Power - System - Einstein Notes

201
7/27/2019 Power - System - Einstein Notes http://slidepdf.com/reader/full/power-system-einstein-notes 1/201 1 www.Vidyarthiplus.com www.VIdyarthiplus.com

Transcript of Power - System - Einstein Notes

Page 1: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 1/201

1

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 2: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 2/201

Introduction

Structure of Electric Power system

Variable load on power stations

Load curves

Load Characteristics

Load duration curves

Load curves and selection of generating units

2

OUTLINEwww.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 3: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 3/201

The power demands of different

consumers vary in accordance with their 

activities.

The result of this variation in demand is

that load on a power station is never 

constant rather it varies from time to time

3

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 4: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 4/201

4

220kV/11kV

Transmission

sub-station

11Kv/400vDistribution

substation

Transmission Line

Individual consumers

Distributor 

11kV/220kV

Transformer 

 Alternators

Power station

STRUCTURE OF ELECTRIC POWER 

SYSTEM

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 5: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 5/201

Domestic load

Commercial Load

Industrial LoadMunicipal Load

Irrigation load

Traction load

5

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 6: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 6/201

Definition:

The Load on a power station varies from time to time

due to uncertain demands of the consumers

Effects of Variable load:

 Need of additional equipment

Increase in production cost

6

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 7: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 7/2017

Definition:

The curve showing the variation of load

on the power station with respect to time

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 8: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 8/201

Daily load curve – Load variations during the whole

day

Monthly load curve –  Load curve obtained from the

daily load curve

Yearly load curve - Load curve obtained from the

monthly load curve

8

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 9: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 9/201

BASE LOAD:

The unvarying load which occurs almost

the whole day on the stationPEAK LOAD:

The various peak demands of load of the

station

9

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 10: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 10/20110

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 11: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 11/201

Connected load

Maximum demand

Average load

Load factor Diversity factor 

Plant capacity factor 

Plant use factor 

11

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 12: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 12/201

It is the sum of continuous ratings of allthe equipment connected to supply

system

12

MAXIMUM DEMAND

It is the greatest demand of load on the

 power station during a given period.

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 13: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 13/201

It is the ratio of maximum demand on the

 power station to its connected load.

13

load connected 

demand imum factor  Demand 

max

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 14: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 14/201

The average of loads occurring on the power station in

a given period (day or month or year)

14

hoursdayain generated  KWhunitsof   Noload average Daily

24)(.

monthainhoursof   Number 

monthain generated  KWhunitsof   Noload average Monthly

)(.

hours

 year ain generated  KWhunitsof   Noload averageYearly

8760

)(.

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 15: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 15/201

The ratio of average load to the maximum demand

during a given period .

15

demand  Maximum

load  Average

 factor  Load 

If the plant is in operation for T hours,

T demand  Maximum

T load  Average

 factor  Load 

T demand  Max

hoursT in generated Units

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 16: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 16/201

The ratio of the sum of individual

maximum demands to the maximum

demand on power station .

16

 station power ondemand  Max

demandsindividual of  Sum factor  Diversity

.

.max

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 17: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 17/201

It is the ratio of actual energy produced tothe maximum possible energy that could

nave been produced during a given period.

17

 produced beenhavecould that energy Max

odcued energy Actual 

  factor capacity Plant  .

Pr 

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 18: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 18/201

It is the ratio of kWh generated to the

 product of plant capacity and the number 

of hours for which the plant was inoperation

18

useof   Hourscapacity Plant kWhinoutput Station factor use Plant 

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 19: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 19/201

When the elements of a load curve are arranged inthe order of descending magnitudes .

Load curve Load duration curve

19

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 20: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 20/201

The load duration curve gives the data in

a more presentable form

The area under the load duration curve is

equal to that of the corresponding load

curve The load duration curve can be extended to include any

 period of time

20

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 21: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 21/201

The number and size of the units are

selected in such a way that they correctly

fit the station load curve.

21

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 22: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 22/201

Major Components

Generators

Transmission Network

Distribution System

Interconnection of the elements

Interconnection of neighboring utilities

22

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 23: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 23/201

23

System load varies continuously with time Significant changes from hour to hour, day to day, month

to month and year to year

Typical load curve

Load

Hour 

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Page 24: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 24/201

Estimating power demand at the various load buses

ahead of time

Required for planning and operational applications.

Make a statistical analysis of previous load data

and set up a suitable model of the demand pattern.

Utilize the identified load model for making a

prediction of the estimated demand for theselected load time.

Forecasting interval – Few seconds to few years.

24

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Vid hi l

Page 25: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 25/201

25

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Vid thi l

Page 26: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 26/201

All the load demands are met

Constant frequency

Bus Voltage magnitude within limits

No elements are overloaded

26

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Vid thi l

Page 27: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 27/201

A.C. motors run at speeds that are directly

related to the frequency.

Generator turbines are designed to operate

at a very precise speed

Better control of overall operation of a

power system

Electrical clocks driven by synchronous

motor

27

www.Vidyarthiplus.com

www.VIdyarthiplus.com

Vid thi l

Page 28: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 28/201

System Generators meet the load and the real transmission loss.

Energy cannot be stored in electrical form Electrical Energy

production rate must be equal to consumption rate at eachmoment.

Power imbalance would enter into or exit from kinetic energy

storage.

As the K.E depends upon generator speed, power imbalance will

be translated to change in speed ( and frequency).

28

www.Vidyarthiplus.com

www.VIdyarthiplus.com

www Vidyarthiplus com

Page 29: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 29/201

All equipment in a power system is

designed for a certain voltage level.

If the system voltage deviates, the

performance of the device suffers and its

life expectancy drops.

The voltage level of a bus is strongly relatedto the reactive power injection at the bus.

