pr02_11

download pr02_11

of 8

Transcript of pr02_11

  • 8/3/2019 pr02_11

    1/81

    Catalytic Distillation Modelling and Simulation using HYSYS.Process

    Environment

    Gheorghe BUMBAC1, Grigore BOZGA

    1, Valentin PLESU

    1, Vasile BOLOGA

    1, Ilie. MUJA

    2and

    Corneliu Dan POPESCU2

    1University POLITEHNICA of Bucharest, Department of Chemical Engineering, 1 Polizu

    Street, RO-78126, Bucharest, Romania, Tel/Fax:+40 (0)21 21.25.125, email: [email protected]. PETROM, INCERP Ploiesti Subsidiary, B-dul Republicii Nr. 291 A, RO-2000, Jud.Prahova, Telefon +40 (0)244 135111, Fax +40 (0)244 198732, email: [email protected]

    The catalytic-distillation process for the production of t-amyl-methyl-ether (TAME) frommethanol and isoamylenes was simulated by developing the process model as a

    combination of unit operations from HYSYS operations palette. Geometricalcharacteristics of catalytic-distillation column are those of an industrial pilot plant and theresults of simulation were compared with experimental data. The experimentallydetermined reactions kinetics was applied in the model. UNIQUAC-UNIFAC modelequations were selected for the vapour-liquid equilibrium.The results show that fair agreements between the calculated and experimental data were

    obtained.

    1. INTRODUCTIONMethyl ethers replace lead compounds in gasoline. One of these ethers obtained by the

    etherification of an isoamylenes mixture (2-methyl-1-butene, 2M1B, and 2-methyl-2-butene)with methanol is t-amyl-methyl-ether (TAME).

    Catalytic distillation is a suitable technique for TAME synthesis due to thereversibility of the etherification reactions and the difference between the reactants andproducts volatilities. These particularities favours the enhancement of the reactant conversion

    and the increase of the interphase mass transfer potential.Despite of the important number of publications in the field of catalytic distillation,

    relatively few of them concern the industrial application of TAME synthesis.In this paper we focused on the relevance of the commercial software HYSYS for

    the simulation of catalytic distillation problems. To predict the behaviour of TAME synthesisreactor and reactive distillation column HYSYS.Process environment was used. Thesimulation results were compared with pilot plant experimental data. The pilot plant system

    consists mainly from a tubular, fixed bed pre-reactor (TFBR) and a reactive distillation (RD)packed column.

    The purpose of this study is: a) to develop a suitable simulation module forheterogeneous RD with HYSYS and b) to apply the model to an industrial applications.

    The TFBR is used to bring the reaction mixture near its equilibrium composition. The

    advantage of using a pre-reactor for TAME synthesis is based on the fact that the greatest part

    of reaction components can react before RD column and the throughput of reaction systemincreases.

    HYSYS provides many built-in modules for simulating various processes.Unfortunately the COLUMN subflowsheet environment allows simulation of RD withreactions taking places only in homogeneous phase. In the heterogeneous catalytic distillationprocess the solid catalyst particles are placed into many special packing envelopes, serving

    also as vapour-liquid contacting. The reactions occur inside the catalytic package where theliquid contacts the catalyst particles. Then the product flows out of the catalytic zone.

    Additional separation takes place on the packing placed below and above the reaction sectionof the column.

  • 8/3/2019 pr02_11

    2/82

    In a RD column the reaction and separation actually take place in the differentlocations of the column i.e. reaction on the catalyst pellets of the packaging and separation in

    the inert packing. Therefore, the parameters of the liquid residence time or the liquid hold-upon the trays or packings in the heterogeneous process can only be used in the separation

    calculation whereas the reaction calculation needs the parameters of contacting time of liquidwith catalyst in the catalytic package. We underline that in the current version of HYSYSthe built-in RD module is not directly suitable for the simulation of the heterogeneouscatalytic distillation process.

    To overcome the above problem our study concentrated to develop a model forheterogeneous RD and implement the model in the HYSYS simulation environment. In thismodel, the catalyst space velocity appearing in the reaction system equations represents the

    contacting time of liquid with catalyst.

    2. Reaction kinetics and thermodynamics

    Industrial processes for TAME synthesis are based on the reversible reactions ofisoamylenes (2M1B and 2M2B) with methanol. The equilibrium conversion of isoamylenes

    to TAME, at 60C, is 56% if stoechiometric amounts of isoamylenes and methanol are used 6

    and increases slightly with the increase of methanol/isoamylenes ratio. In Table 1 theequilibrium conversion as a function of temperature, for stoechiometric methanol/ isoamylenes

    molar ratio, is presented6

    .A typical industrial process for TAME synthesis involves at least 8 components:

    isoamylenes, n-pentane, i-pentane, methanol, 1-pentene and trans-2-pentene. Since methanolassociates almost all hydrocarbon components into simple and complex azeotropic pairs, thesystem shows strong non-ideal properties.

