3.4

6171

.8

35.3

8.

3 2.

7 27

2

27.2

62

18.3

41

.4

-5.8

1.

9 57

80.7

91

.1

0.0

-1.7

60

89.8

72

.9

27

3 27

.3

6429

.5

21.4

6.

9 0.

8 59

75.2

45

.0

5.3

1.1

6302

.6

31.0

7.

2 0.

4 28

1

28.1

62

90.0

-0

.2

0.9

0.7

5852

.3

0.7

0.0

0.3

5748

.2

0.0

0.9

0.7

28

2 28

.2

6334

.1

0.1

-3.5

0.

2 59

10.2

-0

.1

-6.3

-0

.6

5651

.2

-1.3

0.

7 -0

.1

28

3 28

.3

5573

.8

2.2

0.7

0.6

5361

.6

-1.6

0.

1 -0

.8

5466

.5

2.8

0.7

0.6

28

4 28

.4

5990

.6

1.0

1.8

0.2

5184

.1

4.6

0.4

-0.1

58

75.8

0.

5 1.

3 0.

1 28

5

28.5

57

49.1

0.

9 2.

7 1.

6 55

69.9

1.

8 -0

.6

-0.8

56

41.6

0.

8 1.

9 1.

4 28

6

28.6

58

18.0

-0

.5

0.9

-1.2

53

52.3

1.

6 -0

.2

0.4

5703

.5

-1.4

0.

6 -1

.9

28

7 28

.7

5775

.6

-0.8

1.

2 0.

0 54

16.3

-1

.5

0.4

-3.6

62

25.6

0.

1 -3

.0

0.1

28

8 28

.8

5577

.8

-0.7

-0

.2

-0.7

51

84.4

1.

3 -2

.0

-1.9

54

73.0

-0

.1

-0.7

-0

.7

28

9 28

.9

5358

.1

11.3

1.

4 0.

3 49

86.2

22

.7

-0.1

-1

.1

5260

.1

14.8

1.

7 0.

2 28

10

28

.10

5656

.4

6.0

0.6

-0.9

52

71.4

10

.6

-2.4

-0

.8

5567

.6

7.7

0.6

-1.0

29

1

29.1

48

15.0

1.

5 -2

.0

-1.7

44

74.1

4.

7 0.

2 -4

.8

4726

.9

1.9

-1.1

-2

.7

29

2 29

.2

4728

.9

4.6

1.1

3.2

4404

.3

10.0

0.

5 5.

2 46

65.1

6.

8 1.

2 4.

1 29

3

29.3

47

99.4

3.

8 4.

3 -0

.2

4469

.8

10.9

6.

2 -0

.5

4723

.0

6.1

5.9

0.0

29

4 29

.4

4784

.5

4.6

1.0

1.1

4451

.5

11.3

1.

3 1.

0 47

13.1

6.

0 1.

0 1.

0 29

5

29.5

50

06.6

8.

9 1.

5 1.

8 46

66.2

21

.1

-1.4

2.

7 49

22.4

13

.2

0.7

2.4

29

6 29

.6

4820

.5

7.9

3.1

-0.6

44

87.1

18

.2

3.6

-0.9

47

52.4

11

.1

3.9

-0.4

29

7

29.7

48

79.7

4.

3 5.

3 -1

.2

4547

.0

8.8

6.0

-2.7

48

04.3

5.

4 5.

0 -1

.4

30

1 30

.1

7505

.0

-8.4

2.

5 -0

.4

7001

.5

-19.

5 3.

2 -2

.4

7350

.9

-15.

1 3.

7 -0

.8

30

2 30

.2

7382

.5

-6.1

0.

8 1.

8 68

77.5

-1

5.7

0.0

1.4

7240

.5

-10.

8 1.

5 2.

1 30

3

30.3

71

14.5

-8

.1

2.8

1.4

6627

.6

-18.

4 4.

7 0.

9 69

66.8

-1

5.2

5.1

1.6

30

4 30

.4

7011

.4

2.3

0.4

3.4

6548

.5

5.3

-1.7

1.

4 68

83.0

3.

6 -0

.1

3.5

30

5 30

.5

7377

.9

-7.7

-0

.1

-0.5

65

03.6

-1

7.7

3.6

-0.7

72

36.0

-1

3.0

-0.8

-0

.2

30

6 30

.6

6996

.7

-8.6

3.

6 0.

2 68

96.8

-1

7.9

-2.5

-1

.2

6857

.4

-13.