29

www.Vidyarthiplus.com

www.VIdyarthiplus.com

www Vidyarthiplus com

Page 30: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 30/201

Excitation control of generators

Switched Shunt Capacitors and/or reactors

Synchronous Condensers

Tap-Changing of Transformers

30

www.Vidyarthiplus.com

www.VIdyarthiplus.com

www Vidyarthiplus com

Page 31: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 31/201

Change in MW output of a generator does not

result in appreciable change in |V|

Change in Q input at a bus may affect the real

load of the bus in question

31

www.Vidyarthiplus.com

www.VIdyarthiplus.com

www Vidyarthiplus com

Page 32: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 32/201

Cost of real power generation

Allocation of real power at generator buses

Optimum allocation of units – unit

commitment

Optimum allocation of generation to each

station – Economic Dispatch

32

www.Vidyarthiplus.com

www.VIdyarthiplus.com

www Vidyarthiplus com

Page 33: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 33/201

Determine the economic distribution of loadbetween the various units.

Fuel Cost is the principal factor in fossil-fuel

plants Express the variable operating costs of the

unit in terms of the power output.

Constraints: i) Real power balance

ii) Generator limits.

hr  Rsc P b P a F  i gii giii /2  

 N 

iiT  F  F onCostFuncti 1  

33

www.Vidyarthiplus.com

www.VIdyarthiplus.com

www Vidyarthiplus com

Page 34: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 34/201

Lagrange Multiplier method Lamda iteration method

Gradient method

Dynamic programming Evolutionary Computation techniques

34

www.Vidyarthiplus.com

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 35: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 35/201

Load varies continuously with time The daily load pattern exhibit large

differences between minimum and maximumdemands.

It is not proper and economical to run all theunits at all the time.

Determine the units of a plant that shouldoperate for a given load- Unit commitment

problem.

35

www.Vidyarthiplus.com

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 36: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 36/201

Solution methods:Priority Listing

Dynamic Programming

Lagrange Relaxation method

Genetic Algorithm

36

www.Vidyarthiplus.com

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 37: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 37/201

Controls to meet the fundamental requirement of “Normal” state.

37

y p

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 38: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 38/201

Controllers on individual system elements

Prime mover controls

Excitation controls

System – generation control

Transmission Controls: Power and voltage

control devices

38

y p

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 39: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 39/201

Regulates the MW output and frequency(speed) of the generator.

Primary loop regulates the steam/hydroflow rate via the speed governor and the

control valves to maintain power balance. Secondary ALFC loop works in a slow reset

mode to eliminate the remaining smallfrequency errors.

Secondary loop also controls the powerinterchange between pool members.

39

y p

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 40: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 40/201

The primary loop response will be over inseconds, whereas the secondary fineadjustment take about one minute.

In the case of interconnected systems,the

secondary ALFC loop also contain the errorsin the contracted tie-line powers.

40

y p

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 41: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 41/201

Maintains reactive power balance of agenerator by maintaining a constant voltagelevel.

Measure the bus voltage, after rectification

and filtering the output is compared with areference. The resulting error voltage after amplification

serve as input to an excitation control

system.

41www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 42: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 42/201

Increased Complexity in system control.

Real – time monitoring and control of electricnetwork

42www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 43: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 43/201

Obtain the best possible values of the busvoltage magnitudes and angles by processingthe network data.

Modification to account for the presence of 

noise. Use the method of least-squared error

estimation.

43www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 44: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 44/201

A power system under normal operatingconditions may face a contingencycondition.

Contingencies may result in overloading of some of the power system components andmay result in total or partial blockout.

Analyse the effect of propable

contingencies. Security- Ability of a power system to face

the contingencies without any consequenteffects.

44www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 45: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 45/201

Olle L.Elgerd, Electric Energy SystemsTheory, Second Edition, TMH Publications.

B.M.Weedy and B.J.Cory, Electric PowerSystems, Fourth Edition, WSE Publications.

Kundur, Power system stability andcontrol,TMH Publications.

P.S.R.Murthy, Power system operation and

control, Charulatha Publications.

45www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 46: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 46/201

46www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 47: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 47/201

• Basic Role of AGC: Maintain desired megawatt output of generator.

To assist in frequency control of largeinterconnection.

To keep net interchange of power between poolmembers at pre-determined values

47www.VIdyarthiplus.com

Complete Block Diagramwww.Vidyarthiplus.com

Page 48: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 48/201

48

Complete Block Diagram

of Single Area System

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 49: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 49/201

Generator synchronized to a network of very large size i.e. frequency is independentof power output of individual generator

(individual network).

Direct proportionality between referencesetting and turbine power.

0,0,0 ref  T  P  P  f  

49www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 50: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 50/201

Generator synchronized to a finite sizenetwork. Reference power setting isunchanged.

For a constant speed changer settingsstatic increase in turbine power is

directly proportional to droop in staticfrequency drop.

00,1  f   R

 P T 

50www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 51: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 51/201

From the block diagram of the AGC loop,

If ∆Pref = 0;

If there is a step load change of constant magnitude “M”,

The steady state change in frequency due to load change is,

β -Area frequency response characteristics (AFRC).

 f  G P GG f   R

 P   p DT  H ref  

1

)(11)0( s P GGG R

G

 f    DT  H  P 

 p

51

 s

 M  s P  D )(

 

 M 

 R D

 M  s f   s f  

 s

1

)(lim0

0

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 52: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 52/201

The dynamic response of the loop will informabout “tracking” ability and stability of theloop.

Assumptions: Action of the speed governor

plus the turbine generator is “instantaneous”compared with the rest of the power system.

52www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 53: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 53/201

The Equation of Change in frequency is:

For example let us consider Kp=120Hz/puMW, Tp=20sec, R=2.40 Hz/pu MW, M=0.01pu MW.

