Pre IB Chemistry Study Notes

86
Language of chemistry Chemists use terms and phrases which are not familiar to everyone. It is important for chemistry students to get themselves familiar with the language used by chemists. This will help the student while studying the subject. You will be introduced in this unit to the language used in chemistry. Let us take a look at some of the common terms often encountered in chemistry. Atom – An atom is the basic / smallest unit of matter. Molecule – A group of atoms that are bonded together and represent a basic unit of an element or a compound. Element – It is the simplest substance that cannot be further subdivided into anything simpler by chemical reactions. An element consists of only one type of atoms. Examples: Hydrogen Oxygen Carbon Aluminum Chlorine Compound – It is a substance that is formed by the chemical combination of two more elements in a fixed proportion by mass. Examples: Calcium carbonate Ammonia Sulfuric acid Carbon dioxide Sodium chloride Mixture – It is a substance that is made up of two or more substances put together in any proportion without any chemical reaction taking place. Examples: Blood Sea water Ink Coke Symbol – It is an alphabet or two which is used to represent an atom of the element. Examples: Hydrogen (H) Oxygen (O) Carbon (C) Aluminum (Al) Chlorine (Cl) Formula – It is a group of symbols that represents a molecule of the substance. Examples: CaCO 3 HCl H 2 SO 4 NH 3 NaCl

Transcript of Pre IB Chemistry Study Notes

Language of chemistry Chemists use terms and phrases which are not familiar to everyone. It is important for chemistry students to get themselves familiar with the language used by chemists. This will help the student while studying the subject. You will be introduced in this unit to the language used in chemistry. Let us take a look at some of the common terms often encountered in chemistry. Atom – An atom is the basic / smallest unit of matter. Molecule – A group of atoms that are bonded together and represent a basic unit of an element or a compound. Element – It is the simplest substance that cannot be further subdivided into anything simpler by chemical reactions. An element consists of only one type of atoms. Examples: Hydrogen Oxygen Carbon Aluminum Chlorine Compound – It is a substance that is formed by the chemical combination of two more elements in a fixed proportion by mass. Examples: Calcium carbonate Ammonia Sulfuric acid Carbon dioxide Sodium chloride Mixture – It is a substance that is made up of two or more substances put together in any proportion without any chemical reaction taking place. Examples: Blood Sea water Ink Coke Symbol – It is an alphabet or two which is used to represent an atom of the element. Examples: Hydrogen (H) Oxygen (O) Carbon (C) Aluminum (Al) Chlorine (Cl) Formula – It is a group of symbols that represents a molecule of the substance. Examples: CaCO3 HCl H2SO4 NH3 NaCl

Chemical equation – A chemical equation is a symbolic representation of a chemical reaction using symbols and formulae. Examples: Carbon + Oxygen Carbon dioxide C + O2 CO2

Sulfur + Oxygen Sulfur dioxide S + O2 SO2

Calcium carbonate + Hydrochloric acid Calcium chloride + water + carbon dioxide . CaCO3 + HCl CaCl2 + H2O + CO2 Radical – It is a group of atoms that behave as a single unit in a number of compounds. Examples: Carbonate - CO3

2-

Bicarbonate - HCO3

Nitrate - NO3 -

Sulfate – SO4 2-

Sulfite – SO3 2-

Chloride – Cl - Ammonium– NH4

+ Salt – It is a compound formed when an acid reacts with a base. Examples: NaCl sodium chloride KCl potassium chloride NH4Cl ammonium chloride MgCO3 magnesium carbonate NH4NO3 ammonium nitrate Writing formulae – Writing a formula for a compound means we should know what elements make up the compound. For example water is made up of hydrogen and oxygen in the ratio of 1:2. Therefore the formula of water is H2O. That means there are 2 hydrogen atoms combining with 1 oxygen atom. Why is this? It is because oxygen has a valency of 2 while hydrogen has a valency of 1. How do we remember this? For now it will help to remember a few valencies. Monovalent Divalent Trivalent Tetra valent H - hydrogen Ca - calcium B - boron C - carbon Na - sodium Mg - magnesium Al - aluminium Si - silicon K - potassium Ba - barium N - nitrogen Ge - germanium Cl - chlorine O - oxygen P - phosphorus Sn - tin Br - bromine S - sulfur Pb - lead Mono - valent elements all have + or - 1 charge in their ionic state. [An ion is a charged atom.] Similarly a divalent element has + or – 2 charge in their ionic state. A trivalent element has + or – 3 charge in their ionic state, and a tetravalent element will have + or – 4 in their ionic state. A compound like sodium chloride has the formula NaCl, because it is made up of two ions Na+ and Cl – which combine in the ratio of 1:1. But Calcium chloride will have the formula CaCl2. This is because calcium ion is Ca2+

and chloride ion is Cl -. To satisfy the 2+ charge on the calcium ion two chloride ions need to combine with one calcium ion. This is why the formula becomes CaCl2. Let us look at aluminium oxide. It is made of Al3+ and O2-. The formula is Al2O3 because 2 Al3+ and 3O2- satisfy the need to equal the charges.

Worksheet 1 – Formulae Write the answers for these questions in your note book. 1. Write the formula for each of the following compounds: i) potassium nitrate ii) boron trichloride iii) ammonium chloride iv) calcium chloride v) barium nitrate vi) magnesium carbonate v) aluminium chloride 2. Write the names of the following substances: i) NH4NO3 ii) P2O5 iii) NaOH iv) HNO3 v) KMnO4 vi) H3PO4 v) K2Cr2O7 3. Use the terms one from each group to make as many names of chemical compounds as possible: Group 1 Group 2 Compound Barium sulfate ------------------------ Potassium carbonate ------------------------ Calcium nitrate ------------------------ Ammonium phosphate ------------------------ Sodium hydroxide ------------------------ Aluminium chloride ------------------------ Lithium sulfite ------------------------ Sulfur oxide ------------------------ Carbon nitrite ------------------------ 4. Write the formula for each of the chemical compounds that you worked out in previous question.

Worksheet 2 – Balancing chemical equations Balancing chemical equations – Chemical equations must be balanced as the atoms in substances are not created new or destroyed. They are only re-arranged in different ways. Therefore the total number of atoms of the different elements on the reactant and product sides must be equal. Examples: H2 + O2 H2O This equation is not balanced because there are 2 oxygen atoms on the reactant side and only 1 on the product side. To balance the number of atoms on both sides of the chemical equation we must add 2 before H2O to get: H2 + O2 2H2O Similarly balance the following equations: Mg + O2 MgO MgCO3 + HCl MgCl2 + H2O + CO2 Cu + AgNO3 Cu (NO3) 2 + Ag Na2O + H2O NaOH PCl3 + H2O H3PO3 + HCl P + O2 P2O5 Si + Cl2 Si Cl4 MgO + HCl MgCl2 + H2O P4O10 + H2O H3PO4 Cl2O + H2O HClO Al2O3 + H2SO4 Al2(SO4) 3 + H2O Ca(OH)2 + NH4Cl CaCl2 + H2O + NH3 CO2 + H2O C6H12O6 + O2

         

States  of  matter    All  matter  in  the  universe  exists  in  any  of  four  different  states.  They  are:  

1. Solid  state  2. Liquid  state  3. Gaseous  state  

           4.      Plasma  state                                                                                                                                                                                                                    Among  these  the  first  three  states  are  found  on  earth  naturally.  The  plasma  state  is  present  in  the  stars.  Plasma  state  is  similar  to  gaseous  state  but  in  which  some  of  the  particles  are  in  an  ionic  state  –  (positive  ions  and  electrons).  We  will  consider  only  the  first  three  states  of  matter.  Particles  in  solids,  liquids  and  gases  Particles  in  a  solid  –  They  are  packed  very  closely  together.  There  are  strong  forces  holding  the  particles  together.  They  are  unable  to  move  from  one  place  to  another.  They  can  only  vibrate.  Increasing  the  temperature  increases  their  kinetic  energy  (K.E.).  As  a  result,  they  are  able  to  vibrate  faster.      Particles  in  a  liquid  –  Liquid  particles  are  loosely  packed  and  are  able  to  move  by    sliding  over  each  other.  They  are  close  together  and  their  intermolecular  forces  are  weak  compared  to  solids.  Particles  in  a  gas  –  The  particles  in  a  gas  are  far  apart  and  have  negligible  intermolecular  forces.  They  have  high  kinetic  energy  and  are  free  to  move  randomly.  Therefore,  they  can  occupy  any  volume.  They  usually  occupy  the  volume  of  the  container.  The  three  states  of  matter  are  interconvertible.  In  terms  of  kinetic  theory  of  matter,  solids  have  least  K.E  while  the  gases  have  maximum  K.E.  

       Molecules  have  very  high  intermolecular  force.  

Molecules  have  weak  intermolecular  force.  

Intermolecular  force  is  negligible.  

Kinetic  energy  of  the  molecules  is  the  least.  

K.E  of  the  molecules  is  more  than  in  solid  state.  

K.E  of  the  molecules  is  the  greatest.  

 When  a  substance  in  its  gaseous  state  is  cooled,  the  molecules  lose  their  K.E  and  slow  down.  As  their  K.E  keeps  on  decreasing,  the  molecules  come  close  to  each  other  and  then  their  intermolecular  force  increases.  At  this  point,  the  gas  changes  into  liquid  state.  Similarly,  when  a  liquid  is  cooled  the  molecules  lose  K.E  further  and  change  into  solid  state.  Heating  a  substance  causes  the  same  changes  in  reverse.  

Interconversion  of  states  of  matter  

 

   

Diffusion  It  is  the  movement  of  molecules  from  a  region  of  higher  concentration  to  a  region  of  

lower  concentration  until  their  concentrations  become  equal.    

Many  natural  processes  involve  diffusion,  for  example:  -­‐    

Spreading  of  perfume  molecules  in  air  

Absorption  of  water  by  root  hairs  in  plants  

Respiration  in  animals  

Absorption  of  food  from  the  intestines  into  the  blood  

 

Rate  of  Diffusion  The  rate  of  diffusion  of  a  substance  depends  upon  its  mass.  Heavier  substances  

diffuse  slowly  while  lighter  substances  diffuse  fast.  Hence  we  can  state  that  diffusion  

of  a  substance  is  inversely  proportional  to  its  mass.  

 

Osmosis  Osmosis  is  the  movement  of  water  molecules  from  a  weaker  solution  to  a  stronger  

solution  across  a  selectively  permeable  membrane.    

Osmosis  is  nothing  but  diffusion.  It  is  the  movement  of  water  molecules  from  a  

region  of  higher  concentration  (weak  solution)  to  a  region  of  lower  concentration  

(stronger  solution).  

 

 

Purity  of  substances  The  purity  of  a  substance  can  be  determined  by  measuring  the  melting,  freeing  or  

boiling  points.  It  can  also  be  found  by  measuring  the  density  of  the  substance.    

The  presence  of  the  impurity  elevates  the  boiling  point  and  lowers  the  freezing  

point.  The  presence  of  an  impurity  also  affects  the  density  of  the  substance.    

 Separation  Techniques  

 The  differences  in  the  physical  and  chemical  properties  of  substances  are  taken  advantage  of  to  separate  the  substances  from  a  mixture.  The  different  techniques  used  are  -­‐    

• Filtration  • Evaporation  • Distillation  • Fractional  Distillation  • Sublimation  • Crystallization  • Magnetic  Separation  • Paper  Chromatography  

                                                                                                                                                               

                                         Chromatography  Chromatography  is  a  technique  used  to  separate  the  components  of  a  mixture.      

Paper  Chromatography  Among  the  various  types  of  chromatography,  paper  chromatography  is  the  simplest.  Special  type  of  paper  is  used  to  separate  the  components  in  a  mixture.  These  components  of  the  mixture  are  adsorbed  on  the  surface  of  the  paper  and  are  carried  along  by  the  solvent  molecules.  The  lighter  components  are  carried  faster  than  the  heavier  ones.  In  this  way,  in  a  given  length  of  time,  the  components  travel  different  distances  on  the  strips  of  chromatography  paper.  The  ratio  of  the  distance  travelled  by  the  substance  to  the  distance  travelled  by  the  solvent  is  known  as    value.        

   

         

 The      value  of  different  components  is  different.  The      value  of  a  compound  is  always  the  same  for  a  given  solvent,  under  the  same  conditions.  Many  components  in  a  mixture  are  colourless  and  are  difficult  to  identify  on  the  paper.  Therefore,  specific  chemicals  called  locating  agents  are  sprayed  onto  the  chromatograph  paper.  The  colourless  components  appear  coloured  and  are  then  identified.      

Distillation    

 Distillation:  -­‐  distillation  is  evaporation  followed  by  condensation.  This  process  is  used  to  get  pure  liquids  from  a  mixture.  Eg.  We  can  get  pure  water  from  seawater  by  distillation.          Fractional  Distillation  

   Fractional  Distillation:  -­‐  It  is  a  process  of  separating  different  liquids  from  a  mixture  of  liquids  by  boiling  and  condensing  the  components  at  their  respective  boiling  points.  Eg.  Ethanol  from  a  mixture  of  ethanol  and  water.              