3 3.

9 0.

2 30

7

30.7

74

85.9

-6

.1

2.2

-0.6

70

04.6

-1

5.6

3.1

-2.7

73

46.5

-1

0.5

2.8

-1.4

30

8

30.8

70

78.7

-8

.2

2.2

-0.1

66

03.1

-2

0.9

5.0

-2.4

69

35.7

-1

5.4

4.8

-0.4

Page 43: PRE-SORTING OF LOGS PRIOR TO CONVERSION ...projects.bre.co.uk/condiv/straight/pdf/WP2.5a-CHA.pdfREPORT 04:09 PRE-SORTING OF LOGS PRIOR TO CONVERSION IMPROVES STRAIGHTNESS OF SAWN TIMBER

��

��

��

��

, �����������

�� ���

���

�� ���

���

, Rep

ort 0

4:09

�""#��$%

�&��

����

�����

'���

�����

�()*

�+,�(

-*�

+����

�()*

�+�

��

���

��

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

���

��

��!

��

��

�!�

��

� �

!!�

� "

#$

�!�

��

� "

�%

�!�

��

� "

���

��

���

��

��

���

��

� �

!!�

� "

#$

���

��

� "

�%

���

��

� "

31

1 31

.1

5947

.7

-2.0

1.

3 0.

0 55

41.9

-4

.6

-0.4

-0

.8

5880

.1

-4.0

1.

3 -0

.1

31

2 31

.2

5909

.0

-3.8

-0

.5

0.4

5514

.1

-6.7

-3

.3

-0.9

58

19.4

-4

.6

-1.0

0.

1 31

3

31.3

57

67.0

1.

0 0.

6 -0

.4

5379

.6

1.7

-0.8

-1

.0

5681

.2

0.9

0.6

-0.2

31

4

31.4

56

01.7

6.

9 2.

0 1.

6 52

26.8

11

.8

0.3

1.2

5553

.6

8.3

1.3

1.4

31

5 31

.5

6154

.2

-4.0

0.

4 0.

9 57

19.8

-8

.1

-1.9

0.

8 60

38.4

-5

.7

0.0

1.1

31

6 31

.6

5930

.0

0.6

0.1

0.1

5525

.2

0.6

-0.5

-1

.0

5832

.1

0.7

0.2

0.2

31

7 31

.7

5559

.6

1.9

2.8

2.0

5187

.9

3.3

3.5

3.4

5507

.4

2.3

3.5

2.1

31

8 31

.8

6213

.7

-0.5

-4

.0

1.7

5783

.7

-2.5

-6

.9

2.4

6101

.0

-1.6

-4

.6

2.1

31

9 31

.9

5702

.2

1.4

2.8

-1.1

53

20.9

3.

4 2.

3 -2

.5

5616

.0

2.8

3.0

-1.4

32

1

32.1

65

30.4

-2

.7

2.7

-0.3

60

58.9

-4

.8

2.4

-2.1

63

94.9

-3

.2

2.8

-0.7

32

2

32.2

60

40.2

-1

.4

-1.4

-0

.7

5631

.4

-1.0

-3

.3

-2.1

59

45.4

-1

.7

-1.2

-0

.8

32

3 32

.3

6488

.8

0.1

0.5

0.7

6022

.4

-0.4

-0

.7

0.4

6352

.0

-1.0

0.

4 0.

9 32

4

32.4

60

99.8

-1

.5

2.8

0.6

5686

.1

-3.3

1.

1 -0

.7

6011

.7

-2.5

2.

6 0.

3 32

5

32.5

63

13.8

-1

.4

0.6

0.1

5850

.3

-2.0

0.

1 -0

.6

6170

.4

-2.7

0.

8 0.

2 32

6

32.6

56

32.9

1.

0 3.

1 -0

.8

5251

.5

-0.1

1.

1 -2

.2

5541

.9

0.6

2.8

-1.1

32

7

32.7

54

79.7

5.

9 -1

.8

1.2

5108

.8

9.9

-2.6

1.

8 53

90.1

7.

3 -2

.1

1.6

32

8 32

.8

6304

.3

-1.6

-0

.9

-0.4

58

69.5

-2

.1

-2.6

-2

.0

6224

.3

-1.9

-0

.6

-0.8

32

9

32.9

56

30.1

1.

8 3.

0 1.

6 52

55.6

4.

0 2.

3 1.

9 55

77.9

2.

1 2.

8 1.

5