The approximate time response is thereforepurely exponential.

53

 s

 M 

 sT 

 K 

 R

 sT 

 K 

 s  f  

  p

  p

 P 

  p

.

1.

11

1)(

 

  

 

55.2

110235.0)(

 s s s  f  

t et  f   55.210235.0)(

t et  f   55.210235.0)( www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 54: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 54/201

54

Dynamic Response of Single area system

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 55: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 55/201

The system can be made still faster byreducing R, that is by increasing the staticloop gain.

Reduction of R also increases the static

frequency error. By considering the time responses causes

larger transient dips.

55www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 56: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 56/201

The system could undergo intolerable

dynamic frequency changes with changes inload.

It forces the frequency error to zero by theadjusting the control input.

SPECIFICATIONS:

Loop stability

Isochronous control (i.e.) Δf  is 0.

Integral of frequency error should be minimized.

Economical sharing of loads between theindividual generators in the control area.

56www.VIdyarthiplus.com

Secondary ALFC Loopwww.Vidyarthiplus.com

Page 57: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 57/201

57

Secondary ALFC Loop

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 58: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 58/201

In central load frequency control of a given controlarea, the change in frequency is known as AreaControl Error (ACE).In the above scheme AEC being zero under steady stateconditions, a logical design criterion is the minimization of 

dt for a step disturbance.

58

 s

 P 

 sT 

 K 

 s

 K 

 R sT 

 K 

 s F D

 pi p

 p

 

  

 

1

11

)(

0)(0

 s F  state steady  f    s s

 f  

www.VIdyarthiplus.com

Dynamic response of the load frequency controllerwith and without integral control action

www.Vidyarthiplus.com

Page 59: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 59/201

59

with and without integral control action

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 60: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 60/201

Load frequency control with integralcontroller exercises no control over therelative loadings of various generatingstations (i.e., economic dispatch) of thecontrol area.

Economic dispatch control can be viewed asan additional tertiary control loop. The function of the Economic Dispatch

Control (EDC) Program is to calculate theeconomic loading point for the various

generating units. Economic dispatch controller is a slow

acting control, which adjusts the speedchanger setting every minute in accordance

with a command signal generated by thecentral economic dis atch controller 60www.VIdyarthiplus.com

Control Area Load Frequency Control and Economic Dispatch

C t l

www.Vidyarthiplus.com

Page 61: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 61/201

61

Control

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 62: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 62/201

If there are several generators in an area,the lumped behavior of the generators canbe got if: Controls of the generators are in unison. This

can be justified if individual control loops havesame parameters of regulation (R).

Turbine response characteristics are identical.

62www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 63: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 63/201

63

AREA - 1AREA - 2

Pnet int

Pnet int = total actual net interchange (+ : power leaving;

- : power entering)

ΔPnet int

( = ΔP12

) = Pnet int

- Pnet int schd

Pnet int schd = scheduled or desired value of interchange;

ΔPL1 = Load change in area 1; ΔPL2 = Load change in area 2;

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 64: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 64/201

64

Δf  ΔPnet intLOAD

CHANGE

CONTROL

ACTION

 _   _  ΔPL1 > 0

ΔPL2 = 0Increase Pgen1.

+ + ΔPL1 < 0

ΔPL2 = 0Decrease Pgen1

 _  + ΔPL1 = 0

ΔPL2 > 0

Increase Pgen2

+ _  ΔPL1 = 0

ΔPL2 < 0Decrease Pgen2

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 65: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 65/201

65www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 66: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 66/201

Basic Operating Principles:1. Each pool member or control area shouldstrive to carry its own load.

2. Each control area must agree upon

adopting regulating and control strategiesand equipment that are mutually beneficialunder both normal and abnormal situations.

66www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 67: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 67/201

In normal operation the power on the tie-lineis given by,

Where synchronizing co-efficient is:

67

2

0

1

02

01

0

12

0

sin       X 

V V 

 P 

MW  X 

V V  P  212

01

02

01

0

12 cos     

rad  MW  X 

V V T  /cos 2

01

02

01

0

0    

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 68: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 68/201

The tie-line power deviation then takes of thefollowing form

The frequency deviation is related to thereference angle by the formula,

Tie-line power deviations is:

68

MW T  P  21

0

12     

Hz dt 

dt 

d  f    

   

 

2

1

2

1 0

rad dt    f         2

 MW   f  dt   f  T  P 

t t 

dt 

 

 

 

  21

0

12 2 

www.VIdyarthiplus.com

Page 69: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 69/201

www.Vidyarthiplus.com

Page 70: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 70/201

70www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 71: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 71/201

TIE-LINE BIAS CONTROL: The control error for each area is a linear combination of 

(biased/weighted) frequency error and the net interchangeerror,

ACE1 = ∆Pnet int1 + B1 ∆f 1ACE2 = ∆Pnet int2 + B2 ∆f 2

If KI1 and KI2 are integrator gains, speed-changer commandsare given by,

Negative sign indicates the increase in generation for adecrease in ∆f or ∆Pnet,int.

Our aim is to drive ∆f and ∆Pnet,int 0. when steady state isreached, speed changer settings would have to be zero. Hence,

∆P12,0 + B1 ∆f 0 = 0 ; ∆P,21,0 + B2 ∆f 0 = 0

dt  f   B P  K  P 

dt  f   B P  K  P 

net  I ref  

net  I ref  

222int,22,

111int,11,

71www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 72: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 72/201

The response of the two-area system withfixed speed changer positions is:

The incremental increase in turbine dynamics

in this static case is determined by the staticloop gains.