   Petrol,  Diesel,  and  other  substances  from  petroleum  are  obtained  in  industry  by  a    modified  fractionating  column.  The  petroleum  or  crude  oil  as  is  commonly  known  is  vaporised  and  fed  into  the  tall  fractionating  columns.  The  vapours  cool  as  they  rise  upward  and  condense  at  different  levels.  These  condensed  liquids  called  fractions  are  collected  through  separate  pipes  as  shown  in  the  diagram.                                  

Worksheet  3  –  Separation  of  mixtures    1. Which stages occur in distillation?

A condensation then evaporation B condensation then filtration C evaporation then condensation D filtration then evaporation 2. Some paraffin is contaminated with soot (carbon). The soot is removed as shown.

Which method is used to remove the soot? A cracking B crystallization C diffusion D filtration 3. A shirt is stained with red ink from a pen. The shirt is left to soak in a bowl of water.

Which process causes the red colour to spread? A diffusion B evaporation C melting D neutralisation   4.  A  solution  of  copper  sulphate  was  made  by  reacting  excess  copper  oxide  with  dilute  sulphuric  acid.  The  unreacted  copper  oxide  was  removed  by  filtration.                Draw  a  labelled  diagram  to  show  how  the  mixture  can  be  filtered.    

5. The apparatus below was used to separate ethanol from water.  

 i) Complete the empty boxes to name the pieces of apparatus. ii) Indicate by an arrow where heat is applied. iii) Name this separation process.            

Atomic  Structure    Atoms  are  mainly  composed  of  three  types  of  particles  –  electrons,  protons  and  neutrons.    Electrons  are  negatively  charged  particles  while  protons  are  positively  charged  particles.  Neutrons  are  neutral  particles  with  no  charge.  Protons  and  neutrons  are  present  in  the  nucleus  of  the  atom.  The  electrons  revolve  around  the  nucleus  at  fixed  distances  called  orbits  or  shells.    

The  number  of  protons  in  the  nucleus  of  an  atom  is  its  atomic  number.  The  number  of  protons  and  the  number  of  neutrons  (number  of  nucleons)  is  the  mass  number  of  the  element.    Structure  of  atoms    Hydrogen  atom  

   Helium  atom  

               Lithium  atom  

   Beryllium  atom  

   Boron  atom  

               Carbon  atom  

   

Nitrogen  atom  

   Oxygen  atom  

          Electron  Configuration  It  is  the  arrangement  of  electrons  in  the  different  shells  of  an  atom.  The  arrangement  of  electrons  in  each  shell  of  the  atom  can  be  calculated  by  using  the  formula  2n2  where  n  represents  the  number  of  the  shell  1,  2,  3…etc.  The  number  of  electrons  that  fill  each  of  the  shells  can  be  calculated  as  shown  below    1st  shell,  n  =  1  therefore  2  x  12  =  2    2nd  shell,  n  =  2  therefore  2  x  22  =  8    3rd  shell,  n  =  3  therefore  2  x  32  =  18    4th  shell,  n  =  4  therefore  

2  x  42  =  32  And  so  on.    However,  the  last  shell  cannot  hold  more  than  eight  electrons  and  the  last  but  one  (penultimate)  shell  cannot  hold  more  than  18  electrons.  So  as  these  rules  are  followed  we  notice  that  the  electron  arrangement  for  the  elements  works  out  quite  simply  as  given  below.    11Na    -­‐    2,  8,  1    20Ca  –  2,  8,  8,  2  Applying  the  rule  stated  above  2  x  n2  we  must  have  10  electrons  in  the  3rd  shell.  However,  since  the  last  shell  cannot  hold  more  than  8  electrons  the  electron  arrangement  becomes  simply  2,  8,  8,  2  for  calcium  atom.  Write  the  electron  arrangement  for  the  first  20  elements  H  to  Ca.  Use  the  periodic  table  given  to  find  out  the  atomic  number  of  the  elements.              

Worksheet  4  –  Drawing  atomic  structures    Using  the  examples  shown  above,  draw  the  atomic  structures  of  the  following;      7N

14                                                                                                                                    8  O16  

               

9F19                                                                                                                                      10Ne

20        

 

 

 

 

 

11Na23             12Mg24  

       

         13Al

27             14Si28  

           15P

31             16S32  

                     17Cl

35             18Ar40  

                       19K

39             20Ca40  

                 

     Relative  Atomic  Mass  (RAM)  The  relative  atomic  mass  of  an  element  is  the  number  of  times  one  atom  of  the  element  is  heavier  than  1/12th  the  mass  of  a  carbon  –  12  atom.    Since  it  is  difficult  to  isolate  and  measure  the  mass  of  an  individual  atom  chemists  measure  the  mass  of  the  different  elements  by  comparing  their  mass  to  that  of  a  standard.  The  standard  chosen  is  the  carbon  isotope  C-­‐12.    Carbon  is  assigned  the  mass  12.00  atomic  units  (a.m.u)  and  the  atomic  mass  of  every  other  element  is  compared  to  it.  The  instrument  used  to  measure  the  relative  atomic  mass  of  an  element  is  the  ‘Mass  spectrometer’  

    The Mass Spectrometer      The  above  diagram  gives  an  idea  of  how  a  mass  spectrometer  works.    It  is  not  necessary  to  know  the  working  of  the  instrument  in  detail.  At  this  level  it  is  important  to  know  that  the  mass  of  an  element  in  atomic  units  (a.m.u.)  is  measured  relative  to  the  mass  of  the  carbon  atom.  Looking  at  the  periodic  table  we  come  across  atomic  masses  of  elements  like  chlorine  having  fractional  atomic  units.  This  is  because  of  the  presence  of  isotopes.    Isotopes  –  These  are  atoms  of  the  same  element  having  the  same  atomic  number  (number  of  protons)  but  different  mass  number  (number  of  neutrons)  Isotopes  are  atoms  of  the  same  element  with  different  number  of  neutrons.    For  example  hydrogen  has  three  isotopes  1H

1,  1H2,  1H

3.  All  the  three  isotopes  have  one  proton  in  the  nucleus  but  have  different  number  of  neutrons.  Similarly,  carbon  has  three  isotopes    6C

12,  6C13,  and  6C

14.    Do  some  research  on  the  internet  and  find  out  about  the  other  isotopes.  Relative  Molecular  Mass  (RMM)  

The  relative  molecular  mass  of  a  substance  is  the  number  of  times  one  molecule  of  the  substance  is  heavier  than  1/12th  the  mass  of  a  carbon  –  12  atom.    Similar  to  the  measurement  of  the  atomic  mass,  the  molecular  mass  is  measured  using  a  mass  spectrometer.  We  can  compute  the  relative  mass  number  of  the  substance  as  shown  in  the  example  below.  Examples:  -­‐    RMM  of    

   H2  =  1  +  1  =  2  

         N2  =  14  +  14  =  28    

                           CO2  =  12  +  16  +  16  =  44  

                           SO2  =  32  +  16  +  16  =  64  

                           HCl  =  1  +  35.5  =  36.5  

                           H2SO4  =  1  +  1  +  32  +  16  +  16  +  16  +  16  =  98  

                           HNO3  =  1  +  14  +  16  +  16  +  16  =  63  

                           NH4Cl  =  14  +  1  +  1  +  1  +  1  +  35.5  =  53.5  

                           CaCO3  =  40  +  12  +  16  +  16  +  16  =  100  

 Use  the  periodic  table  to  calculate  the  RMM  of  the  following  substances;  CuSO4               K2Cr2O7          KMnO4             H3PO4          FeSO4               C2H5OH              

Periodic  Table    The  periodic  table  is  an  arrangement  of  the  elements  in  order  of  their  atomic  or  proton  number.  Elements  with  similar  chemical  properties  are  placed  in  the  same  vertical  column.  These  vertical  columns  are  known  as  Groups.    

The  periodic  table  also  shows  horizontal  rows.  These  horizontal  rows  are  called  periods.      

   The  physical  and  chemical  properties  of  the  elements  show  variation  down  the  groups  as  well  as  across  the  periods.      

• Going  down  a  group,  the  metallic  nature  of  the  elements  increase  • Going  across  a  period,  from  left  to  right,  the  elements  change  from  metallic  

to  non  –  metallic  character  • For  metallic  elements  (Groups  1,  2  and  3),  the  reactivity  increases  down  the  

group  • For  non  –  metallic  elements  (Groups  5,  6  and  7),  reactivity  decreases  down  

the  group  • For  metals,  the  melting  and  boiling  points  decrease  down  the  group.  

However,  for  non  –  metals,  the  melting  and  boiling  points  increase  down  the  group  

 

 

Group  I  elements  (Alkali  metals)      Li,  Na,  K,  Rb,  Cs  and  Fr    

All  these  elements  have  one  valence  electron  in  their  last  shell.  Therefore,  they  all  

show  valency  +1.    

Physical  Properties  

They  are  all  very  soft  metals  which  can  be  easily  cut  

Freshly  cut  metals  have  a  silvery,  shiny  surface  

They  are  all  good  conductors  of  heat  and  electricity  

They  all  have  very  low  density  

Variation  of  physical  properties                                                                                                

Lithium    

Sodium   Density   Melting  point   Boiling  point  

Potassium   increases   decreases   decreases  

Rubidium  

Caesium  

 

Variation  of  chemical  properties                                                                                                

Lithium    

Sodium   Reactivity    

Potassium   increases    

Rubidium  

Caesium  

Chemical  Properties  

The  Alkali  metals  are  the  most  reactive.  Therefore,  they  are  kept  under  oil  to  prevent  

reaction  with  oxygen  and  moisture  in  the  air.    

They  all  react  violently  with  cold  water.  

2Li    +    2H2O     2LiOH    +    H2    

2Na    +    2H2O        2NaOH    +    H2  

2K    +    2H2O     2KOH    +    H2  

 

 

Group  VII  elements  (The  Halogens)    

F,  Cl,  Br,  I  and  At  

The  Halogens  are  all  covalent,  diatomic  molecules.  ie.  They  have  two  atoms  per  

molecule.  They  all  have  seven  valence  electrons  and  therefore  show  a  valency  of  -­‐1.    

Physical  Properties  

These  elements  are  all  coloured  substances.  

Fluorine  is  a  pale  yellow  gas  

Chlorine  is  a  greenish  –  yellow  gas  

Bromine  is  a  red  –  brown  liquid  

Iodine  is  a  greyish  –  black  crystalline  solid  

The  melting  and  boiling  points  of  the  Halogens  increase  down  the  group.  

Variation  of  physical  properties  

Fluorine  

Chlorine   Density   Melting  point   Boiling  point    

Bromine   increases   increases   increases  

Iodine  

 

 

Variation  of  chemical  properties  

Fluorine  

Chlorine   Reactivity  

Bromine   decreases  

Iodine  

 

Chemical  Properties  

The  reactivity  of  the  elements  decreases  down  the  group.    

The  Halogens  react  with  metals  to  form  salts.  

Example:  

2Na    +    Cl2                          2NaCl  

2K    +    Br2                        2KBr  

The  element  higher  up  in  the  group  can  displace  the  element  below  it  from  its  salt  

solution.  

Example:  

F2    +    2KCl         2KF    +    Cl2  

Cl2    +    2KBr         2KCl    +    Br2  

Br2    +    2KI                        2KBr    +    I2  

Transition  elements  

These  elements  are  metals  which  are  placed  between  Group  II  and  Group  III  in  the  

periodic  table.    

They  form  three  series.  The  1st  one  starts  from  Scandium  to  Zinc.    

Properties  

Transition  metals  form  coloured  compounds.  

They  have  variable  valancies.  

They  are  all  metals  with  very  high  melting  and  boiling  points.  

Transition  metals  and  their  compounds  are  good  catalysts.  

 

0  group  elements  (Noble  gases)  

          He,  Ne,  Ar,  Kr,  Xe  and  Rn    

The  zero  group  elements  are  known  as  noble  gases  or  inert  gases.  They  all  have  eight  

electrons  in  the  valance  shell  except  Helium  which  has  two  electrons.    

Since  their  valence  shells  are  full,  they  are  very  unreactive.  They  neither  lose,  gain  or  

share  electrons.  Therefore,  their  valency  is  zero.    

                   

Worksheet 5 – Periodic Table

 1 Which statement is correct, about the Periodic Table? Tick its box.

A It shows 8 periods. B The elements are arranged in order of their nucleon numbers.

C The number of electrons increases by 1 from one element to the next, across a period. D Reactivity increases as you move down each group in the table, except for Group 0.

 

2 This shows the main groups in the first four periods of the Periodic Table.

     

Statements a – n below describe different elements. Your task is to write the letters a – n, and the symbols for the corresponding elements, in the correct places in the table. a a solid in Period 2 which is quite soft, floats on water, and reacts steadily with it

b the most reactive non-metal element

c a green gas that forms diatomic molecules

d a liquid that does not conduct electricity

e the element that has two forms, graphite and diamond

f a gas used to provide an inert atmosphere, for example in light bulbs

g a colourless gas in which many substances burn readily

h of all the element in these four periods, it reacts the most violently with water

i the flammable gas produced when metals react with acid

j an element which, in ribbon form, burns with a white light, forming ions with a charge of 2+

k an unreactive gas that makes up most of the air around us

l one compound of this metal is called limestone

m a noble gas in Period 4

n an alkali metal in Period 3

   

3 The groups in the Periodic Table show trends in their properties.

a Write in two properties that show trends, for Groups I and VII: i Th i This increases down the group: i This increases down the group:

……………………………….. ……………………………… ii This increases up the group: ii This increases up the group: ………………………………………………… ………………………………………

 

b The next element in Group I is caesium. How will it compare to the elements above it, for those two properties? ..............................................................................................................................................

c The next element in Group VII is astatine. How will it compare to the elements above it, for those two properties? ....................................................................................................................................  

