PPT&Programs& Labcourse

60
PPT&Programs&Labcourse http://211.87.235.32/share/ ComputerGraphics/ 1

description

PPT&Programs& Labcourse. http://211.87.235.32/share/ComputerGraphics/. Transformations. Shandong University Software College Instructor: Zhou Yuanfeng E-mail: [email protected]. Objectives. Introduce standard transformations Rotation Translation Scaling Shear - PowerPoint PPT Presentation

Transcript of PPT&Programs& Labcourse

Page 1: PPT&Programs& Labcourse

PPT&Programs&Labcourse

http://211.87.235.32/share/ComputerGraphics/

1

Page 2: PPT&Programs& Labcourse

2

Transformations

Shandong University Software College

Instructor: Zhou YuanfengE-mail: [email protected]

Page 3: PPT&Programs& Labcourse

3

Objectives

• Introduce standard transformations Rotation

Translation

Scaling

Shear

•Derive homogeneous coordinate transformation matrices

•Learn to build arbitrary transformation matrices from simple transformations

Page 4: PPT&Programs& Labcourse

Why transformation?

4

Before

After

After

Before

Page 5: PPT&Programs& Labcourse

Why transformation?

5

Snow construction

Page 6: PPT&Programs& Labcourse

6

General Transformations

A transformation maps points to other points and/or vectors to other vectors

Q=T(P)

v=T(u)

Page 7: PPT&Programs& Labcourse

7

Affine Transformations

•Linear transformation + translation•However, an affine transformation has only 12 degrees of freedom because 4 of the elements in the matrix are fixed and are a subset of all possible 4 x 4 linear transformations

Page 8: PPT&Programs& Labcourse

8

Affine Transformations

•Line preserving•Characteristic of many physically important transformations

Rigid body transformations: rotation, translation

Scaling, shear

• Importance in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints

Page 9: PPT&Programs& Labcourse

9

Pipeline Implementation

transformation rasterizer

u

v

u

v

T

T(u)

T(v)

T(u)T(u)

T(v)

T(v)

vertices vertices pixels

framebuffer

(from application program)

Page 10: PPT&Programs& Labcourse

10

Notation

We will be working with both coordinate-free representations of transformations and representations within a particular frame

P,Q, R: points in an affine space u, v, w: vectors in an affine space , , : scalars p, q, r: representations of points

-array of 4 scalars in homogeneous coordinates u, v, w: representations of vectors

-array of 4 scalars in homogeneous coordinates

Page 11: PPT&Programs& Labcourse

11

The World and Camera Frames

• When we work with representations, we work with n-tuples or arrays of scalars

• Changes in frame are then defined by 4 x 4 matrices

• In OpenGL, the base frame that we start with is the world frame

• Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix

• Initially these frames are the same (M=I)

Page 12: PPT&Programs& Labcourse

12

Moving the Camera

If objects are on both sides of z=0, we must move camera frame

1000

d100

0010

0001

M =

Page 13: PPT&Programs& Labcourse

13

Translation

•Move (translate, displace) a point to a new location

•Displacement determined by a vector v Three degrees of freedom P’=P+v

P

P’

v

Page 14: PPT&Programs& Labcourse

14

How many ways?

Although we can move a point to a new location in infinite ways, when we move many points there is usually only one way

object translation: every point displaced by same vector

Page 15: PPT&Programs& Labcourse

15

Translation Using Representations

Using the homogeneous coordinate representation in some frame

p=[ x y z 1]T

p’=[x’ y’ z’ 1]T

v=[vx vy vz 0]T

Hence p’ = p + v or x’=x+ vx y’=y+ vy z’=z+ vz

note that this expression is in four dimensions and expressespoint = vector + point

Page 16: PPT&Programs& Labcourse

16

Translation Matrix

We can also express translation using a 4 x 4 matrix T in homogeneous coordinatesp’=Tp where

T = T(vx, vy, vz) =

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

1 0 0

0 1 0

0 0 1

0 0 0 1

x

y

z

v

v

v

Page 17: PPT&Programs& Labcourse

17

Rotation (2D)