72

02,1,

ref  ref   P  P 

0

1

0,1

1  f  

 R P T 

0

2

0,2

1  f  

 R P T 

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 73: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 73/201

73

0,10110

1

1tie P  f   D M  f  

 R

0,10220

2

1tie P  f   D M  f  

 R

 Hz  M  M   f  21

210

    

 puMW  M  M 

 P  P  tietie

21

1221

0,20,1    

    

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 74: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 74/201

Equation of changes in frequency and tie-linepower is:

74

 Hz  M  M 

 f     2

210

 MW  pu M  M 

 P  P  tietie

2

12

0,20,1

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 75: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 75/201

Assumptions: Consider the case of two equal areas.

Consider the turbine controller fast relativeto the inertia part of the systems, i.e., we

set GH=GT=1. Neglect the system damping. This means

that we assume the load not to vary withfrequency; i.e., we set D1=D2=0.

75www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 76: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 76/201

76

H T  f  s RH  f  s

 s P  s P 

 H 

T  f  s P  D D

tie/22/

0002

12

00

 

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 77: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 77/201

77www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 78: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 78/201

An excitation system is the source of fieldcurrent for the excitation of a principleelectric machine, including means for its

control.

78www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 79: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 79/201

To provide direct current to the synchronousmachine field winding.

To perform control and protective functionsessential to the satisfactory performance of 

the power system by controlling the fieldvoltage and thereby the field current.

79www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 80: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 80/201

To meet specified response criteria. To provide limiting and protective functions.

To meet specified requirements for operatingflexibility.

To meet the desired reliability andavailability.

80www.VIdyarthiplus.com

Page 81: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 81/201

www.Vidyarthiplus.com

Page 82: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 82/201

82

Limiters andProtective ckts

Terminal voltagetransducer & load

compensator

Generator

Power System

Stabilizer

ExciterRegulator

ToPS

Ref 

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 83: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 83/201

ExciterProvide dc power to the synchronous

machine field winding.

RegulatorProcess and amplifies input control

signals to a level and form appropriate forcontrol of the exciter.

83www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 84: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 84/201

Terminal voltage transducer and loadcompensator

Senses generator terminal voltage,

rectifies and filters it to dc quantity andcompares it with a reference whichrepresents desired terminal voltage.

Power system stabilizerProvides additional input signal to the

regulator to damp power systemoscillations.

Limiters & protective circuitsInclude a wide array of control and

protective functions which ensure that thecapability limits of the exciter andsynchronous generator are not exceeded.

84www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 85: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 85/201

Essential for the assessment of desiredperformance requirements.

For the design and co-ordination of supplementary control and protective circuits.

For system stability related to the planningand operation of power systems.

85www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 86: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 86/201

For an isolated generator feeding a load,AVR is used to maintain the bus bar voltageconstant.

To keep the system voltage constant so thatthe connected equipment operatessatisfactorily.

To obtain a suitable distribution of reactive

load between machines working in parallel. To improve stability.

86www.VIdyarthiplus.com

FUNCTIONAL BLOCK DIAGRAM OF AVR LOOPwww.Vidyarthiplus.com

Page 87: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 87/201

87

Gs

Gf 

Comparator  Amplifier Exciter Rectifier

Synchronousgenerator

a

b

c

PT

Rectifier and FilterStability

compensators

+

-

| V| ref e

- +

+

-

Rotating components

+-

| V|

 VR 

+

-

 Vf 

ieif 

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 88: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 88/201

88

KA /(1+ sTA) K  e / (1+sTe )

 ΔIvIref  Δe  ΔvR 

 Δvf 

 ΔIvI

Comparator Amplifier Exciter

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 89: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 89/201

89

0,0,0,0 .100 ref  ref   V 

 pV V e

0,0,00,0)0(1

)0(ref  ref  ref  

V G

GV V V e

0,0, 1

1

)0(1

1ref  ref  

V  K 

V G

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 90: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 90/201

From the theory of linear control systems it isknown that the time response Δ|V| (t) of theloop equals

∆│V│ (t) = £-1{∆ Vref(s) (G(s) / G(s) +1)}

Mathematically, the response depends uponthe eigen values or closed-loop poles, whichare obtained from the characteristic equation

G(s) +1 = 0

90www.VIdyarthiplus.com

Closing the AVR loop; (a) individual blockrepresentation; (b) condensed model; (c) closed

www.Vidyarthiplus.com

Page 91: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 91/201

91

representation; (b) condensed model; (c) closed

loop model.

Comparator Amplifier Exciter field Generator field

G(s)

(G(s) / G(s) +1)

(a)

(b)

(c)

Δ│ V│ref   Δ │ V│

 Δ │ V│Δ│ V│ref 

-

+ Δe

k  A  / (1 + sT A ) K e / (1+sTe) K F / (1+sT’ do)

 Δ vR   Δ vf  Δ │ V│

Δ│ V│ref   Δe

 Δ │ V│

+

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 92: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 92/201

High loop gain is needed for static accuracybut this causes undesirable dynamic

response, possibly instability. By adding series and / or feedback stability

compensation to the AVR loop, thisconflicting situation can be resolved.

Consider for example the addition of aseries phase lead compensator, having thetransfer function

Gs = 1 + sTc92www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 93: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 93/201

The open-loop transfer function will nowcontain a zero

G (s) = k (1 + sTc) / (1 + sTA) (1 + sTe) (1

+ Tdo)

The added network will not affect the staticloop gain K, and thus the static accuracy.

The dynamic response characteristics willchange to the better.

93www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 94: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 94/201

Excitation system

Generation & absorption of reactive power

Relation b/w V, P,& Q at a node

Methods of voltage control

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 95: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 95/201

1. Shunt capacitors2. Series capacitors

3. Synchronous capacitors

4. SVC

5. Tap changing transformers

6. Booster transformers.

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 96: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 96/201

By adjusting the excitation of the generator at the sendingend.

The larger the reactive power required by the load themore is the excitation to be provided at the sending end.