 4 This table shows observations for reactions between halogens and halide ions.

a i What is responsible for the orange colour?  ii What is responsible for the red-brown colour?  

b Explain how these results show that:  i chlorine is the most reactive of those three halogens      ii iodine is the least reactive of those three halogens  

         

Chemical  Bonding    

1. Ionic  Bond  2. Covalent  Bond  3. Dative  Bond  4. Metallic  Bond  

 1)  Ionic  Bond:  -­‐  It  is  a  bond  formed  between  two  atoms  by  the  transfer  of  electrons.    Eg.  NaCl  -­‐  Na  has  1  electron  in  its  valence  shell  (outermost  shell).  During  its  reaction  with  Chlorine,  the  Na  atom  loses  the  single  valence  electron  to  form  a  Sodium  ion  (Na+).  The  Chlorine  atom  takes  this  single  electron  from  the  Sodium  to  form  a  Chloride  ion  (Cl-­‐).  Chlorine  takes  this  electron  from  Sodium  because  it  has  7  valence  electrons  and  needs  one  more  to  become  stable.    

Is added to a colourless solution containing … When this … chloride ions (Cl – ) bromide ions (Br – ) iodide ions (I – )

chlorine (Cl2)

there is no change

the solution turns orange

the solution turns red-brown

bromine (Br2)

there is no change

there is no change

the solution turns

red-brown

iodine (I2)

there is no change

there is no change

there is no change

                             The  positive  Na+  ion  and  the  negative  Cl-­‐  ion  attract  each  other  and  form  an  ionic  bond.    Dot  and  Cross  Diagrams    NaCl    

     CaO    

     When  a  metallic  element  and  a  non  -­‐  metallic  element  react  to  form  a  compound,  the  bond  formed  is  ionic.  This  is  because  metal  atoms  have  a  tendency  to  lose  electrons  while  non  -­‐  metals  have  a  tendency  to  gain  electrons.        2)  Covalent  Bond:  -­‐  It  is  a  bond  formed  between  two  atoms  by  the  sharing  of  a  pair  of  valence  electrons.      H2    

     O2  

   Whenever  a  non  –  metal  atom  combines  with  another  non  –  metal  atom,  the  bond  formed  is  always  covalent.  When  a  metalloid  atom  combines  with  a  non  –  metal  atom,  the  bond  formed  is  also  covalent.  This  is  because  non  –  metals  have  a  tendency  to  take  electrons  and  achieve  stability.  Therefore,  they  form  binds  by  sharing  their  valence  electrons.        Differences  between  ionic  and  covalent  compounds    

Sl  no.   Ionic     Covalent  1.   Ionic  compounds  have  high  M.P  

and  B.P  Covalent  compounds  have  low  M.P  and  B.P  

2.   They  are  solids  at  room  temperature  (25˚C)  

They  are  liquids  or  gases  at  room  temperature  

3.   They  are  crystalline  in  nature   Their  solids  are  soft  non  –  crystalline  substances  

4.   They  conduct  electricity  in  molten  state  or  in  aqueous  solution  

They  do  not  conduct  electricity  

5.   Ionic  compounds  are  soluble  in  polar  solvents  like  water  

They  are  insoluble  in  polar  solvents  

These  are  generalized  properties  and  there  are  always  exceptions.        Polar  Covalent  Bonds  If  there  is  a  covalent  bond  between  and  electropositive  and  an  electronegative  element,  the  bond  will  be  polar.  This  is  because  the  shared  pair  of  electrons  is  closer  to  the  electronegative  atom.  Eg.  HCl      

     Some  elements  have  a  greater  tendency  to  attract  electrons  than  others.  Such  elements  are  referred  to  as  highly  electronegative  elements.    In  the  HCl  molecule  the  Cl  atom  has  a  fractional  negative  (�  -­‐)  charge.  This  is  because  the  hydrogen  atom  has  a  lower  electronegativity  while  the  chlorine  atom  has  a  high  electronegativity.    The  shared  pair  of  electrons  that  form  the  covalent  bond  are  drawn  closer  to  the  chlorine  atom  giving  it  a  fractional  negative  charge.  The  opposite  end  of  the  molecule  has  a  fractional  positive  (�  +)  charge,  making  the  molecule  polar  in  nature.  If  there  is  an  electronegative  difference  between  the  atoms  that  bond  to  each  other,  the  covalent  bond  becomes  polar.    Water  is  another  example  of  polar  covalent  compound    3)  Dative  Bond:  -­‐  It  is  also  called  co-­‐ordinate  covalent  bond.  A  dative  bond  is  a  bond  formed  by  the  sharing  of  a  pair  of  electrons  between  two  atoms  in  which  one  of  them  only  donates  a  pair  of  electrons.    Example:  Formation  of  ammonia  ion  (NH4

+)  NH3                                +                        H

+                                                                                  NH4+      

Ammonia                                                  Ammonium  ion  

               Formation  of  hydronium  ion  (H30)  H20                        +                  H

+                                             H3O+  

Water                                                                      Hydronium  ion    

   4)  Metallic  Bond:  -­‐      

   In  metals,  the  atoms  are  held  by  strong  metallic  bonds.  The  valence  electrons  are  delocalized  and  therefore  it  appears  that  positively  charged  atoms  are  scattered  in  a  sea  of  electrons.  The  attractive  force  between  the  electrical  field  created  by  the  electrons  and  the  positively  charged  atoms  is  the  metallic  bond.      Metallic  bonds  account  for  the  unique  properties  of  metals:  

1. Metals  have  high  melting  and  boiling  points.  2. They  are  malleable  and  ductile.  3. They  are  good  conductors  of  heat  and  electricity.  4. They  have  lustre.  5. They  have  high  density.  

 

Macromolecular  Structure  Some  substances  are  formed  by  multiple  bonds  of  elements.  These  substances  have  very  large  structures  unlike  other  substances  that  have  small  simple  molecules.  Such  

substances  are  known  as  macromolecules.  Diamond,  graphite,  silica  and  fullerenes  are  some  of  the  examples.          .      Diamond  Diamond  has  a  large  macromolecular  structure  made  up  of  pure   Carbon  atoms.  The  Carbon  atoms  bond  with  each  other  repeatedly  to  give  macromolecular  structure  like  this.            Graphite  

   In  Graphite,  the  Carbon  atoms  show  three  bonds  with  one  electron  free  per  atom.  The  Carbon  atoms  bond  with  each  other  forming  hexagonal  rings.  These  hexagonal  rings  are  arranged  in  layers.  These  layers  are  held  by  weak  van  der  Waals’  forces.        Comparison  of  Diamond  and  Graphite  Structures    

Sl/no.   Diamond   Graphite  1.   Hard,  Crystalline  solid   Soft,  Crystalline  solid  2.   Poor  conductor  of  electricity   Good  conductor  of  electricity  3.   Shows  tetrahedral  structure   Shows  hexagonal  rings  structure  4.   High  density   Low  density  5.   Has  lustre   Dull  appearance  Though  Diamond  and  Graphite  look  different,  they  are  the  allotropes  of  Carbon  .    Silicon  Dioxide  (SiO2)  

Silica  or  SiO2  or  Quartz  is  a  crystalline  form  if  Silicon  and  Oxygen  atoms  bonded  together.  Silicon  like  Carbon  shows  valency  4  and  bonds  with  four  Oxygen  atoms  forming  SiO2.  The  structure  is  very  similar  to  a  tetrahedron.  It  is  not  as  hard  as  Diamond  but  compared  to  many  substances  it  is  quite  hard.  By  repeated  bonding,  SiO2  forms  a  large  macromolecular  structure.    The  covalent  bond  in  the  macromolecules  is  quite  strong.  

All  macromolecules  have  high  melting  and  boiling  points  because  during  melting  a  very  large  number  of  bonds  have  to  be  loosened.      Buckminster  fullerenes  [Bucky  balls]                                                                  

                                                                                                 C  60                                                                                                        C70                                                              Buckminster  fullerenes  are  spherical  structures  composed  of  carbon  atoms  covalently  bonded  together.  There  are  other  types  of  fullerenes  containing  more  number  of  carbon  atoms.  They  are  C60,  C70,  C72  and  C84.  These  fullerenes  are  present  in  chimney  soot.  When  carbon  is  vaporized  and  condensed  they  form  unique  spherical  structures  fullerenes.  Recently  another  form  of  these  carbon  allotropes  called  ‘graphene’  was  discovered.  They  are  thin  sheets  of  Carbon.    

 Graphene  structure  

 

 

Worksheet - 6 Bonding 1. This is about the bonding in molecules of water, methane, and hydrogen

chloride. a) First, draw hydrogen atoms in the boxes, to complete the structures of the molecules.

b) Then use • and x to show their bonding. (Use x for an electron from hydrogen.)

water methane hydrogen chloride

2. This diagram shows the structure

of a common substance. a) Extend the structure to the right, by adding four more ions. b) i) Name the substance that has this structure.

……………………………………….

ii) Which type of bonding does it have? ............................................................... iii) Which word describes the structure, giant or molecular? ................................

c) From the structure, it is possible to predict many properties of the substance. Underline the most likely property for the solid, in each pair below.

i solubility in water soluble / insoluble ii melting point / ˚C 59 / 801 iii electrical conductivity good / poor

d Complete the diagrams for the ions in the structure, to show their

electron arrangement. Show the missing electron shells. (The dark circles show the nucleii.)

e) Explain how electrons are transferred, when the ions in d are formed from their atoms. …………………………………………………………………………………………

…………………………………………………………………………………………

………………………………………………………………………………………… 3. These diagrams show

part of the structures of diamond and graphite.

…………………. ………………………..

a) Which do these structures represent, elements or compounds? .........................................

b) Fill in the three missing labels, for the atom and two structures. c) Describe the differences in the bonding and structure of graphite and diamond.

Bonding …………………………………………………………………………………………

…………………………………………………………………………………………

Structure …………………………………………………………………………………………

…………………………………………………………………………………………

d) i) One of the two substances is very hard, and the other is soft. Explain this difference. …………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

ii) Which substance is therefore used in cutting tools, and which is used as a lubricant? cutting tools: …………………………. lubricant: ……………………………………

e) One substance is an insulator, and the other is a good conductor of electricity. Explain this difference.

…………………………………………………………………………………………

……………….…………………………………………………………………………

………………..………………………………………………………………..………  

Quantitative    Chemistry    

Mole:-­‐  It  is  a  fixed  quantity  of  substance  that  contains  Avogadro  number  of  particles  (6.02  x  1023)  Gram  atomic/molecular  mass  of  any  substance  is  one  mole  of  that  substance.  If  an  element  exists  in  monoatomic  state  then  the  atomic  mass  of  the  element  is  equal  to  one  mole.      Substance   RMM/RAM   One  mole   No.  of  particles  CO2   44   44  g   6.023  x  1023  

molecules  NH3     17   17  g     6.023  x  1023  

molecules  N2   28   28  g   6.023  x  1023  

molecules  Ca   40   40  g   6.023  x  1023  atoms  He   4   4  g   6.023  x  1023  atoms  Empirical  formula-­‐It  shows  the  simplest  ratio  in  which  atoms  combine.  Molar  volume-­‐  It  is  the  volume  occupied  by  1  mole  of  any  gas  at  S.T.P.  (standard  temperature  and  pressure).  One  mole  of  any  gas  occupies  22.4  dm-­‐3  at  S.T.P.    [Standard  temperature  =  00C;  Standard  pressure  =  1  atm]    According  to  Boyle’s  Law,  the  volume  of  a  gas  is  inversely  proportional  to  its  pressure  at  constant  temperature.  

     

 According  to  Charles’  Law,  volume  of  a  gas  is  directly  proportional  to  its  temperature  on  a  Kelvin  scale.  

 Combining  the  two  laws,  we  get        

Or,                                  ie        

   This  constant  is  the  Gas  Constant  (R).  We  can  rearrange  this  and  write  PV  =  RT  for  one  mole  of  any  gas.  Or  PV  =  nRT    for  ‘n  moles’  of  the  gas.  This  is  the  general  gas  equation.      Example-­‐  What  is  the  volume  occupied  by  0.25  moles  of  a  gas  at  S.T.P.?  1.0 mol  of  the  gas  will  occupy  22.4  dm-­‐3  Therefore,  0.25  mol  of  the  gas  will  occupy  0.25  x  22.4  =  6.0  dm-­‐3.  Now  solve  the  following  problems-­‐  

1. What  is  the  volume  of  16g  of  oxygen  at  S.T.P.?  2. How  much  volume  is  occupied  by  1.7g  of  NH3  at  S.T.P.?  3. If  6.0g  of  carbon  burns  completely  in  air,  what  volume  of  CO2  is  produced  at  

S.T.P.?  

Percentage  purity  –  The  purity  of  a  substance  can  be  expressed  as  percentage.    