Consider rotation about the origin by degrees radius stays the same, angle increases by

PRy

x

y

x

rrry

rrrx

ryrx

cossin

sincos

'

'

cossinsincos)sin('

sinsincoscos)cos('

sin,cos

x’=x cos –y sin y’ = x sin + y cos

Page 18: PPT&Programs& Labcourse

18

Rotation about the z axis

• Rotation about z axis in three dimensions leaves all points with the same z

Equivalent to rotation in two dimensions in planes of constant z

or in homogeneous coordinates

p’=Rz()p

x’=x cos –y sin y’ = x sin + y cos z’ =z

Page 19: PPT&Programs& Labcourse

19

Rotation Matrix

1000

0100

00 cossin

00sin cos

R = Rz() =

Page 20: PPT&Programs& Labcourse

20

Rotation about x and y axes

• Same argument as for rotation about z axis For rotation about x axis, x is unchanged

For rotation about y axis, y is unchanged

R = Rx() =

R = Ry() =

1000

0 cos sin0

0 sin- cos0

0001

1000

0 cos0 sin-

0010

0 sin0 cos

Page 21: PPT&Programs& Labcourse

21

Scaling

1000

000

000

000

z

y

x

s

s

s

S = S(sx, sy, sz) =

x’=sxxy’=syyz’=szz

p’=Sp

Expand or contract along each axis (fixed point of origin)

Page 22: PPT&Programs& Labcourse

22

Reflection

corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1

Page 23: PPT&Programs& Labcourse

23

Inverses

• Although we could compute inverse matrices by general formulas, we can use simple geometric observations

Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz)

Rotation: R -1() = R(-)• Holds for any rotation matrix• Note that since cos(-) = cos() and sin(-)=-sin()

R -1() = R T()

Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz)

Page 24: PPT&Programs& Labcourse

24

Concatenation

• We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices

• Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p

• The difficult part is how to form a desired transformation from the specifications in the application

Page 25: PPT&Programs& Labcourse

25

Order of Transformations

•Note that matrix on the right is the first applied

•Mathematically, the following are equivalent

p’ = ABCp = A(B(Cp))•Note many references use column matrices to represent points. In terms of column matrices ((A B) T = BT AT)

p’T = pTCTBTAT

Page 26: PPT&Programs& Labcourse

26

General Rotation About the Origin

x

z

yv

A rotation by about an arbitrary axiscan be decomposed into the concatenationof rotations about the x, y, and z axes

R() = Ry(-y) Rx(-x) Rz(z) Ry(y) Rx(x)

x y z are called the Euler angles

Note that rotations do not commuteWe can use rotations in another order butwith different angles

Page 27: PPT&Programs& Labcourse

27

Rotation About a Fixed Point other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

M = T(pf) R() T(-pf)

Page 28: PPT&Programs& Labcourse

28

Instance transformation

• In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size

•We apply an instance transformation to its vertices to

Scale

Orient

Locate

Page 29: PPT&Programs& Labcourse

29

Shear

• Helpful to add one more basic transformation

• Equivalent to pulling faces in opposite directions

Page 30: PPT&Programs& Labcourse

30

Shear Matrix

Consider simple shear along x axis

x’ = x + y cot y’ = yz’ = z

1000

0100

0010

00cot 1

H() =

Page 31: PPT&Programs& Labcourse

Rotation around arbitrary vector

•R(Ax,Ay,Az)

• If then

•v=w×u

31

2 2 231 32 33, , , ,x y z x y zw A A A A A A a a a

2 211 12 13, ,0 , ,y x x yu A A A A a a a

022 yx AA 131211 ,, aaa(1,0,0)u

1

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1 1

x

yT T

z

R = Rz() =

21 22 23, ,a a a

11 12 13

21 22 23

31 32 33

0

0

0

1 0 0 0 1 1

u a a a x

v a a a y

w a a a z

T

Page 32: PPT&Programs& Labcourse

32

OpenGL Matrices

• In OpenGL matrices are part of the state•Multiple types

Model-View (GL_MODELVIEW) Projection (GL_PROJECTION) Texture (GL_TEXTURE) (ignore for now) Color(GL_COLOR) (ignore for now)