Limitation:

Worked well in small isolated system where there wasno local load at the sending end.

Excitation below a certain limit may result in instabilityand excitation above certain level will result inoverheating of the rotor.

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 97: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 97/201

Used across an inductive load so as to supply part of the reactive vars required by the load so that thereactive vars transmitted over the line are reduced,thereby the voltage across the load is maintained withincertain desirable limits.

The shunt reactors are used across capacitive loads orlightly loaded lines to absorb some of the leading varsagain to control the voltage across the load to withincertain desirable limits.

Capacitors are connected either directly to a bus bar or

through a tertiary winding of the main transformer andare disposed along the route to minimize the voltagedrop and the losses.

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 98: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 98/201

It reduces the inductive reactance between the load andthe supply point, thereby reducing the voltage dropproduced by an inductive load.

It improves the voltage stable state and supplies reactivepower to the receiving end such that voltage profile is

maintained. Improves the steady state stability.

Increases the power flow transfer in lines.

For long transmission lines where the total reactance ishigh, series capacitors are effective for improvement of 

system stability.

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 99: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 99/201

It is basically a synchronous motor running at noload.

Depending on the value of excitation, it canabsorb or generate reactive power.

Its use in high voltage transmission lines helps in

either absorption of reactive power or supply of reactive power under light load or heavy loadconditions respectively.

Improves system stability.

Supply heavy amount of reactive power duringshort period.

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 100: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 100/201

Compensation

Type

Drawbacks

Static SwitchedShuntCapacitor

On light loads when the corrective varsrequired are relatively less, thecapacitor output is large and vice versa.

Synchronouscondensors

Only continuous control is possible.

High cost of installment & need highmaintenance.

SeriesCapacitor

Severe over voltage during line fault.Problem of Ferro resonance & Subsynchronous resonance

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 101: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 101/201

A parallel combination of controlled reactor and fixed staticcapacitor.

Working Principle: By varying the thyristor firing angle, thereactor current is varied thereby controlling the reactivepower absorption by inductor. Capacitor in parallel supplies

reactive power to the system. The net reactive power injection to bus becomes Q =

Q c – Q l. Q l is varied and thus Q is controllable. The bus voltage is thus

controllable by SVC.

During light load Ql > Qc, while during heavy load Qc < Ql. Improves system stability, voltage stability and reduces power

oscillations.

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 102: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 102/201

Almost the power transformers on transmission lines areprovided with taps for ration control i.e. control of secondary voltage. There are two types of tap changingtransformers:

(i) Off-load tap changing transformers.

(ii) On-load (under-load) tap changing transformers.

The tap changing transformers do not control the voltageby regulating the flow of reactive vars but by changing thetransformation ratio, the voltage in the secondary circuit isvaried and voltage control is obtained. This method is themost popular as it can be used for controlling voltages at

all levels.

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 103: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 103/201

Requires the disconnection of the transformer when thetap setting is to be changed.

S2S1

Q1Q2

 Neutral

Line

Winding

Winding

V

Fig. 4.5.5 Off-load tap changing

transformer

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 104: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 104/201

In the position shown the voltage is amaximum and since the currents divide equallyand flow in opposition through the coilbetween Q1 and Q2, the resultant flux is zeroand hence minimum impedance.

To reduce the voltage, the following operationsare required in sequence: (i) open Q1; (ii) moveselector switch S1 to the next contact; (iii) closeQ1; (iv) open Q2; (v) move selector switch S2 to

the next contact; and (vi) close Q2.

www.VIdyarthiplus.com

Page 105: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 105/201

www.Vidyarthiplus.com

Page 106: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 106/201

In large interconnected system, some times with the tap-setting adjustments of the tap-changing transformersindirectly in the system, the reactive power requirement may

be altered.

X/t2

V1 /t

t:1

Q

(a)

t:1

Q

V2V1

X V2V1

~~

~ ~

(b)

Fig. 4.6.2 (a) Systems interconnected through tap-changing transformer (b) its equivalent circuit

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 107: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 107/201

Reactive power requirement

◦ By changing the off-normal setting t, it is possible tochange the var requirement Q of the line due to thereactance X.

◦ When t is less than unity, Q is positive and there isthus a flow of lagging VAR to bus 2.

When t is greater than unity, Q is negative and there isthus a flow of leading VAR to bus 2.

 X 

t t V Q

)1(2

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 108: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 108/201

10

8www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 109: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 109/201

Refers to the most economic loading of thegenerators which are connected to the systemand running.

Fuel cost is the principal factor in fossil fuelplants and is given as a function of generation.

ED problem is to define the production levelof each plant so that the total generation andtransmission cost is minimum for a

prescribed schedule of loads.

10

9www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 110: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 110/201

Lagrange Multiplier method Lambda Iteration method

Gradient method

Dynamic programming

Evolutionary Computation Techniques

11

0www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 111: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 111/201

Used to describe the efficiency of the plants. Graphical Representation of input in Rs/hr

versus power output in megawatts is calledinput-output curve.

11

1www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 112: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 112/201

A plot of the input in kilocalories per hourversus power output in megawatts is calledinput-output curve.

The ordinates of the curve may beconverted to Rs/hr by multiplying the fuel

in Rs/kilocalories. The empirical equation of the this curve is

given by

Where a, b and c are constants dependingupon a particular plant.

11

2

cbP aP C  iii 2

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 113: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 113/201

Incremental fuel cost

The incremental cost is equal to the slope of the cost curve. A plot of incremental costversus power output is called the incrementalcost curve. It is shown in Fig.3. Equation (2) isof the form

The incremental cost is equal to the slope of the cost curve.