 Calculating  the  percentage  purity  of  a  substance;  Example-­‐  10g  of  chalk  was  analysed  and  found  to  contain  9.5g  of  CaCO3.  What  is  it’s  percentage  purity?           9.5g            x      100      =    95%                          10g  Now  work  out  the  following  problems-­‐  

1. Analysis  of  80g  of  Asprin  showed  that  it  contained  79.8g  of  the  pure  substance.  What  is  the  percentage  purity?  

2. Salt  obtained  from  the  sea  was  found  to  contain  86%  NaCl.  How  much  NaCl  can  be  obtained  from  200g  of  this  salt?  

3. A  5.0g  sample  of  dry  ice  was  found  to  contain  4.4g  of  pure  carbon  dioxide.  What  is  the  percentage  purity  of  the  dry  ice?    

   

Worksheet - 7 Quantitative chemistry  1 Masses from moles, and moles from masses

   

 

Fill in the calculation triangle below, for moles of solute, volume, and concentration. Then complete the table.

Ar values: H = 1, C = 12, N = 14, O = 16, Mg = 24, P = 31, Cl = 35.5, Ca = 40, Cu = 64)

2. Masses and equations a ) What mass of iron(III) oxide is needed to produce 100 g of iron, in the blast furnace? Equation: Fe2O3 (s) + 3CO (g) 2Fe (s) + 3CO2 (g) (Ar: O = 16, Fe = 56)        

b ) 0.05 moles of aluminium is reacted with 26 g of iodine. Which one is the limiting reagent? Equation: 2Al (s) + 3I2 (s) 2AlI3 (s) (Ar: Al = 27, I = 127)

26 g of I2 is ……….. moles of I2. From the equation, this will react with………… moles of Al.

c ) 6.21 g of lead (Pb) are heated in oxygen and give 6.85 g of a lead oxide. What is the equation for the reaction? (Ar: O = 16, Pb = 207) The mass of oxygen that took part in the reaction was ……………. g, which is ……………. moles of O2. The number of moles of Pb in 6.21 g of lead is …………….

So the balanced equation is: …………………………………………………………………………

 3 Calculations involving solutions—The concentration of a solution is the amount of solute, in grams or moles, that is dissolved in 1 dm3 of solution.

substance

Ar or Mr

number of moles

mass (g)

Cu

2

Mg

0.5

Cl2

35.5

H2

8

P4

2

O3

1.6

H2O

54

CO2

0.4

NH3

8.5

CaCO3

100

     

Fill in the calculation triangle below, for moles of solute, volume, and concentration. Then complete the table.

                         

       

4 Concentration and equations

solute

volume of solution

concentration of solution (mol / dm3)

moles of solute in it

Sodium chloride

1 dm3 2

hydrochloric acid

100 cm3 0.5

Sodium hydroxide

2 dm3 1

sulfuric acid 250 cm3 0.5

ammonium nitrate

2

0.3

copper(II) sulfate

0.25

0.75

a) 25 cm3 of 0.2 mol / dm3 sodium hydroxide (NaOH) neutralises 10 cm3 of dilute sulfuric acid (H2SO4). What is the concentration of the sulfuric acid? Equation: 2NaOH (aq) + H2SO4 (aq) Na2SO4 (aq) + H2O (l) …………….. moles of NaOH are used, so they neutralise …………….. moles of H2SO4. So the concentration of the sulfuric acid is …………….. mol / dm3.

b) What mass of magnesium will react with 250 cm3 of 2 mol/dm3 hydrochloric acid? Equation: Mg (s) + 2HCl (aq) MgCl2 (aq) + H2 (g) (Ar: Mg = 24) …………….. moles of HCl are present, so …………….. moles of Mg will react with them. So the mass of magnesium that will react is …………….. g.     c  ) What volume of 0.05 mol/dm3 potassium manganate(VII) (KMnO4) will be reduced by 25 cm3 of 0.2 mol / dm3 iron(II) sulfate (FeSO4) solution? Ionic equation: MnO4

-(aq) + 5Fe2+ (aq) + 8H+ (aq) Mn2+ (aq) + 5Fe3+ (aq) + 4H2O (l) …………….. moles of FeSO4 are used. From the equation, these will react with ……………..

moles of KMnO4. So the volume of potassium manganate(VII) solution reduced is …………….. cm3.

       

Electrolysis    Electrolyte:  Compounds  that  conduct  electricity  either  in  molten  state  or  in  aqueous  solution  are  called  electrolytes.  All  ionic  compounds  are  good  electrolytes  in  molten  state  or  in  aqueous  solution.  Covalent  compounds  are  poor  electrolytes  because  they  do  not  contain  ions.    Electrolysis  in  molten  NaCl  

   When  molten  NaCl  is  electrolysed,  the  positive  Na+  migrates  to  the  –ve  cathode  and  is  discharged.    Reaction  at  the  cathode  Na+      +      e-­‐                     Na  (s)  Na  metal   deposits  on  the  cathode.    During  electrolysis,  the  negative  Cl-­‐  migrates  to  the  +ve  anode  and  is  discharged.    Reaction  at  the  anode  2Cl-­‐        -­‐        2e-­‐                         Cl2  (g)    Cl2  gas  is   liberated  at  the  anode.    Therefore  when  molten  NaCl  is  electrolysed,  it  decomposes  into  Na  metal  and  Cl2  gas.        Electrolysis  of  Dilute  H2SO4  (acidified  water)    

           H2SO4                                                        2H

+      +      SO42-­‐      

 H2O                                            H

+        +        OH-­‐      Reaction  at  cathode  2H+  +  2e-­‐                     H2  (g)    Reaction  at  anode  OH-­‐  is  preferentially  discharged    OH-­‐  -­‐  e-­‐                     [OH]  [OH]  +  [OH]                   H2O  +  [O]  [O]  +  [O]                     O2        The   overall  process  is  -­‐  4OH-­‐  -­‐  4e-­‐             2H2O  +  O2(g)        Electrolysis  of  dilute  sulphuric  acid  produces  oxygen  at  the  anode  and  hydrogen  at  the  cathode.          The  Hofmann  Voltameter  for  the  Electrolysis  of  Water    

     

Preferential  discharge  of  ions:  When  two  similarly  charged  ions  are  in  competition  in  

the  electrolyte,  only  one  of  them  is  preferred  for  discharge  at  the  electrode.  

Which  ion  is  preferentially  discharged  at  the  electrode  depends  on  three  factors:  

Position  of  the  ion  in  the  electro  –  chemical  (E.C)  series.  

Relative  concentration  of  the  ions  in  the  electrolyte.  

Nature  of  the  electrode  used.  

 

Position  of  the  ion  in  the  electro  –  chemical  series  

The  lower  the  position  in  the  electro  –  chemical  series,    

greater  is  its  tendency  to  be  discharged  at  the  electrode.                      Cations                      Anions  

 

SO42-­‐  

O3-­‐  

OH-­‐  Cl-­‐  Br-­‐  I-­‐  

 

 

 

 

 

 

 

Relative  concentration  of  the  ions  in  the  electrolyte  

Higher  the  concentration  of  the  ion,  greater  is  its  probability  of  being  discharged  at  

the  electrode.  If  an  ion  is  in  higher  concentration,  it  will  be  discharged  at  the  

electrode  even  if  it  is  higher  than  the  other  in  the  Electrochemical  series.    

 

Nature  of  the  electrode  used  

The  ionic  reaction  taking  place  at  the  electrode  and  therefore  the  product  formed  

depend  upon  the  nature  of  the  electrodes  used.  Eg.  When  aqueous  CuSO4  is  

electrolyzed  using  Pt  electrodes,  Cu  is  deposited  at  the  cathode  and  O2  is  liberated  at  

the  anode.  If  the  anode  is  made  up  of  Cu  metal,  then  Cu  atoms  dissolve  to  form  Cu2+  

ions  at  the  anode  instead  of  O2  being  liberated.          

Electrolysis  of  Copper  (II)  Sulphate  [CuSO4  (aq)]    

K+       K+  Na+  Ca2+  Mg2+  Al3+  Zn2+  Fe2+  Pb2+  H+  Cu2+  Hg+  Ag+  Au3+  Pt+  

   Reaction  at  cathode          Cu2+  (aq)  +  2e

-­‐        Cu  (s)  Particles  of  copper  are  deposited  below  the  cathode.        

   Reaction  at  the  anode    4OH-­‐

(aq)  –  4e-­‐          2H2O  (l)  +  O2  (g)  

Oxygen  gas  is  released  at  the  anode.                                                                                                                                                                                                                                                                                                                      Note  -­‐  This  process  can  be  used  to  electroplate  articles  with  copper.  The  article  to  be  plated  is  immersed  in  the  electrolyte  and  made  the  cathode.  The  anode  is  made  of  pure  copper  metal  and  the  electrolyte  used  is  CuSO4  soln.    The  copper  ions  cannot  deposit  on  the  platinum  electrodes  therefore,  they  collect  as  tiny  particles  below  the  cathode.  As  the  copper  ions  get  discharged  at  the  cathode  the  concentration  of  the  Cu2+  ions  decrease  and  the  blue  colour  of  the  solution  fades  and  finally  becomes  colourless.    If  the  same  electrolysis  process  is  carried  out  using  copper  electrodes,  the  reactions  at  the  electrodes  will  be  different.    

     Reaction  at  cathode    Cu2+  (aq)  +  2e

-­‐        Cu  (s)  Particles  of  copper  are  deposited  on  the  cathode.    

 Reaction  at  the  anode    Cu  (s)        -­‐      2e

-­‐        Cu2+  (aq)    In  this  case,  for  every  Cu2+  ion  discharged  at  the  cathode,  an  equal  number  of  copper  atoms  at  the  anode  lose  electrons  and  go  into  the  electrolytic  solution  as  ions.  Therefore  the  blue  colour  of  the  electrolytic  solution  does  not  fade.              

Applications  of  electrolysis    

1. Electroplating.  2. Electro-­‐refining  of  metals.  3. Extraction  of  metals.  

 Electroplating  with  silver    

   Reaction  at  the  anode         Ag  (s)          -­‐  e

-­‐                  Ag+  (aq)    Reaction  at  cathode         Ag+  (aq)  +  e

 -­‐            Ag  (s)            During  electroplating:  

The  object  to  be  plated  must  always  be  made  the  cathode.   The  pure  metal  is  always  made  the  anode.   The  electrolyte  must  contain  the  metal  ion.  

                   Electro-­‐refining  of  metals    

 Reaction  at  the  anode    Cu  (s)        -­‐      2e

-­‐        Cu2+  (aq)    Reaction  at  cathode    Cu2+  (aq)  +  2e

-­‐        Cu  (s)    When  electrolysis  is  carried  out  for  a  few  hours,  the  anode  loses  mass  as  pure  copper  atoms  break  down  into  Cu2+  (aq)  ions  and  go  into  the  electrolytic  solution.  They  migrate  to  the  cathode,  gain  electrons  and  deposit  at  the  cathode.  Therefore  the  mass  of  the  cathode  increases.  At  the  end  all  the  pure  copper  metal  is  deposited  at  the  cathode  and  the  anode  will  contain  only  impurities.  In  this  way  impure  copper  is  converted  into  100%  pure  metal.    

             Extraction  of  metals  –    Extraction  of  Aluminium  from  bauxite    A  mixture  of  molten  alumina  (pure  Al2O3)  and  Cryolite  (NaAlF6)  is  taken  as  electrolyte  in  the  tank  and  electrolysis  is  carried  out.  The  temperature  is  maintained  at  9500C.  Presence  of  cryolite  lowers  the  melting  point  of  alumina  and  helps  conduction  of  electricity.        

   Reaction  at  cathode    Al3+  (l)  +  3e

-­‐        Al  (s)    The  aluminium  metal  formed  sinks  to  the  bottom  and  is  removed.    Reaction  at  the  anode    2O2-­‐

 (l)        -­‐      4e-­‐        O2  (g)  

 The  oxygen  gas  liberated  combines  with  the  carbon  at  the  anode  to  form  carbon  dioxide.  This  is  why  a  mixture  of  oxygen  and  carbon  dioxide  is  found  at  the  anode.            

 Worksheet – 8 Electrolysis  

 1 a For A–J below, circle the letter if the bulb will light. Cross it out if the bulb will not light.

 

                 b          For  the  substances  above  where  the  bulb  lights,  which  will  decompose?  

                                     ……………………………………………………………………………………………………  

2 Which  row  shows  the  products  at  the  anode  and  cathode,  during  electrolysis?  Circle  its  letter.  

at the anode at the cathode A B C D

metals metals non-metals, including hydrogen non-metals (except-hydrogen)

non-metals (except-hydrogen) non-metals, including hydrogen metals metals or hydrogen

 

3 Which  row  shows  the  products  from  the  electrolysis  of  concentrated  sodium  chloride  solution?      Circle  its  letter.    

Positive electrode Negative electrode A B C D

hydrogen hydrogen oxygen chlorine

oxygen chlorine hydrogen hydrogen

  4 Strontium chloride (SrCl2) is melted and electricity is passed through it, using inert electrodes.

Strontium is a reactive metal from Group II of the Periodic Table. a Write ionic equations for the reactions at the electrodes:

At the cathode (–): ……………………………………………………………………………

At the anode (+): …………………………………………………………………...................

b Name the three products obtained from the electrolysis of concentrated aqueous strontium chloride.