    The property package used to calculate the liquid activities of the consideredcomponents is based on UNIQUAC-UNIFAC model.

    Table 1. Equilibrium isoamylenes conversion

    as a function of temperatureT e mp e r a t u r e

    (

    o

    C)

    Co n v e r s i o n

    5 0 0 . 6 1 86 0 0 . 5 6 07 0 0 . 4 9 18 0 0 . 4 4 6

    The two reactive olefins (2M1B and 2M2B) are contained in the hydrocarbon mixture,

    resulted as a C5 fraction from Fluid Catalytic Cracking (FCC) unit. In Table 2 thecomposition of the feeding mixture used in the simulated process scheme is presented.

    Residual TAME is present in this stream from recycled stream. All components from the C5fraction are producing azeotropes with methanol and the composition of these azeotropes ispresented in Table 3. The methanol concentration in these azeotropes increases with pressure.

    Table 2. The feed composition.

  • 8/3/2019 pr02_11

    3/83

    Table 3. Azeotrope compositions in TAME synthesis.

    p=2.5 bar p=4 bar p=5.5 bar

    Component 1 Component 2 x1 t, oC x1 t, oC x1 t, oC

    methanol 2M1B 0.21 53.76 0.243 69.24 0.268 80.07

    methanol 2M2B 0.28 58.69 0.31 73.78 0.331 84.69

    methanol n-pentane 0.295 58.64 0.328 73.96 0.347 85.20

    methanol i-pentane 0.21 51.22 0.252 66.61 0.280 77.85

    methanol 1-pentene 0.22 53.64 0.267 69.06 0.283 80.75methanol 2-pentene 0.265 56.73 0.301 72.29 0.322 82.72

    methanol TAME 0.763 87.56 0.793 102.45 0.802 113.20

    The synthesis of TAME from methanol and isoamylenes, catalysed by acid ion-exchange

    resin catalyst is a reversible process as shown in following reaction mechanism containing themain and secondary reactions (17):

    )1()l(3CH2CH

    TAME3CH

    |

    3CHO|

    C3CH

    )B1M2(Butene1Methyl2

    )l(OH3CH)l(3CH2CH

    3CH

    |C2CH

    +=

    )2()l(3

    CH2CH

    TAME3CH

    |

    3CHO

    |C3CH

    )B2M2(Butene2Methyl2

    )l(OH3CH)l(3CHCH

    3CH

    |C3CH

    +=

    B2M2B1M2

    )3()l(3

    CHCH

    3CH

    |C3CH

    )l(3CH2CH

    3CH

    |C2CH

    ==

    amyleneisodi

    )l(20H10C

    B2M2

    )l(10H5C

    B1M2

    )l(10H5C

    + (4)

    amyleneisodi

    )l(20H10C

    B2M2

    )l(10H5C

    B2M2

    )l(10H5C

    + (5)

    ethermethyldi

    )6()l(O2H)l(3CHO3CH)l(

    OH3CH2

    +

    alcoholamyltertamylenesiso

    )7()l(O12H5CO2H)l(10H5C

    +

    There are three main reactions (reactions 13, one for etherification of 2M1B, one foretherification of 2M2B and an isomerisation reaction between 2M1B and 2M2B) and four

    secondary reactions (47). Both etherification reactions, (1) and (2), are exothermic, i.e. theequilibrium conversion of TAME decreases with temperature. The isomerisation reaction atoperation temperature (between 60C and 120C) favours the 2M2B formation and this

    component will have the greatest concentration in the reaction mixture. From kinetic point of

    r1

    r2

    r3

    r4

    r5

    r6

  • 8/3/2019 pr02_11

    4/84

    view this situation is not advantageous because a faster reaction (1) is replaced by a slowerone (2).

    High temperatures and low methanol concentrations are favourable conditions forisoamylenes oligomers formation. On the other hand, excess methanol produces higher

    dimethyl-ether concentration, whereas t-amyl-alcohol formation is very limited, inequilibrium conditions, due to a very small water concentration. Frequently used catalysts aresulphonic acid ion-exchange resins ( Amberlyst 15 or 35, Levatit SPC 118). The kinetic

    mechanism is based on the consideration that methanol and TAME are stronger adsorbed on

    the catalysts surface, compared to isoamylenes.According to our knowledge kinetic studies for TAME synthesis were published by

    Muja et. al 7, Randriamahefa et al 8 , Piccoli and Lovisi , Oostand Hoffmann 3 andRihko etal. 2 etc.