11

3

i

i

idP 

dC  IC  )(

=

baP i 2;

Rs/ MWh

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 114: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 114/201

The input-output curve for a typical hydro unitis shown in Fig. 4. This is obtained by plottingthe water input or discharge in cubic metersper second as a function of the power output in

megawatts. The incremental cost curve forhydro unit is shown in Fig. 5. This is obtainedby plotting the incremental cost in rupees perMW – second (Rs/MW - s)

as a function of power output in megawatts(MW).

11

4www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 115: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 115/201

11

5www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 116: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 116/201

It consists of N generating units connected toa single bus bar serving a receiving electricalload

11

6www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 117: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 117/201

let 

11

7

 N T  F  F  F  F  F  ...321

 N 

i

ii P  F 1

 N 

iiload  P  P  10 

subject to (1) energy balance equation and (11)

inequality constraints

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 118: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 118/201

This is a constrained optimization problemthat may be attacked formally usingadvanced calculus methods that involve theLagrange function.

In order to establish the necessaryconditions for an extreme value of theobjective function, add the constraintfunction to the objective function after the

constraint function has been multiplied byan undetermined multiplier. This is knownas the Lagrange function.

11

8www.VIdyarthiplus.com

Lagrange function with respect to the power

www.Vidyarthiplus.com

Page 119: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 119/201

Lagrange function with respect to the poweroutput values one at a time give the set of 

equations shown

Where is the Lagrangian multiplier.

The necessary condition for this

optimization problem is taking the firstderivative of the Lagrange unction withrespect to the each of the independentvariables and set the derivatives equal tozero i.e

11

9

L = FT +

0

 

i

ii

i P 

 P  F 

 P 

 L

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 120: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 120/201

 

i

i

 P 

 F 0

 

i

i

 P 

 F 0

12

0

This is called as coordination equation. i.e. the

necessary condition for the existence of a minimum

operating cost is that the incremental cost rates of all

the units be equal to the some in determined value .

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 121: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 121/201

This is the necessary condition for the existence of aminimum cost operating condition for the thermal power system is that the incremental cost rates of allthe units be equal to some undetermined value, . Of course, to this necessary condition we must add theconstraint equation that the sum of the power outputs

must be equal to the power demanded by the load. Inaddition, there are two inequalities that must besatisfied for each of the units. That is, the power output of each unit must be greater than or equal tothe minimum power permitted and must also be less

than or equal to the maximum power permitted onthat particular unit.

12

1www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 122: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 122/201

These conditions and inequalities may besummarized as shown in the set of equationsN equations

12

2

 

i

i

 P 

 F 

max,min, iiiP  P  P 

 N 

i

 Loa d i P  P 1

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 123: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 123/201

12

3www.VIdyarthiplus.com

Page 124: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 124/201

www.Vidyarthiplus.com

Page 125: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 125/201

Objective Fn

FT=F1+F2+………+FN

Subjected to

12

5

 N 

i

i Loss Load  P  P  P 

1

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 126: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 126/201

Using Lagrangian FunctionL = FT +

Where „‟ is the lagrangian multiplier i.e.,add the constrained function „ „ to the

objective function after the constrainedfunction is multiplied by an undeterminedmultiplier

12

6www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 127: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 127/201

Taking the derivative of lagrangian functionwith respect to any one of the N values of Pi isshown as:

12

7

01  

  

 

i

loss

i

i

i P 

 P 

 P 

 F 

 P 

 L 

  

i

loss

i

i

 P 

 P 

 P 

 F 

01

 N 

i

ilossload  P  P  P 

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 128: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 128/201

Step1: Development of mathematical modelfor the losses in the network as the functionof the power output of each units (LossFormula Method).

Step2: To incorporate the power flowequations

as essential constraints. (Optimal PowerFlow)

12

8www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 129: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 129/201

One of the method to solve the economicdispatch problem by neglecting the losses.

Eg.

consider three units system, to find the

optimal economic operating point withoutlosses

- assume an incremental cost rate andfind the power outputs of these three units.

12

9www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 130: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 130/201

Is an iterative type of computation andstopping rules are used,

(1) stopping rules based on finding theproper operating point with in a specified

tolerance.(2) stopping rules based on maximum

number of iteration

13

0www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 131: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 131/201

EDP is solved repeatedly by moving the generators fromone economically optimum schedule to another as theload changes by a reasonably small amount.

Next, the scheduler assumes a load change andinvestigates how much each generating unit needs to bemoved ie, participate in the load change in order that

the new load be served at the most economic operatingpoint.

Assume that both the first and second derivatives in thecost versus power output function are available (ie, bothand ). As the unit load is changed by an amount , the

system incremental cost moves from to . For a smallchange in power output on this single unit.

13

1www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 132: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 132/201

13

2www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 133: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 133/201

Refers to the most economic loading of thegenerators which are connected to the systemand running.

Fuel cost is the principal factor in fossil fuelplants and is given as a function of 

generation. ED problem is to define the production level

of each plant so that the total generation andtransmission cost is minimum for a

prescribed schedule of loads.

13

3www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 134: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 134/201

Lagrange Multiplier method Lambda Iteration method

Gradient method

Dynamic programming

Evolutionary Computation Techniques

13

4www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 135: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 135/201

Used to describe the efficiency of the plants. Graphical Representation of input in Rs/hr

versus power output in megawatts is calledinput-output curve.

13

5www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 136: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 136/201

A plot of the input in kilocalories per hourversus power output in megawatts is calledinput-output curve.

The ordinates of the curve may beconverted to Rs/hr by multiplying the fuel

in Rs/kilocalories. The empirical equation of the this curve is

given by

Where a, b and c are constants dependingupon a particular plant.

13

6

cbP aP C  iii 2

www.VIdyarthiplus.com

I t l f l t

www.Vidyarthiplus.com

Page 137: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 137/201

Incremental fuel cost

The incremental cost is equal to the slope of the cost curve. A plot of incremental costversus power output is called the incrementalcost curve. It is shown in Fig.3. Equation (2) isof the form

The incremental cost is equal to the slope of the cost curve.