………………………………………………………………………………………………....

5 The diagrams below are to show apparatus for purifying copper, by electrolysis. a To diagram A: i add a battery and wires to complete the circuit ii mark + and – on the correct electrodes    

b Complete  diagram  B  to  show  when  electrolysis  is  almost  complete.                                            Mark  in  the  battery,  wires,  electrodes,  electrolyte,  and  impurities.  

c Write  the  half-­‐equation  for  the  reaction:  

               i   at  the  positive  electrode  …………………………………………………………….  

               ii   at  the  negative  electrode  …………………………………………………………….  

d                Give  one  use  of  copper,  that  requires  it  to  be  very  pure:  ………………………………..  

                   …………………………………………………………………………………………..    

                         

Energy  Changes    All  chemical  reactions  involve  energy  changes.  Some  chemical  reactions  give  out  energy  in  the  form  of  heat,  while  other  reactions  absorb  heat  energy.  Chemical  reactions  that  absorb  heat  are  called  endothermic  reactions.  Chemical  reactions  that  give  out  heat  are  called  exothermic  reactions.  Energy  in  the  chemical  substances  are  stored  in  the  bonds.    Bond  –  breaking  is  an  endothermic  process.    Bond  –  making  is  an  exothermic  process.    During  the  process  of  a  chemical  reaction,  old  bonds  are  broken  and  new  bonds  are  formed.  If  the  energy  required  to  break  old  bonds  is  greater  than  the  energy  released  when  new  bonds  are  formed,  the  reaction  is  endothermic.  If  the  energy  

required  to  break  the  old  bonds  is  lesser  than  the  energy  released  when  new  bonds  are  formed,  then  the  reaction  is  exothermic.      Example:                2H2                +                                    O2                                                                                      2H2O                        (exothermic)      

     Burning  of  Hydrogen  is  an  exothermic  process  because  the  energy  required  to  break  H  –  H  bond  and  the  O  =  O  bonds  is  less  than  the  energy  released  when  the  two  O  –  H  bonds  are  formed.                          N2                                              +                                      O2                            2NO                        (endothermic)        

     In  this  reaction,  the  energy  required  to  break  the    bonds  and    bonds  is  much  greater  than  the  energy  released  when  two    are  formed.    Energy  is  measured  in  Joules  or  Kilojoules.  During  a  chemical  process,  the  energy  change  is  stated  as  joules/kilojoules  per  mole.    Fuels    Any  substance,  which  on  burning  produces  large  amounts  of  energy,  can  be  used  as  a  fuel.    The  most  commonly  used  fuel  in  modern  times  are  the  hydrocarbons.  Hydrocarbons  are  made  of  Carbon  and  Hydrogen  only.  Example:  Methane  –  CH4  (g),  Ethane  –  C2H6  (g),  Propane  –  C3H8  (g)  etc.  the  other  higher  hydrocarbons  are  present  in  fuels  like  petrol,  kerosene,  diesel  etc.    Hydrogen  is  a  very  good  fuel  as  it  burns  giving  out  large  amounts  of  heat  energy.  It  is  also  a  non  –  polluting  fuel  as  the  product  of  burning  Hydrogen  is  water  vapour.  The  only  major  problem  in  using  hydrogen  is  the  explosive  nature  of  burning.    Alternate  Energy  Sources  

1. Wind  energy  2. Tidal  energy  3. Solar  energy  4. Biogas  

 

Out  of  these,  solar  energy  and  biogas  have  practical  use.  Solar  energy  is  the  best  alternate  source  of  energy,  as  it  produces  no  pollution.  The  only  problem  with  solar  energy  is  the  high  manufacturing  cost.    The  other  best  alternate  fuel  is  biogas,  also  called  natural  gas.  It  is  a  mixture  of  hydrocarbons  but  mostly  contains  methane.  It  is  formed  by  the  anaerobic  degradation  of  organic  matter.  All  organic  waste,  under  the  right  anaerobic  condition,  can  be  used  to  produce  biogas  or  natural  gas.  The  only  problem  with  biogas  is  it  is  poisonous  as  it  contains  high  levels  of  methane.                  Nuclear  energy    Nuclear  energy  is  obtained  by  nuclear  fission  or  by  nuclear  fusion.  Nuclear  fission  is  easier  to  carry  out  in  nuclear  reactors  and  therefore,  is  widely  used  as  a  source  of  energy.    Nuclear  fusion  is  very  difficult  to  initiate,  as  it  requires  very  temperatures,  which  is  impossible  to  duplicate  on  earth.  Nuclear  fusion  occurs  in  the  stars,  which  radiate  as  heat  and  light.    Nuclear  fission  When  a  slow  neutron  is  fired  into  the  nucleus  of  a  Uranium  –  235  atom,  the  nucleus  splits  into  a  Barium  nucleus  and  a  Krypton  nucleus  releasing  large  amounts  of  energy.    92U

235        +          n1                             56Ba137        +        36Kr

84        +          3n1          +        energy  ‘The  breaking  of   a  heavier  atom  into  two  smaller  atoms  with  the  liberation  of  large  amounts  of  energy  is  called  nuclear  fission.’    When  the  Uranium  nucleus  splits,  it  releases  neutrons  along  with  energy.  These  neutrons  further  split  other  Uranium  atoms  forming  a  chain  reaction.  The  chain  reaction  is  so  fast  that  the  whole  mass  of  Uranium  explodes  releasing  large  quantities  of  energy  in  the  form  of  heat  and  light.  If  exploded  without  control,  it  is  a  nuclear  bomb.  However,  if  the  chain  reaction  is  slowed  down  in  a  nuclear  reactor  and  controlled,  the  energy  released  can  be  used  to  produce  electricity.  Small  masses  of  Uranium  can  give  large  quantities  of  energy.  That  is  why  nuclear  energy  is  much  sought  after.  Dangers  of  using  nuclear  fuel  

Large  amounts  of  radiation  are  produced  which  if  leaked  can  cause  tremendous  harm  to  life  around  the  reactor.  

The  spent  fuel  left  behind  after  nuclear  fission  cannot  be  easily  disposed  off  because  it  is  radioactive  waste  and  can  harm  the  environment.      

Nuclear  reactors  are  difficult  to  construct  and  maintain  as  it  involves  sophisticated  advanced  engineering.    

Nuclear  fusion  

Nuclear  fusion  is  the  joining  of  two  light  nuclei  to  form  a  heavier  nucleus  with  the  release  of  large  amounts  of  energy.    1H

2        +          1H3                 2He

4        +        energy  Bringing  two   light  nuclei  together  to  form  a  large  nucleus  and  energy  is  known  as  fusion.  Nuclear  fusion  can  be  a  large  source  of  energy,  but  it  cannot  be  artificially  carried  out  as  large  amounts  of  energy  is  initially  required  to  bring  the  two  light  nuclei  together  to  form  a  large,  heavy  nucleus.  

Worksheet – 9 Energy changes  1 The apparatus on the right is used to measure temperature changes during reactions in solution. Dilute hydrochloric acid is placed in the polystyrene cup and its temperature recorded. Some of solid P is added. The mixture is continuously stirred and the temperature is checked regularly. When there is no further change in temperature, the final temperature is recorded.                

thermometer

                       polystyrene

cup and lid reaction mixture

The experiment is repeated with solid Q. This table shows the results:

   Solid Initial

Temperature / °C

Final temperature/ °C

Temperature change / °C

P 20 33

Q 20 12

a) Complete the table to show the temperature change. (Write + or – before each value.) b) i Why is it important to stir continuously during the experiment?

………………………………………………………………………………………….

ii If the solution is put directly into the glass beaker, without the polystyrene cup, how will the results be affected? ..………………………………………………………………………………………… ...………………………………………………………………………………………..

c) Complete these energy diagrams for the two reactions, by marking in the lines for the products, and up or down arrows to show the energy change:

 2      You can compare the energy given out by different fuels, using

the apparatus on the right.

a) What change will you observe, which confirms that the reaction is exothermic? …………………………………………………………… ……………………………………………………………

b) What precautions will you take, to make sure you are comparing the fuels in a fair test?  

…………………………………………………………………………………. ………………………………………………………………………………….

     c)   Suggest   one   change   to   the   apparatus,   that   will   improve   the   accuracy   of   the  comparison.                      …………………………………………………………………………………………  

 d)  Complete  and  balance  this  equation  for  the  combustion  of  ethanol,  when  it  is  used  as  the  fuel:      

                   C2H5OH  +          O2                      

 Rates  of  Reactions  

 Rate  of  a  reaction  -­‐  is  change  in  concentration  of  the  reactants  or  products  with  time.      

     If  one  of  the  products  is  a  gas,  then  the  volume  of  gas  collected  and  the  total  time  taken  is  measured  to  calculate  the  rate.      

   The  gas  liberated  during  the  reaction  is  measured  using  a  gas  syringe.    

   Factors  that  affect  the  rate  of  a  reaction  

Concentration  of  the  reactants   Temperature   Surface  Area  (Size  of  particles)   Catalyst   Pressure  (for  gaseous  reactants)   Light  Intensity  (for  photochemical  reactions)  

 Concentration:  Greater  the  concentration  of  the  reacting  substance,  greater  is  the  number  of  particles  present.  Therefore,  there  is  more  collision  between  the  reactant  particles,  increasing  the  rate  of  the  reaction.    

Temperature:  Higher  the  temperature,  greater  the  K.E  of  the  particles.  Greater  the  K.E,  greater  will  be  the  collisions  between  the  particles  therefore  faster  will  be  the  reaction.    Surface  Area:  Smaller  the  particles,  greater  is  their  surface  area.  Greater  the  surface  are,  faster  is  the  chemical  reaction.  This  is  because  there  is  greater  interaction  between  the  reactant  molecules.    Catalyst:  Presence  of  catalyst  lowers  the  energy  required  to  break  the  old  bonds.  Therefore,  presence  of  catalyst  increases  the  rate  of  a  reaction.    Pressure:  Increase  in  pressure  decreases  the  volume  of  gases.  Therefore,  closer  will  be  the  reactant  molecules  and  faster  will  be  the  reaction.    Intensity  of  light:  In  photochemical  reactions,  theintensity  of  light  increases  the  light  energy  available  for  the  reaction.  Therefore,  greater  the  intensity,  faster  is  the  rate  of  photochemical  reaction.  Measuring  Rate  of  a  Reaction  in  the  Laboratory  Effect  of  temperature:  -­‐    Na2S2O3  (aq)  +  2HCl  (aq)                                               2NaCl  (aq)  +  H2O  (l)  +  S  (s)  +  SO2  (g)  Sodium  Thiosulphate  

In  the  above  reaction,  sulphur  particles  are  precipitated.    

   The  reaction  produces  solid  particles  of  Sulphur  which  precipitate.  Because  of  this  precipitation  the  cross  on  the  paper  disappears  after  some  time.  The  time  taken  for  the  cross  to  disappear  measures  the  rate  of  the  reaction.      Effect  of  temperature  on  rate  of  reaction:  -­‐  The  above  experiment  is  carried  out  at  different  temperatures.  And  the  time  taken  for  the  cross  to  disappear  is  measured.  It  is  found  that  at  higher  temperatures  the  cross  disappears  faster.  This  proves  that  rate  of  a  reaction  increases  with  temperature.    

Effect  of  concentration  on  rate  of  a  reaction:  -­‐  increase  in  the  concentration  of  the  reactant  molecules  increases  the  rate  of  reaction.  This  is  because  increase  in  concentration  increases  the  number  of  molecules.  This  increases  the  number  of  collisions  between  the  reactant  molecules,  thereby  increasing  the  rate  of  the  reaction.    Effect  of  catalyst:  -­‐  A  catalyst  is  a  substance  which  increases  the  rate  of  a  reaction  without  undergoing  any  permanent  damage.  Addition  of  a  catalyst  to  the  reactants  increases  the  rate  of  reaction.  This  is  because  the  catalyst  lowers  the  ‘energy  of  activation’.  The  energy  of  activation  is  defined  as  the  minimum  energy  required  to  make  the  reaction  happen.      

   The  presence  of  a  catalyst  increases  the  rate  of  the  reaction  by  lowering  the  energy  of  activation  for  the  process.  The  reactant  molecules  form  temporary  bonds  with  the  catalyst  and  therefore  their  bonds  are  weakened.  As  a  result  they  require  less  energy    to  break.                                        Example:     Fe  in  Haber’s  process  (manufacture  of  NH3),    

V2O5  in  contact  process  (manufacture  of  H2SO4),    MnO2  in  preparation  of  O2  from  H2O2  

 Effect  of  pressure:  -­‐  for  gaseous  reactants,  increase  in  pressure  increases  the  rate  of  reaction.  This  is  because  increase  in  pressure  decreases  the  volume  of  the  gas.  Under  decreased  volume  the  reactant  molecules  collide  faster  and  therefore  rate  of  reaction  increases.    Photochemical  reactions:  -­‐  these  are  chemical  reactions  which  take  place  only  in  the  presence  of  light.  Eg.  Photosynthesis,  Photography.    Photography  is  the  process  of  redox  reaction  using  AgCl2  or  AgBr2.  