    In this work the TAME synthesis kinetic model ofRihko et al.3 on Amberlyst 16wasused. The 2M1B and 2M2B consumption rates have the expressions:

    +

    =B1M2

    B2M2

    3B1M25B

    MTM

    T

    B1M2M

    T

    1B1M2M1B

    B1a

    a

    K

    11ak

    aa

    K

    K

    aa

    a

    K

    11aak

    r (8)

    +

    +

    =

    B1M2

    B2M2

    3B1M25B

    MTM

    T

    B2M2M

    T

    2B2M2M3B

    B2a

    a

    K

    11ak

    aaK

    K

    aa

    a

    K

    11aak

    r (9)

    The activation energies for the reactions (1), (2) and (3) are:

    andhg

    mol107.0)K343(k;hg

    mol125.0)K343(k;hg

    mol286.0)K343(k

    mol/kJ6.81E;mol/kJ1.94E;mol/kJ76E

    5B3B1B

    5kB3kB1kB

    =

    =

    =

    ===

    are reaction rates constants at 343 K.

    The equilibrium constants in the above reaction rates as temperature functions are:

    ( )T/2.40413881.8expK1 += (10)( )T/3.32252473.8expK 2 += (11)( )T/3.8331880.0expK3 += (12)

    ( )334T00061.01405.0K

    K

    M

    T = (13)

    The ion exchange capacity Amberlyst 15 is 5 mequiv/g 8,9. The reaction kinetic data

    have been verified using pilot plant synthesis of TAME in which the fixed bed reactorpacking of the same catalyst was used. Molar ratio between methanol and isoamylenes in the

    feed stream was 1.256.

    3. Process flowsheet

    In figure 1 TAME synthesis process flowsheet using catalytic distillation is presented.The C5 fraction is mixed with methanol and the resulting stream is fed to the preliminary

  • 8/3/2019 pr02_11

    5/85

    reactor (IV). In the Table 4 the composition of the mixture at the preliminary reactor exit ispresented.

    The resulting product is mixed with a recycled methanol stream and is fed to acatalytic distillation column, with three zones, below the reaction zone. The stripping zone of

    the catalytic-distillation column is simulated as reboiled absorber, a standard operation inHYSYS.

    The second part is the reaction separation zone, represented in our model by abackflow cell model (BCM) with forward flow of the liquid and backward flow of the vapour

    in the reactive part of RD zone. The BCM consist of series of five continuous stirred tankreactors (CSTR) units with the same geometry and size of the individual unit. The third part isanother pure mass transfer unit, representing the rectifying zone of the reactive distillation.

    This zone is simulated as refluxed absorber a HYSYS standard operation. Both strippingand the rectifying zones are represented as non-catalytic packed columns.

    From the computational point of view, each cell of the series was assumed to be at V-L equilibrium, the increase of conversion being calculated as in a CSTR reactor. Herereactions take place in liquid-solid interface, following the kinetic law mentioned above.

    System characteristics: The main characteristics of the catalytic distillation columnare: pre-reactor volume: 0.12 m3, stripping zone: 6 theoretical stages, rectifying zone: 3

    theoretical stages and in cell model there are five CSTRs, a CSTR vessel has 0.02 m3 of

    catalyst. Catalyst particles average diameters considered in the simulation were of 1 mm as inthe pilot plant case. These characteristics are in agreement with those of the pilot plant. More

    explicit characteristics for stripping and rectifying zones of the RD column are presented inTables 6 and 7.

    Table 6. Stripping zone characteristics Table 7. Rectifying zone characteristics

    Table 4. Feed conditions for the RDcolumn system

    Table 5. Column heat exchangers

  • 8/3/2019 pr02_11

    6/86

    4. Results and discussion:Several results from the simulation of main streams are presented in Table 8. The

    isoamylenes conversion in the reactive distillation column and pre-reactor is 80.76 %. Pilotplant scheme is presented in Figure 2. The characteristics of the experimental pilot plant are:

    pre-reactor volume 120 l; rectifying zone packing height 2 m; stripping zone packing height3.5 m. Feeding condition and thermodynamic regime was the same as in the simulation.

    The simulation results with HYSYS for the TAME synthesis reactive distillationmodule set-up, presented in this work, allow drawing the following conclusions:

    - From the chemical transformation point of view it is profitable to place the reactionzone as close as possible to the top of the column. However, above the reaction zonea separation zone is needed to separate TAME from the distillate.