•Single set of functions for manipulation•Select which to manipulated by­glMatrixMode(GL_MODELVIEW);­glMatrixMode(GL_PROJECTION);

Page 33: PPT&Programs& Labcourse

33

Current Transformation Matrix (CTM)

• Conceptually there is a 4 x 4 homogeneous coordinate matrix, the current transformation matrix (CTM) that is part of the state and is applied to all vertices that pass down the pipeline

• The CTM is defined in the user program and loaded into a transformation unit

CTMvertices vertices

p p’=CpC

Page 34: PPT&Programs& Labcourse

34

CTM operations

• The CTM can be altered either by loading a new CTM or by postmutiplication

Load an identity matrix: C ILoad an arbitrary matrix: C M

Load a translation matrix: C TLoad a rotation matrix: C RLoad a scaling matrix: C S

Postmultiply by an arbitrary matrix: C CMPostmultiply by a translation matrix: C CTPostmultiply by a rotation matrix: C C RPostmultiply by a scaling matrix: C C S

Page 35: PPT&Programs& Labcourse

35

Rotation about a Fixed Point

Start with identity matrix: C IMove fixed point to origin: C CTRotate: C CRMove fixed point back: C CT -1

Result: C = TR T –1 which is backwards.

This result is a consequence of doing postmultiplications.Let’s try again.

Page 36: PPT&Programs& Labcourse

36

Reversing the Order

We want C = T –1 R T so we must do the operations in the following order

C IC CT -1

C CRC CT

Each operation corresponds to one function call in the program.

Note that the last operation specified is the first executed in the program

Page 37: PPT&Programs& Labcourse

37

CTM in OpenGL

•OpenGL has a model-view and a projection matrix in the pipeline which are concatenated together to form the CTM

•Can manipulate each by first setting the correct matrix mode

Page 38: PPT&Programs& Labcourse

38

Rotation, Translation, Scaling

glRotatef(theta, vx, vy, vz)

glTranslatef(dx, dy, dz)

glScalef(sx, sy, sz)

glLoadIdentity()

Load an identity matrix:

Multiply on right:

theta in degrees, (vx, vy, vz) define axis of rotation

Each has a float (f) and double (d) format (glScaled)

Page 39: PPT&Programs& Labcourse

39

Example

• Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

• Remember that last matrix specified in the program is the first applied

• Demo

glMatrixMode(GL_MODELVIEW);glLoadIdentity();glTranslatef(1.0, 2.0, 3.0);glRotatef(30.0, 0.0, 0.0, 1.0);glTranslatef(-1.0, -2.0, -3.0);

Page 40: PPT&Programs& Labcourse

40

Arbitrary Matrices

•Can load and multiply by matrices defined in the application program

•The matrix m is a one dimension array of 16 elements which are the components of the desired 4 x 4 matrix stored by columns

• In glMultMatrixf, m multiplies the existing matrix on the right

glLoadMatrixf(m)glMultMatrixf(m)

Page 41: PPT&Programs& Labcourse

Matrix multiply

• //沿 Y轴向上平移 10个单位glTranslatef(0,10,0);//画第一个球体DrawSphere(5);//沿 X轴向左平移 10个单位glTranslatef(10,0,0);//画第二个球体DrawSphere(5);

41

procedure RenderScene();    begin      glMatrixMode(GL_MODELVIEW);      //沿 Y轴向上平移 10个单位       glTranslatef(0,10,0);      //画第一个球体       DrawSphere(5);      //加载单位矩阵       glLoadIdentity();      //沿 X轴向上平移 10个单位       glTranslatef(10,0,0);      //画第二个球体       DrawSphere(5);    end;

Page 42: PPT&Programs& Labcourse

42

Matrix Stacks

• In many situations we want to save transformation matrices for use later

Traversing hierarchical data structures

Avoiding state changes when executing display lists

•OpenGL maintains stacks for each type of matrix

Access present type (as set by glMatrixMode) by

glPushMatrix()glPopMatrix()