2AgBr    2Ag  +  Br2  2Br  -­‐                 Br2  +  2e  

–  (oxidation)  Ag  +  +  e  -­‐                 Ag(s)  (reduction)  The  redox   process  depends  on  the  amount  of  light  present.  That  is  why  it  is  called  photochemical  reaction.  Greater  the  intensity  of  light,  faster  will  be  the  photochemical  reaction.    

Worksheet – 10 Rates of reaction  1 Nitrogen gas is insoluble in water. It is produced in the reaction between warm solutions of ammonium chloride and sodium nitrite: NH4Cl (aq) + NaNO2 (aq) NaCl (aq) + 2H2O (l ) + N2 ( g) The rate of the reaction can be followed by measuring the volume of gas given off, over time. a) The gas can be collected over water. Complete this diagram to show the apparatus needed:

b) This table shows the results when the reaction was carried out at 70 °C.

` Plot a graph volume against time, on a piece of graph paper. Join the points with a smooth

Time / min

0 1 2 3 4 5 6 7 8 9 10

Volume / cm3

0 20 32 43 45 54 57 58.5 59.5 60 60

curve that fits the points best. Then attach your graph to this worksheet.

c) i Using your graph to help you, describe how the rate of the reaction varied with time:

.………………………………………………………………………………………………… .…………………………………………………………………………………………………..

ii Why did the rate vary? .....................................................................................................................................................

..…………………………………………………………………………………………………

d) i One of the results was anomalous – it did not fit the pattern. Circle that point on your graph. ii Suggest a reason for the anomalous result: ………………………………………………………………………………………………..

.…………………………………………………………………………………………………

……………………………………………………………………………………………………

e The reaction was repeated at 80 °C. Draw a rough sketch of the graph you would expect to obtain, on the same axes as your graph in b.

  2 An experiment was carried out to investigate the rate of reaction between dilute hydrochloric acid and an excess of calcium carbonate, in the form of marble chips: CaCO3 (s) + 2HCl (aq) CaC2 (aq) + H2O (l ) + CO2 (g) a What will you observe in the flask, when the acid is added to the marble? ................................................................................... ………………………………………………………………………. b What is the purpose of the cotton wool? …………………………………………………………………………………………………… c Why is there a loss of mass as the reaction proceeds? .........................................................................................................................................................

……………………………………………………………………………………………………

3 The experiment in 2 was repeated, keeping everything the same except the concentration of the acid. Two different concentrations were used, A and B. Look at the results in this table.

concentration of the acid

loss of mass in first minute

A 0.5g

B 1g

a Which concentration was higher, A or B? .......................... b Explain why one reaction was faster, in terms of collisions between reacting particles: ……………………………………………………………………………………………………………….. ……………………………………………………………………………………………………………….. 4 The experiment in 2 was repeated, changing only the initial temperature of the acid. Two temperatures were used, C and D. The results are shown in this table. a Which was higher, C or D? ............................... b Explain why one reaction was faster, in terms of collisions between reacting particles: ………………………………………………………………………………………………… …………………………………………………………………………………………………        

Chemical  Equilibrium    N2  +  3H2

       2NH3                �H  =  -­‐92kJmol-­‐1    In  the  above  chemical  reaction,  there  is  a  dynamic  equilibrium.  The  rate  of  the  forward  reaction  is  equal  to  the  rate  of  the  backward  reaction.  Therefore,  left  to  itself  there  is  a  balance  between  the  forward  and  backward  reactions.  We  say  the  equilibrium  is  at  the  centre.  If  any  of  the  factors  on  which  the  equilibrium  depends  is  altered,  the  equilibrium  shifts  either  to  the  right  or  to  the  left  neutralizing  the  effect  of  the  change.  In  the  manufacture  of  NH3  by  Haber’s  process,  high  pressure  and  low  temperature  favours  the  formation  of  NH3

 as  the  equilibrium  shifts  to  the  right.    i. N2  +  3H2            2NH3                                                          ∆H  =  -­‐92  kJmol-­‐1              Low  temperature  (350˚C  -­‐  450˚C)              High  pressure  (200  Atm)    

ii. 2SO2  +  O2            2SO3                                                      ∆H  =  -­‐197  kJmol-­‐1              Low  temperature  (450˚C)              High  pressure  (1  -­‐  2  Atm)    

initial temperature of the acid (°C)

loss of mass in first minute

C 0.5 g

D 2 g

iii. N2  +  O2                2NO                                                              ∆H  =  +90  kJmol-­‐1              High  temperature  (3000˚C)              No  effect  of  pressure    For  endothermic  reactions:  Increase  in  temperature  shifts  the  equilibrium  to  the  right  (products  side).  For  exothermic  reactions:  Increase  in  temperature  shifts  the  equilibrium  to  the  left  (reactants  side).    

Worksheet – 11 Chemical Equilibrium 1  Sulphuric  acid  is  made  by  the  Contact  Process.  

2SO2(g)  +  O2(g)        2SO3(g)      ΔH  =  -­‐  197  KJ  mol-­‐1

(i)  What  are  the  reaction  conditions  for  the  Contact  Process?    ....................................................................................................................................................................    ....................................................................................................................................................................  (ii)  Would  the  yield  of  sulphur  trioxide  increase,  decrease  or  stay  the  same  when  the  temperature  is  increased?  Explain  your  answer.    .....................................................................................................................................................................    .....................................................................................................................................................................    .....................................................................................................................................................................    ……............................................................................................................................................................  

 

 

2.  Ammonia  is  made  on  a  large  scale  by  the  Haber’s  process.  

  N2(g)  +  3H2(g)        2NH3(g)            ΔH  =  -­‐  92  KJ  mol-­‐1  

a)  State  two  characteristics  of  a  reversible  reaction  at  equilibrium.    ................................................................................................................................................................    ................................................................................................................................................................  b)  How  can  the  amount  of  ammonia  in  the  reaction  mixture  be  increased?  .....................................................................................................................................................................    ……............................................................................................................................................................  

           

Oxidation  and  Reduction    Oxidation  and  Reduction  take  place  simultaneously.  In  terms  of  electron  transfer  –    Oxidation  is  loss  of  electrons                                                        Remember  -­‐  OIL  RIG  Reduction  is  gain  of  electrons    Metals  have  a  tendency  to  lose  electrons  and  therefore  undergo  oxidation.    Non  –  metals  have  a  tendency  to  gain  electrons  and  therefore  undergo  reduction.  Metals  donate  electrons  and  cause  reduction  to  take  place  in  other  substances.  Therefore,  they  are  reducing  agents  or  reductants.  Non  –  metals  gain  electrons  from  other  substances  and  cause  oxidation  to  take  place.  Therefore,  they  are  oxidising  agents  or  oxidants.    Oxidising  agents  (Oxidants)  Other  than  Non  –  metals  

 1. Hydrogen  Peroxide  –  H2O2  2. Potassium  Manganate  (VIII)  –  KMnO4    3. Potassium  Dichromate  –  K2Cr2O7  These  substances  release  nascent  oxygen  [O]    

Reducing  agents  (Reductants)  Other  than  Metals    

1. Hydrogen  –  H2  2. Carbon  –  O2  3. Carbon  Monoxide  –  CO  4. Sulphur  Dioxide  –  SO2  

5. Ammonia  –  NH3    Example:  -­‐    1)  CuO  +  H2                       Cu  +  H2O    In  this  reaction,  H  is  being  oxidised  to  H2O.  The  oxidising  agent  is  Cu.  CuO  is  being  reduced  to  Cu.  The  reducing  agent  is  H2.      2)  CH4  +  2O2                                               CO2  +  2H2O  CH4  is  oxidised  to  CO2  and  H2O.  O2  is  the  oxidising  agent.  O2  is  being  reduced  to  H2O.  

Conversion  of  FeCl2  to  FeCl3    

             FeCl2      +        ½  Cl2                                                                                      FeCl3    Iron  (II)  Chloride                                     Iron  (III)  Chloride    When  Cl2  is  passed  through  aqueous  FeCl2,  it  oxidises  FCl2  to  Fe  Cl3    Fe2+  -­‐  e-­‐                                                     Fe3+  (oxidation)    ½  Cl2  +  e

-­‐                                                   Cl-­‐          (reduction)    Colour  change:    

FeCl2          +          ½  Cl2                                                           FeCl3        Pale  green                                                                        Orange  yellow    Potassium  Manganate  (VIII)  –  purple/pink  When  reduced,  it  becomes  pale  pink    Potassium  Dichromate  –  orange  When  reduced,  it  becomes  green  

Worksheet – 12 Oxidation- Reduction  

1 When hydrogen is passed over copper(II) oxide, this reaction takes place: CuO (s) + H2 (g) Cu (s) + H2O (l) a It is a redox reaction, because ………………………………………………………………...

………………………………………………………………………………………………....... b The reducing agent in this reaction is ………………………………………………………… ……………………………………………………………………………………………….......  2 Consider the following reaction : Fe2O3 (s) + 3CO ( g) 2Fe (l) + 3CO2( g) a The word equation for the reaction is:

………………………………………………………………………………………………........ b It is a redox reaction, because …………………………………………………………………

…………………………………………………………………………………………………… c The reducing agent in this reaction is ………………………………………………………....

  3 A coil of copper wire (Cu) is placed in a colourless solution of silver nitrate (AgNO3). The solution changes colour. a What colour does the solution go, and why?

…………………………………………………………

………………………………………………………… b Write an ionic equation for the reaction that takes place.

…………………………………………………………………………………………………………… c The copper is said to be oxidised during this reaction. Explain why. …………………………………………………………………………………………………………… 4 Explain why this is not a redox reaction: CuO (s) + H2SO4 (aq) CuSO4(aq) + H2O (l)

……………………………………………………………………………………………………………    5    

a The table above shows a period of the Periodic Table. Which period? .................... b The oxidation state tells you how many electrons an atom has ...................., ...................., or

...................., in forming a compound.   c i Why are the oxidation states of the elements in the compounds negative, after Group IV?

………………………………………………………………………………………………

ii Why do they decrease, after Group IV?

………………………………………………………………………………………………    

d Using oxidation states, write the formulae of the compounds formed between:

i sodium and sulfur …………. ii silicon and chlorine ………….

iii aluminium and sulfur ……….. iv magnesium and phosphorus ………….

Group I II III IV V VI VII O

Element sodium magnesium aluminium silicon phosphorus sulfur chlorine argon

Typical Compound NaCl MgO AlCl3 SiO2 PH3 H2S HCl none

Oxidation state of element in it

+I +II +III +IV –III –II –I –

 

     

Acids,  Bases  and  Salts    An  acid  is  a  substance  that  produces  H+  ions  in  aqueous  solution.  Examples:      HCl,  HNO3,  H2SO4,  H2CO3,  H3PO4    A  base  is  a  substance  that  reacts  with  acids  to  form  salt  and  water  only.  Examples:    NaOH,  KOH,  Ca(OH)2,  NH4OH    A  salt  is  a  substance  formed  by  the  neutralisation  of  an  acid  and  a  base.  Examples:  NaCl,  KCl,  CaCO3,  NH4Cl,  NaNO3      Neutralisation  reactions      HCl    +    NaOH   NaCl  +    H2O  Acid                      Base                    Salt                           Water    HCl    +    NH3     NH4Cl  +  H2O  Acid                    Base                         Salt                              Water    H2CO3  +  CaO   CaCO3  +  H2O  Acid                            Base                                                                                       Salt                            Water    During  neutralisation  the  H+  ions  are  neutralise  by  the  OH-­‐  ions.    

H+    +    OH-­‐               H2O    A  salt  consists  of  a  positive  ion  called  the  cation  and  a  negative  ion  called  the  anion.  The  cation  comes  from  the  base  and  the  anion  comes  from  the  acid.    The  pH  Scale    It  is  a  scale  ranging  from  1  to  14  that  is  used  to  measure  the  acidity/  basicity  of  the  substance.    1          2            3          4          5          6        7        8        9        10        11        12        13        14                                  Acid                      Alkali                                  Neutral    

The  lower  the  pH  value  stronger  is  the  acid.  The  higher  the  pH  value  stronger  is  the  base.  When  the  concentration  of  H+  ions  and  the  OH-­‐  ions  are  equal  the  pH  is  7.    

The  pH  of  a  solution  can  be  measured  by  using  a  pH  meter.      Preparation  of  salts  Salts  can  be  prepared  by  two  ways:  1. By  neuralisaton.  2. By  precipitation.    Preparation  of  salts  by  neutralisation  Soluble  salts  are  prepared  by  neutralisation.    Copper  Sulphate  CuO(s)    +      H2SO4(aq)                               CuSO4(aq)      +    H2O(l)    Sodium  Chloride  HCl(aq)  +    NaOH(aq)   NaCl(aq)  +    H2O(l)    Method:    1. Take  the  acid  in  a  beaker.  2. Add  the  base  to  it  slowly  and  heat  it.  3. When  the  reaction  is  complete  allow  it  to  cool.  4. Filter  the  mixture  to  remove  the  impurities.  5. The  filtrate  obtained  is  the  salt  solution.  6. Take  the  filtrate  in  a  crucible  and  heat  it  to  evaporate  the  water  7. Allow  it  to  cool.  The  crystals  of  salt  are  formed.      Preparation  of  salts  by  precipitation  [mixing  solutions  of  two  soluble  salts]  Insoluble  salts  are  prepared  by  precipitation.  Exam,ple  1-­‐  Lead  Chloride  Pb(NO3)2(aq)  +  2HCl(aq)                                       PbCl2(s)      +      HNO3(aq)  

   Example  2-­‐  Barium  Sulphate    Ba(NO3)2(aq)  +    H2SO4(aq)       BaSO4(s)        +    2HNO3(aq)                      Insoluble  salts  can  be  prepared  by  mixing  two  salt  solutions  containing  the  required  cation  and  anion.  In  the  above  examples  lead  chloride  is  prepared  by  mixing  aqueous  solutions  of  lead  nitrate  which  provides  the  cation  Pb2+  and  aqueous  hydrochloric  acid  which  provides  the  anion  Cl  -­‐.    Similarly  in  the  next  example  Ba2+  cation  comes  from  barium  nitrate  solution  while  the  SO4

2-­‐  anion  comes  from  sulphuric  acid.      In  this  way  other  insoluble  salts  can  be  prepared.    Method:  

1. Choose  soluble  salts  containing  the  required  cation  and  anion.  2. Make  solutions  of  the  two  salts  in  two  separate  beakers.  