13

7

i

i

idP 

dC  IC  )(

=

baP i 2;

Rs/ MWh

www.VIdyarthiplus.com

Page 138: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 138/201

www.Vidyarthiplus.com

Page 139: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 139/201

13

9www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 140: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 140/201

It consists of N generating units connected toa single bus bar serving a receiving electricalload

14

0

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 141: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 141/201

let 

14

1

 N T  F  F  F  F  F  ...321

 N 

i

ii P  F 1

 N 

iiload 

P  P 1

subject to (1) energy balance equation and (11)

inequality constraints

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 142: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 142/201

This is a constrained optimization problemthat may be attacked formally usingadvanced calculus methods that involve theLagrange function.

In order to establish the necessaryconditions for an extreme value of theobjective function, add the constraintfunction to the objective function after the

constraint function has been multiplied byan undetermined multiplier. This is knownas the Lagrange function.

14

2

www.VIdyarthiplus.com

Lagrange function with respect to the powerl i i h f

www.Vidyarthiplus.com

Page 143: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 143/201

output values one at a time give the set of 

equations shown

Where is the Lagrangian multiplier.

The necessary condition for this

optimization problem is taking the firstderivative of the Lagrange unction withrespect to the each of the independentvariables and set the derivatives equal tozero i.e

14

3

L = FT +

0

 

i

ii

i P 

 P  F 

 P 

 L

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 144: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 144/201

 

i

i

 P 

 F 0

 

i

i

 P 

 F 0

14

4

This is called as coordination equation. i.e. the

necessary condition for the existence of a minimum

operating cost is that the incremental cost rates of all

the units be equal to the some in determined value .

www.VIdyarthiplus.com

This is the necessary condition for the existence of a

www.Vidyarthiplus.com

Page 145: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 145/201

This is the necessary condition for the existence of aminimum cost operating condition for the thermal

 power system is that the incremental cost rates of allthe units be equal to some undetermined value, . Of course, to this necessary condition we must add theconstraint equation that the sum of the power outputsmust be equal to the power demanded by the load. Inaddition, there are two inequalities that must besatisfied for each of the units. That is, the power output of each unit must be greater than or equal tothe minimum power permitted and must also be less

than or equal to the maximum power permitted onthat particular unit.

14

5

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 146: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 146/201

These conditions and inequalities may besummarized as shown in the set of equationsN equations

14

6

 

i

i

 P 

 F 

max,min, iiiP  P  P 

 N 

i

 Loa d i P  P 1

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 147: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 147/201

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 148: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 148/201

The unit commitment economically schedulesgenerating units over a short-term planninghorizon subject to the satisfaction of demandand other system operating constraints.

It involves determining start-up and shut-down schedule of units to be used to meet theforecasted demand , over a future short termperiod.

belongs to the class of complex combinatorialoptimization problems..

14

8

www.VIdyarthiplus.com

Consider 3 units shown below:

www.Vidyarthiplus.com

Page 149: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 149/201

Consider 3 units shown below:Unit 1: Min = 150MW, Max=600MW.Unit 2: Min = 100MW, Max=400MW.Unit 3: Min= 50 MW, Max = 200 MW.Load is 550 MW.

What is the combination of units tosupply the load most economically?

14

9

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 150: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 150/201

Unit 1 Unit 2 Unit 3 PG Total generationcost

ON ON ON P1= 267

P2=233

P3=50

5617

ON ON OFF P1= 295

P2=255

5471

ON OFF OFF P1= 550 5389

OFF ON ON P2= 400

P3=150

5418

150www.VIdyarthiplus.com

A E l f P k ll l d tt

www.Vidyarthiplus.com

Page 151: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 151/201

An Example of Peak-valley load pattern

15

1

1200 MW

500 MW

Time

Total Load

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 152: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 152/201

15

2

600 MW

Time

Total Load

1200 MW

UNIT 1

UNIT 2UNIT 2

UNIT 1 UNIT 1

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 153: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 153/201

Spinning Reserve:Describes the total amount of generation

schedule available from all unitssynchronized on the system minus presentload and losses being supplied.

Loss of one or more units should not causea too far drop in frequency.

Reserve must be capable of making up theloss of most heavily loaded unit in a givenperiod of time.

15

3

www.VIdyarthiplus.com

Units

1,2 and 3Units 4

and 5550

www.Vidyarthiplus.com

Page 154: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 154/201

15

4

MW

Unit Unitcapacity

Unitoutput

SpinningReserve

12

3

1000800

800

900420

420

100380

380

4

5

1200

600

1040

310

160

290

1900 MW1190 MW

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 155: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 155/201

Thermal Constraints:Thermal units undergo only gradual

temperature changes.

Minimum Up time: Once the unit is running,it should not be turned off immediately

Minimum Down time: Once the unit isdecommited, there is a minimum time beforeit can be recommitted.

Crew Constraints: No enough crew membersto attend two or more units while starting up.

155

www.VIdyarthiplus.com

Page 156: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 156/201

www.Vidyarthiplus.com

Page 157: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 157/201

157

  f  

c c F c

)1(  

cc

 F 

  f  c

 

where

= cold-start cost (MBtu)

= Fuel cost

=Fixed cost

= Thermal time constant for the Unit

= time (h) the unit was cooled

www.VIdyarthiplus.com

Start-up cost when banking

www.Vidyarthiplus.com

Page 158: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 158/201

158

  f  t  c F t c

t c = cost (MBtu/h) of maintaining unit

at operating temperature

where

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 159: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 159/201

159

Banking

CoolingStart upcost

Time

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 160: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 160/201

Must run constraint: Some units are given amust run status during all the times.