GL_PROJECTIONGL_MODEVIEW

Page 43: PPT&Programs& Labcourse

Matrix Stacks

• procedure RenderScene();    begin      glMatrixMode(GL_MODELVIEW);     //push matrix stack      glPushMatrix;       //translate 10 along Y axis      glTranslatef(0,10,0);      //draw the first sphere      DrawSphere(5);      //come back to the last saved state      glPopMatrix;      // translate 10 along X axis       glTranslatef(10,0,0);      //draw the second sphere      DrawSphere(5);    end;

43

Page 44: PPT&Programs& Labcourse

44

Reading Back Matrices

• Can also access matrices (and other parts of the state) by query functions

• For matrices, we use as

glGetIntegervglGetFloatvglGetBooleanvglGetDoublevglIsEnabled

float m[16];glGetFloatv(GL_MODELVIEW, m);

Page 45: PPT&Programs& Labcourse

45

Using Transformations

• Example: use idle function to rotate a cube and mouse function to change direction of rotation

• Start with a program that draws a cube (colorcube.c) in a standard way

Centered at origin

Sides aligned with axes

Will discuss modeling in next lecture

Page 46: PPT&Programs& Labcourse

46

main.c

void main(int argc, char **argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); glutInitWindowSize(500, 500); glutCreateWindow("colorcube"); glutReshapeFunc(myReshape); glutDisplayFunc(display); glutIdleFunc(spinCube); glutMouseFunc(mouse); glEnable(GL_DEPTH_TEST); glutMainLoop();}

Page 47: PPT&Programs& Labcourse

47

Idle and Mouse callbacks

void spinCube() {theta[axis] += 2.0;if( theta[axis] > 360.0 ) theta[axis] -= 360.0;glutPostRedisplay();

}void mouse (int btn, int state, int x, int y){ char *sAxis [] = { "X-axis", "Y-axis", "Z-axis" }; /* mouse callback, selects an axis about which to rotate */ if (btn == GLUT_LEFT_BUTTON && state == GLUT_DOWN) { axis = (++axis) % 3; printf ("Rotate about %s\n", sAxis[axis]); }}

Page 48: PPT&Programs& Labcourse

48

Display callback

void display(){ glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); glRotatef(theta[0], 1.0, 0.0, 0.0); glRotatef(theta[1], 0.0, 1.0, 0.0); glRotatef(theta[2], 0.0, 0.0, 1.0); colorcube(); glutSwapBuffers();}

Note that because of fixed from of callbacks, variables such as theta and axis must be defined as globals

Demo

Page 49: PPT&Programs& Labcourse

Polygonal Mesh

49

Page 50: PPT&Programs& Labcourse

Polygonal mesh

50

Object Point cloud

Page 51: PPT&Programs& Labcourse

•Surface reconstruction

Polygonal mesh

PhD thesis of Hugues Hoppe1994

Page 52: PPT&Programs& Labcourse

•Mesh smoothing

Polygonal mesh

Non-iterative, feature preserving mesh smoothingACM Transactions on Graphics, 2003

Page 53: PPT&Programs& Labcourse

•Mesh simplification

Polygonal mesh

CGAL, manual

Page 54: PPT&Programs& Labcourse

•Parameterization

Polygonal mesh

Page 55: PPT&Programs& Labcourse

Polygonal mesh

Page 56: PPT&Programs& Labcourse

•Mesh morphing

Polygonal mesh

Mean Value Coordinates for Closed Triangular Meshes Ju T., Schaefer S. and Warren J.ACM SIGGRAPH 2005

Page 57: PPT&Programs& Labcourse

•Remeshing&Optimization

Polygonal mesh

SGP 2009

Page 58: PPT&Programs& Labcourse

Polygonal mesh

•Polygonal mesh in OpenGL

58

f=x^4-10*r^2*x^2+y^4-10*r^2*y^2+z^4-10*r^2*z^2r=0.13

Page 59: PPT&Programs& Labcourse

Representation

59

Page 60: PPT&Programs& Labcourse

Representation

60