    - It is recommended to place the column feed bellow the reaction zone in order toensure high concentration for the reactants in this zone (as there are more volatilecompared with the reaction product).

    - The best structure for the RD column, obtained from this simulation study, involve 15theoretical plates. As we denoted plates from top to bottom, the best position for the

    reaction zone are the theoretical plates 3 and 4, and the feed plate is the 5-th plate.The optimal reflux ratio is 2, as result of the trade-off between separation degree andenergy saving.

    To describe the flow and fluid phase mixing in the reaction zone, a classical, multi-

    cellular, model was used, considering the back-flow of the vapour phase. In each cell theconversion increase was calculated considering uniform distribution of the catalyst andvapour-liquid equilibrium.

    The results obtained (over 90% conversion, much bigger than the equilibriumconversion) emphasises the advantage of catalytic distillation compared with the classical

    scheme, because the chemical transformation is not limited by the chemical equilibrium asresult of continuous separation of the reaction product from the mixture.

    Table 8. Simulation results.

  • 8/3/2019 pr02_11

    7/87

    I I

    I

    I I I

    IV

    a) process fl owsheet

    L1 V0

    L3

    LN

    V1

    VN-2

    VN-1

    VN

    V3

    V2

    L4

    LN-1

    L2

    LN+1

    n=1

    n=2

    n=3

    n=N-1

    n=N

    b) cells in series model

    Figure 1. Simplified flowsheet for RD column.

    Figure 2. TAME Pilot Plant with Catalytic Distillation Column.

    Iso-amylenes conversion data (Table 9) are obtained using the pilot plant presented in fig. 2,under the same experimental conditions.

  • 8/3/2019 pr02_11

    8/88

    Table 9. Experimental results for TAME synthesis.

    5. Conclusions

    This paper presents a theoretical study for the modelling of reactive distillation

    column operation in TAME synthesis. The simulation procedure is based on a mathematicalmodel considering chemical reaction kinetics for the main reactions and the vapour-liquid

    equilibrium. Phase contact in the reaction zone is described with the back-flow cell model.The problem statement in HYSYS.Process environment was made considering three zones forthe catalytic distillation column (rectifying, reaction and stripping). Constructive and

    operational characteristics of the column are specified as a consequence of the parametricstudy: reaction zone position, feed position and reflux ratio, in order to obtain maximum yield

    for the transformation of C5 reactive olefins in the pilot plant. The simulation results are ingood agreement with experimental data obtained in the experimental pilot plant at SNP

    PETROM, INCERP Ploiesti subsidiary.The quality of the results obtained in this paper is limited by the uncertainty

    introduced by the phase hydrodynamics in the reaction zone the phase equilibrium hypothesis.

    The authors foreseen additional studies in order to better describe phase hydrodynamics, toconsider interphase mass transfer inside the catalyst pallets on process performances.

    Nomenclature:

    ai activity of component i;Kj equilibrium constants in TAME synthesis

    reactions;

    kBm rate constants in reactions (8), (9);

    ri reaction rate;p pressure;T absolute temperature, K;

    R ideal gas constant.

    REFERENCES

    1. L.K. Rihko, A.I.O. Krause, Ind. Eng. Chem. Res. 1995, 34, 1172.2. L.K. Rihko, P.K. Kiviranta-Pkknen, A.I.O. Krause, Ind. Eng. Chem. Res., 1997, 36,

    614.3. C. Oost, U. Hoffmann, Chem. Eng. Sci. 1996, 51, 329.4. W.B.Su, J.R. Chang, Ind. Eng. Chem. Res, 2000, 39, 4140.5. A.P. Higler, R. Taylor, R. Krishna, Chem. Eng. Sci. 1999, 54, 1389.6. K. Sundmacher, U. Hoffmann, Chem. Eng. Sci, 1994, 49, 4443.7. L. Muja, et. al., Revista de Chimie, 1986, 37, 1047.8. S. Randriamahefa, R. Gallo, J. Mol. Catal. 1988, 49, 85.9. H. Subawalla, J.R. Fair, Ind. Eng. Chem. Res., 1999, 38, 3696.10.J.L. DeGarmo, V.N. Parulekar, V. Pinjala, Chem. Eng. Progress, 1992, 88, 43.11.J.C. Gonzales, H. Subawalla, J.R. Fair, Ind. Eng. Chem. Res., 1997, 36, 3845.12.J.C. Gonzales, J.R. Fair, Ind. Eng. Chem. Res. 1997, 36, 3833.13.S. Ung, M.F. Doherty, Chem. Eng. Sci., 1995, 50, 23.