3. Mix  the  two  solutions  in  a  third  beaker  4. The  insoluble  salt  will  precipitate.  5.  Filter  the  mixture.  6. The  insoluble  salt  remains  in  the  filter  paper.  7. Wash  the  salt  prepared  with  distilled  water.  8. Allow  it  to  dry.  

Indicators  Indicators  are  compounds,  which  show  colour  changes  in  acidic  and  alkaline  medium  Examples:  Litmus  solution,  methyl  orange,  phenolphthalein,  universal  indicator  etc.    

Indictor   Colour   Acid  Medium   Alkaline  Medium  

Litmus   Violet   Red   Blue  Methyl  Orange   Orange     Red   Yellow  Phenolphthalein   Colourless   Colourless   Pink  Universal  Indicator   Green   Red   Blue  (or)  Violet    

       

TYPES  OF  OXIDES  Oxides  can  be  acidic,  basic  or  neutral.    Metal  oxides  are  all  basic.  Some  metal  oxides  are  amphoteric.      Non-­‐metal  oxides  are  all  Acidic  or  Neutral.    All  metal  oxides  are  basic  in  nature.  Some  metal  oxides  like  Al2O3,  PbO  and  ZnO  are  amphoteric  oxides.  (They  can  react  with  both  acids  as  well  as  strong  alkalis  to  form  salt  and  water).  Example:  CaO  +  H2SO4                                                  CaSO4  +  H2O  (Base)    (Acid)                                                          (Salt)              (Water)    Al2O3  +  6HCl                                                2AlCl3  +  3H2O  (Base)        (Acid)                          (Salt)            (Water)  The  same  Al2O3  can  react  with  strong  alkalis  to  form  a  salt  (Sodium  Aluminate)  and  water.              Al2O3  +  2NaOH                                                2NaAlO2  +  H2O            (Acid)              (Base)                    (Salt)                  (Water)    Similarly,  ZnO  and  PbO  show  amphoteric  nature.    ZnO  +  H2SO4                                            ZnSO4  +  H2O  (Base)    ZnO  +  2NaOH                                          Na2ZnO2  +  H2O    (Acid)        (Base)          (Sodium  Zincate)        

PbO  +  H2SO4                PbSO4  +  H2O  (Base)    PbO  +  2NaOH                    Na2PbP2  +  H2O  (Acid)    (Base)                                    (Sodium  Plumbate)  Non  –  metal  Oxides  like  CO2,  SO2,  SO3,  and  NO2  are  acidic  in  nature.  However,  CO,  NO  and  H2O  are  neutral  in  nature.  NH3  is  the  only  alkaline  gas.    Acid  Rain  When  gases  like  SO2,  SO3  and  NO2  are  released  into  the  atmosphere,  they  dissolve  in  rainwater  and  come  down  as  acid  rain.    SO2  +  H2O                                      H2SO3  (Sulphurous  acid)  SO3  +  H2O                                      H2SO4  (Sulphuric  acid)  4NO2  +  2H2O  +  O2                                          4HNO3  (Nitric  acid)  

Worksheet – 13 Acids and Bases  

 1 To prepare the salt potassium chloride, 25 cm3 of potassium hydroxide were first titrated against a solution of acid, with phenolphthalein as indicator. Phenolphthalein is colourless in acid solution, and pink in alkaline solution. a The drawings below show the pieces of apparatus used. i Name each piece. ii Say what was placed in each, during the titration. i ………………………………. i ……………….................. i ………………………............ ii ……………………………… ii …………………………….. ii …………………………….. b Describe the colour change that took place, showing that neutralisation was complete. …………………………………………………………………………………………………………… c The first burette on the right shows the initial reading for the titration. The second shows the final reading. Use them to complete this table.

initial reading / cm3

final reading / cm3

volume used / cm3

d To prepare the salt, the titration was then repeated. But there was one important change. State the volumes of acid and alkali that were used, and the change that was made. ……………………………………………………………………………………………………………

e The final stage was to evaporate water from the mixture obtained in d. Why was this done? …………………………………………………………………………………………………………… …………………………………………………………………………………………………………… f Write the word equation for the neutralization reaction that produced the salt. ……………………………………………………………………………………………………………. 2 Below is a list of twelve salts, in alphabetical order. There are four insoluble salts, and four pairs of soluble salts from which these insoluble salts can be made. barium chloride, barium sulfate, calcium carbonate, calcium nitrate, lead iodide, lead nitrate

potassium iodide, potassium sulfate, silver nitrate, silver chloride, sodium carbonate, sodium chloride

a Complete this table using salts from the list.

This insoluble salt … can be made using this

… and this …

1

2

3

4

  b The method for making an insoluble salt from two soluble salts is called …………………… c i In the table below, write ionic equations for the reactions that produce the four insoluble salts. Include the state symbols (but not the spectator ions). ii Then give the formulae for the two spectator ions present at each reaction.

Ionic equation for the reaction

Spectator ions

1

and

2

and

3

and

4

and

3 These are all oxides: dinitrogen oxide calcium oxide phosphorus oxide zinc oxide a Write their names in the correct places in this table, and add their chemical formulae.

acidic oxide basic oxide neutral oxide amphoteric oxide

b i Which of the four oxides will react with sodium hydroxide? ………....................................... ii Which of them will react with hydrochloric acid? ..................................................................... iii Explain the term amphoteric ………………………………………………………………….. ………………………………………………………………………………………………….

   

METALS    

GENERAL  PROPERTIES  

Most  metals  are  hard  and  have  lustre  

They  have  high  melting  and  boiling  points  

They  are  malleable  and  ductile  

Metals  generally  have  high  density  

They  are  good  conductors  of  heat  and  electricity  

Most  metals  have  high  tensile  strength  

 

Metal  Reactivity  Series    

The  metal  reactivity  series  is  an  arrangement  of  metals  

in  order  of  their  reactivity  beginning  with  the  most  

reactive  and  ending  with  the  least  reactive  metal.  

Reactive  metals  like  K,  Na,  Ca,  Mg  and  Al  are  all  

extracted  by  electrolysis  from  their  compounds.  These  

metals  cannot  be  extracted  from  their  oxides  by  heating  

with  coke.  Less  reactive  metals  like  Zn,  Fe,  Pb  and  Cu  

are  extracted  from  their  ores  by  chemical  methods.  

These  metals  can  be  obtained  from  their  oxides  by  

heating  with  coke.  Metals  like  Au  and  Pt  exist  in  their  

acidic oxide

basic oxide

neutral oxide

amphoteric oxide

name

formula

K+  (most  reactive)       K+  Na+  Ca2+  Mg2+  Al3+  Zn2+  Fe2+  Pb2+  Cu2+  Hg+  Ag+  Au3+  Pt+  (least  reactive)  

native  states  and  are  obtained  from  rocks  by  separation  techniques.    

 

Main  steps  involved  in    the  extraction  of  metals  from  their  ores  

• Concentration  of  the  metal  ore  

• Roasting/Calcination  of  the  concentrated  ore  

• Reduction  of  the  metal  oxide  

• Refining  of  the  metal  

 

 

EXTRACTION  OF  ALUMINIUM  FROM  BAUXITE  (Al2O3)  

1.  Bauxite  is  concentrated  by  chemical  process  to  get  pure  Alumina  (Al2O3)  

2.  Alumina  is  mixed  with  Cryolite  (Na3AlF6)  and  electrolysed  in  molten  state  at  

950ºC  

               

             Graphite                        Carbon  rods    Reaction  at  cathode    Al3+  (l)  +  3e

-­‐        Al  (s)    The  aluminium  metal  formed  sinks  to  the  bottom  and  is  removed.        Reaction  at  the  anode    2O2-­‐

 (l)        -­‐      4e-­‐        O2  (g)  

 

(+) ( - )

Molten Al2O3 and Cryolite

The  oxygen  gas  liberated  combines  with  the  carbon  at  the  anode  to  form  carbon  dioxide.  This  is  why  a  mixture  of  oxygen  and  carbon  dioxide  is  found  at  the  anode.  To  prevent  the  burning  of  the  Carbon  rods,  a  layer  of  coke  is  sprinkled  on  the  surface  of  the  electrolyte.    3.  Purification  –  This  step  is  not  required  in  this  process  as  the  Aluminium  obtained  is  over  99%  pure.    

SACRIFICIAL  PROTECTION  When  a  more  reactive  metal  is  in  contact  with  another  metal,  the  more  reactive  metal  corrodes  protecting  the  other  metal.  This  is  known  as  Sacrificial  Protection.    Example:  When  Zinc  metal  is  in  contact  with  Iron,  it  corrodes  protecting  the  Iron  from  rusting.  This  is  the  reason  why  strips  of  Zinc  are  riveted  to  the  bottoms  of  ships  made  of  steel.  The  Zinc  metal  strips  slowly  corrode  protecting  the  steel  body  of  the  ship.  This  is  the  reason  why  iron  sheets  are  galvanised  (coated  with  Zinc).  

Worksheet – 14 Metals  1 The first column in the table below lists some general properties of metals. a Complete the second and third columns of the table. Write neatly!

General property of metals

Correct name for this property

One use that depends on this property

can be drawn into wires

can be bent into shape

reflect light

make a ringing sound when struck

allow electricity to pass through

heavy for their volume

their oxides react with acids

transfer heat well

  b i Which property above is a chemical property?    

.................................................................................................................................................. ii Some chemical properties apply only to metals high in the reactivity series.

Give one example: …………………………………………………………………………………………...

iii When metals react, they form ions with a ………………………………. charge. 2 Going down Group II in the Periodic Table, you will find magnesium, calcium and strontium, in that order. Look at these observations:

Observation 1: Magnesium reacts very slowly with cold water, but more vigorously with steam.

Observation 2: Calcium reacts briskly with cold water, with a lot of fizzing. a Those two observations show that reactivity ……………………………. down Group II. b i Predict how strontium will react with cold water. …………………………………………………………………………………………… ii Which gas is released, in the reaction of those metals with water? ........................................................................................................................................... c One Group II element reacts with neither water nor steam. Which one? ........................................................................................................................................... d Magnesium reacts with oxygen to form magnesium oxide (MgO). What forms when

strontium reacts with oxygen? Give its name and formula. ............................................................................................................................................

e When magnesium oxide is heated with carbon, no reaction occurs. So carbon is …

………………………magnesium in the reactivity series.

 ORGANIC  CHEMISTRY  

 

The  carbon  atom  can  form  four  covalent  bonds  with  other  atoms.    

     

It  also  has  the  ability  to  repeatedly  bond  with  other  carbon  atoms.    

 

This  ability  is  known  as  catenation.  

Homologous  Series  

It  is  a  series  of  compounds  that  have  a  general  formula  and  a  common  functional  group,  with  each  member  in  the  group  differing  from  the  other  by  a  -­‐CH2  group.        Example:  Alkanes,  alkenes,  alkynes,  alcohols  etc.  Compounds  that  form  a  homologous  series  have  similar  chemical  properties  and  gradation  in  physical  properties.  

Alkanes    (CnH2n+2)  

Alkanes  are  the  simplest  family  of  hydrocarbons  -­‐  compounds  containing  carbon  and  hydrogen  only.  They  only  contain  carbon-­‐hydrogen  bonds  and  carbon-­‐carbon  single  bonds.  The  first  six  are:  

Methane   CH4  

Ethane   C2H6  

Propane   C3H8  

Butane   C4H10  

Pentane   C5H12  

Hexane   C6H14  

Physical  Properties  

Boiling  Points  -­‐  The  boiling  points  of  the  alkanes  increase  with  molecular  size.  Long  chained  molecules  have  higher  boiling  points.                                                                                                  Fractional  distillation  of  petroleum  (crude  oil)  -­‐  Petroleum  consists  of  a  mixture  of  many  hydrocarbons.  When  petroleum  is  fractionally  distilled,  it  separates  out  into  many  fractions.  These  fractions  are  useful  substances  as  fuel  and  raw  material  for  chemical  industry.  

 

Petroleum  is  vaporized  and  let  into  the  fractionating  column  as  shown  above  in  the  diagram.  The  vapours  cool  as  they  rise  up  through  the  column.  The  different  components  of  petroleum  condense  at  different  levels  in  the  fractionating  column.  In  this  way,  many  components  from  the  mixture  can  be  separated  simultaneously.  The  major  components  obtained  from  petroleum  are  -­‐  

1. Petroleum  gas  (LPG)    2. Petrol  (Gasoline)  3. Naphtha  4. Kerosene  (Paraffin)    5. Diesel  6. Lubricating  oil  (Engine  oil)  7. Fuel  oil  8. Bitumen    

Solubility  -­‐  Alkanes  are  insoluble  in  water,  but  dissolve  in  organic  solvents.  The  liquid  alkanes  are  good  solvents  for  many  other  covalent  compounds.                      

 Chemical  Properties  

Alkanes  contain  strong  carbon-­‐carbon  single  bonds  and  strong  carbon-­‐hydrogen    bonds.  They  are  relatively  inert  and  react  with  difficulty.  However  they  are  good  fuel.  

Combustion  -­‐  Complete  combustion  of  any  hydrocarbon  produces  carbon  dioxide  and  water.    

 

   

Halogenation  (photochemical  reaction)  

In  the  presence  of  ultra-­‐violet  light  /sunlight  alkanes  undergo  substitution  reaction.    

 

There  is  no  reaction  in  the  dark.  The  reactions  with  bromine  are  similar.  

 

 

Cracking  -­‐  When  .long  chained  hydrocarbons  are  heated  in  the  presence  of  a  catalyst,  they  break  down  into  smaller  chain  hydrocarbons  along  with  the  formation  of  ethene.  This  is  known  as  Catalytic  Cracking.  

Decane Hexane Ethene  

 Alkenes  (CnH2n)  

Alkenes  are  a  family  of  hydrocarbons  (compounds  containing  carbon  and  hydrogen  only)  containing  a  carbon-­‐carbon  double  bond.  The  first  four  are:  

Ethene   C2H4  

Propene   C3H6  

Butane   C4H8  

pentene   C5H10  

 Chemical  Properties  

Alkenes  are  very  reactive  and  undergo  addition  reactions.                          

Hydrogenation  -­‐  Ethene  reacts  with  hydrogen  in  the  presence  of  a  finely  divided  nickel  catalyst  at  a  temperature  of  about  150°C  to  form  ethane.    

 

Addition  of  bromine  -­‐  Bromine  adds  on  to  ethene  to  give  1,2-­‐dibromoethane.  

 

The  reddish-­‐brown  colour  of  bromine  is  decolourised  as  it  reacts  with  the  alkene.  

 

 

Using  bromine  water  as  a  test  for  alkenes  -­‐  If  you  bubble  a  gaseous  alkene  through  bromine  water,  the  solution  becomes  colourless.  Alkenes  decolourise  bromine  water.  This  is  a  test  for  unsaturation.  

Addition  of  hydrogen  halides  -­‐  When  ethene  and  hydrogen  chloride  react,  you  get  chloroethane:  

 

Addition  of  steam  to  alkene  -­‐  Ethanol  is  manufactured  by  reacting  ethene  with  steam.    

 

Similarly  you  will  get  propan-­‐2-­‐ol  when  propene  reacts  with  steam.  

 

Hydrogenation  of  fats  -­‐  Vegetable  oils  (fats)  are  unsaturated  fats.  They  have  two  or  more  double  bonds  in  their  molecular  structure.  When  hydrogen  gas  is  passed  through  these  oils  in  the  presence  of  Nickel  catalyst,  the  oils  get  hydrogenated  and  form  margarine  (saturated  fats).  The  hydrogen  atoms  add  on  across  the  double  bonds  converting  them  into  saturated  fats.    

Isomerism  -­‐  Isomers  are  molecules  that  have  the  same  molecular  formula,  but  have  a  different  structure  or  arrangement  of  the  atoms  in  space.                                                                                                                  For  example,  there  are  two  isomers  of  butane,  C4H10.    

 

 

 

Pentane,  C5H12,  has  three  chain  isomers.    

                 

In  alcohols  such  as  C4H9OH  there  are  two  isomers.  

             

 

Alcohols  (CnH2n+1OH)  

Alcohols  are  compounds  similar  to  hydrocarbons  in  which  a  hydrogen  atom  is  substituted  by  a  –  OH  group.    

Example:  Methanol                              CH3  –  OH  

       Ethanol     C2H5  -­‐  OH  

       Propanol     C3H7  –  OH  

Manufacture  of  Ethanol  -­‐  In  industries,  ethanol  can  be  manufactured  by  reacting  ethene  and  steam.    

 +                

Ethene                                              Steam                                                      Ethanol        

 

 

Fermentation  -­‐  The  conversions  of  sugars  into  alcohol  by  the  action  of  yeast  cells  in  the  absence  of  oxygen  is  known  as  fermentation.  Yeast  cells  anaerobically  respire  and  derive  energy.  During  the  process,  sugars  are  converted  to  alcohol.    

     

(Glucose)                  (Ethanol)  

Oxidation  of  alcohols  -­‐  When  alcohols  are  oxidised,  they  form  carboxylic  acids.    

Example  –  Ethanol  gets  oxidised  to  Ethanoic  acid.    

 

When  wine  is  exposed  to  air,  it  undergoes  slow  oxidation  to  form  vinegar.  This  is  chemically  the  oxidation  of  Ethanol  to  Ethanoic  acid.  

Formation  of  Esters  -­‐  Alcohols  react  with  carboxylic  acids  in  presence  of  H+  ions  slowly  to  form  esters.  Esters  are  a  group  of  compounds,  which  have  a  fruity  smell.                                                                    When  Ethanol  is  reacted  with  Ethanoic  acid  in  presence  of  Hydrogen  ions,  Ethyl  Ethanoate  and  Water  are  formed.    

 

 (Ethanol)        +      (Ethanoic  acid)    →    (Ethyl  Ethanoate)  

 

 

 

 

 

 

      Worksheet – 15 Organic chemistry  

1 Paraffin is one of the fractions distilled from petroleum. What is it used for? Tick the box.

A as bottled gas, for cooking B as aircraft fuel C as fuel for power stations D as a lubricant

2 Which of these compounds has the formula C2H4? Tick its box. A ethane B ethane C ethanol D ethanoic acid 3 Long-chain alkanes are often cracked to produce more useful products.

a Give two reasons why long-chain alkanes are not very useful. .......................................................................................................................................................... .............................................................................................................................................................

b When the liquid alkane decane was cracked, a gas formed. It turned bromine water colourless. i What can you deduce about this gas? ............................................................................................

ii The reaction between the gas and bromine is called an ................................... reaction. c i This diagram shows part of the apparatus for cracking decane in the lab. Complete it.

ii What is the aluminium oxide for? ...............................................................................................

iii Mark on the diagram where the test-tube should be heated. iv The moment heating is stopped, the apparatus is removed from the water. Why? .................................................................................................................................................... d Complete this equation for the cracking of decane, and name the gas that formed: C10H22 C8H18 + ………………………

decane octane e Complete this table comparing decane with the gas that formed, for the reaction in d:

4 Ethanol is a member of the alcohol family.

a i What is the functional group of the alcohol family? .................................................................................................. ii Write the formula for ethanol ...................................................................................................

b Ethanol can be made by the fermentation of sugar, using the apparatus on the right. The fermentation takes place in the flask.

i What is put in the flask?

Compound decane (a liquid) …………………… (a gas) Organic family

Is its boiling point above, or below, room temperature?

Does it contain double bonds?

Is it saturated or unsaturated?

Will it react with bromine water?

Will it polymerize?

............................................................................................................ ii Which of these temperatures is best for the reaction? Circle your choice.

0 °C 10 °C 25 °C 75 °C iii What would you observe in the test-tube? .............................................................................. iv Complete the equation for the fermentation: . C6H12O6

v How would you separate the ethanol from the mixture in the flask? ................................................................................................................................................... c Ethanol is also made from ethene, in an addition reaction.

i Give the balanced symbol equation for the reaction. .................................................................................................................................................. ii Name the catalyst used to speed up the reaction. ..................................................................................................................................................

POLYMERISATION  

Polymerisation  is  the  process  by  which  small  molecules  called  monomers  are  linked  to  form  large  macromolecules  called  polymers.  There  are  two  types  of  polymerisation  possible  –    

Addition  Polymerisation   Condensation  Polymerisation  

ADDITION  POLYMERISATION  -­‐  This  type  of  polymerisation  takes  place  by  the  breaking  of  one  of  the  double/triple  bonds  in  a  molecule  to  form  long  chained  polymers.    

Formation of polyethene

Formation  of  polychloroethene  

Formation  of  polytetrafluoroethene    

In  addition  polymerization  only  one  type  of  monomer  is  used.  The  breaking  of  one  covalent  bond  releases  a  pair  of  electrons  which  can  form  covalent  bonds  with  other  monomers  to  form  long  chains.  Any  molecule  which  has  a  double  or  triple  bond  between  the  carbon  atoms  can  be  used  as  monomers  to  produce  addition  polymer.    CONDENSATION  POLYMERISATION  In  this  type  of  polymerization  two  different  monomers  are  used  to  form  long  chained  polymer  by  the  elimination  of  a  water  molecule.  This  is  why  this  type  of  polymerization  is  called  condensation  polymerization.  There  are  two  main  groups  of  condensation  polymers.      

1. Polyamides.  Example  –  Nylon    

When  a  dioic  acid  and  a  diamine  are  polymerized  they  form  a  polyamide.  The  linkage  is  called  amide  linkage.  Nylon  is  a  synthetic  polyamide  while  proteins  are  natural  polyamides.                

2. Polyesters.  Example  –  Terylene    

When  a  diol  and  a  dioic  acid  are  polymerized  a  polyester  is  formed.  The  linkage  is  called  ester  linkage.  Terylene  is  a  synthetic  while  fats  are  natural  polyesters.      NATURAL  POLYMERS  Proteins,  fats  and  carbohydrates  are  all  natural  polymers  found  in  living  systems.  These  are  the  three  classes  of  compounds  which  form  the  main  constituents  of  food.    Proteins  Proteins  are  formed  by  the  polymerization  of  amino  acids.  These  amino  acids  are  joined  together  by  amide  linkage.  

 Digestion  of  protein  is  a  hydrolysis  reaction  where  water  molecules  used  in  the  presence  of  enzymes  break  the  amide  linkage.  During  this  process  the  protein  chain  is  broken  down  into  individual  amino  acids.  One  hydrogen  atom  from  the  water  molecule  bonds  with  the  nitrogen  atom,  while  the  OH  from  the  water  bonds  with  the  carbon  atom  of  the  amino  acid.    Carbohydrates  

Carbohydrates  are  polymers  of  simple  sugars  like  glucose(C6H12O6).  The  glucose  molecules  are  linked  together  by  the  glycosidic  linkage  to  form  different  types  of  carbohydrates.                              HO  -­‐                                                -­‐OH    +    HO  -­‐                                                        -­‐OH  

 Digestion  of  carbohydrates  is  a  hydrolysis  process  in  which  water  molecules  in  the  presence  of  enzymes  break  the  glycosidic  linkage  to  form  glucose  molecules  Fats    Fats  are  polymers  formed  by  the  polymerization  of  one  glycerol  molecule  with  three  fatty  acids.  It  has  ester  linkage  just  like    in  teryline.  

Digestion  of  fat  is  hydrolysis  where  the  ester  linkage  is  broken  in  the  presence  of  water  molecules  and  enzymes.          

Worksheet – 16 Polymerization 1 Polyamides, polyesters and polysaccharides are three types of condensation polymer.

a Complete the following tables, for three different polymerisation reactions A to C.

and represent  carbon  chains.  Reaction A

the monomers used for the polymerization

structure of the polymer

formed (show two units of each monomer joined up)

the other product that forms

name: ……………………………… formula: ……………….

type of polymer formed (circle one)

polyamide polyester polysaccharide

name of polymer formed (circle one)

starch nylon soap terylene sugar

synthetic or natural? (circle one)

synthetic natural

Reaction B

the monomers used

structure of the polymer formed (show two units of each monomer joined up)

the other product that forms

name: ……………………………… formula: ……………….

type of polymer formed (circle one)

polyamide polyester polysaccharide

name of polymer formed (circle one)

starch nylon soap terylene sugar

synthetic or natural? (circle one)

synthetic natural

         

Reaction C the monomers used

structure of the polymer formed (show two units of each monomer joined up)

the other product that forms

name: …………………………… formula: ………………..

type of polymer formed (circle one) polyamide polyester polysaccharide

name of polymer formed (circle one) starch nylon soap terylene sugar

synthetic or natural? (circle one) synthetic natural

b          What  happens  during  condensation  polymerisation?      ....................................................................................................................................................  

  ......................................................................................................................................................  

c      i            Which  of  the  three  polymers  formed  in  reactions  A  –  C  contains  a  linkage  like  that  found    in  proteins?                                                            ...............................................................................................................................................  

                                           ii     What  is  the  main  difference  between  the  structure  of  this  polymer,  and  the  structure                                                            of  proteins?    

   ..............................................................................................................................................    

                           ...............................................................................................................................................    

         2    a        Only  one  of  these  molecules  can  be  used  to  make  a  condensation  polymer.  Which  one?  ...                                              i                            ii  

         b          Explain  why  the  other  molecule  is  unable  to  form  a  condensation  polymer.  .....................................................................................................................................  

                               ......................................................................................................................................                                                  

........................................................................................................................................        .