Fuel Constraints: Some units have limited fuelor have constraints that require them to burn

a specified amount of fuel.

160

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 161: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 161/201

Let there be M periods and N units.

The total number of combinations at eachhour is:

The maximum number of possiblecombinations is (2N-1)M

 j j

 j j N 

 N 

 j N C 

........21!

!)!(

!

),(

161

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 162: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 162/201

Priority list schemes

Dynamic Programming

Lagrange Relaxation

162

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 163: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 163/201

It consists of priority list of units to becommitted.

Full load average production cost of each unitis calculated.

Then in the order of ascending costs, theunits are arranged for commitment.

163

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 164: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 164/201

Consider 3 units shown below:

Unit 1: Min = 150MW, Max=600MW.H1=510+7.2P1+0.00142P1

2

Unit 2: Min = 100MW, Max=400MW.

H2= 310+7.85P2+0.00194P22.

Unit 3: Min= 50 MW, Max = 200 MW.H3 = 78+7.97P3+0.00482P3

2. Load is 550 MW.

Fuel cost1=1.1 R/MBtu

Fuel cost2=1.0 R/MBtu

Fuel cost3=1.2 R/MBtuWhat is the combination of units to

supply the load most economically?

164

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 165: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 165/201

165

Unit Full loadaverage

productioncost(R/MWh)

Min MW Max MW

1 9.79 100 400

2 9.48 150 600

3 11.188 50 200

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 166: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 166/201

166

Combination Min MW Max MW

2+1+3 300 1200

2+1 250 1000

2 100 400

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 167: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 167/201

No load costs are zero.

Unit input-output characteristics are linearbetween zero output and full load.

There are no other restrictions.

Start up costs are a fixed amount.

167

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 168: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 168/201

A state consists of an array of units

with specified units operating and therest off-line.

The start up cost of a unit isindependent of the time it has been

off-lined (i.e., it is a fixed amount). There are no costs for shutting down a

unit. There is a strict priority order, and in

each interval a specified minimumamount of capacity must be operating.

168

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 169: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 169/201

),(),1(cos),:,1(cos

),(cos),(cos

),(cos),(cos

)],1(cos),:,1(cos),(cos[min),(cos

 I  K to L K  state fromt transition I  K  L K t S 

 I  K  state for t  production I  K t  P 

 I  K  stateat arrivetot total least  I  K t  F 

where

 L K t  F  I  K  L K t S  I  K t  P  L

 I  K t  F 

169

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 170: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 170/201

170

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 171: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 171/201

REC-EEE DEPT171

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 172: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 172/201

REC-EEE DEPT172

What is SCADA◦ SCADA – Supervisory Control and Data Acquisition

◦ SCADA system includes a computer system with an application

program running that acquires the real-time data from the data

acquisition units located in the field at a remote location in order 

the monitor the devices remotely and control them. SCADA equipment are located in:

1. Master control center (national grid control centre)

2. Zonal (regional) control centers

3. District control centre (state electricity board)

4. Control rooms of generating stations and large sub-station.

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 173: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 173/201

REC-EEE DEPT173

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 174: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 174/201

1. Monitoring

2. Alarm

3. Control and indication of production automatic generationcontrol (AGC)

4. Data logging

5. Data acquisition

6. Control ON/OFF, RAISE/LOWER7. Display

 Additional functions are provided with SCADA systems for national loadcontrol centres:

1. Interactive studies

2. Security assessment calculations contingency

3. Training simulator 4. Network modeling and Energy management systems(EMS)

REC-EEE DEPT174

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 175: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 175/201

Point to Point Connection Multiple point to point connection

Star connection

REC-EEE DEPT175

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 176: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 176/201

SCADA system is for local and remote control

applications suitable for electrical and non-electrical

distribution areas.

SCADA-based electrical application areas are:◦ Power transmission and distribution

The SCADA-based non- electrical application areas are:◦ District heating

◦ Water purification and distribution

◦ Waste water treatment

Oil and gas distribution etc.

REC-EEE DEPT176

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 177: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 177/201

Substation Automation means that the substation has

equipment, which enables communication with theprimary equipment and use of process data for supervision, control and communication.

The functions may include:◦

viewing status of breakers and disconnectors◦ controlling the breakers and disconnectors◦ dynamic coloring of the busbars◦ viewing and setting of protection parameters◦ viewing condition of auxiliary equipment e.g. batteries◦ collection of metering data◦

transferring data to network control center 

REC-EEE DEPT177

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 178: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 178/201

REC-EEE DEPT178

www.VIdyarthiplus.com

f

www.Vidyarthiplus.com

Page 179: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 179/201

The integration of control, protection and monitoring in

one common system is achieved using SCADA systemin a substation.

Control functions Control and monitoring of switching devices, tapped transformers,

auxiliary devices, etc. Bay- and a station-wide interlocking Dynamic Busbar coloring according to their actual operational

status.  Automatic switching sequences  Automatic functions such as load shedding, power restoration, and

high speed bus bar transfer (HBT) Time synchronization by radio and satellite clock signal

REC-EEE DEPT179

www.VIdyarthiplus.com

M it i f ti

www.Vidyarthiplus.com

Page 180: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 180/201

Monitoring functions:

Measurement and displaying of current, voltage, frequency, activeand reactive power, energy, temperature, etc.  Alarm functions. Storage and evaluation of time stamped events Trends and archiving of measurements Collection and evaluation of maintenance data Disturbance recording and evaluation

Protection functions: Substation protection functions includes the monitoring of eventslike start, trip indication and relay operating time and setting andreading of relay parameters.

Protection of bus bars. Line feeders, transformers, generators Protection monitoring (status, events, measurements, parameters,

recorders)  Adaptive protection by switch-over of the active parameter set Optional: all information regarding protection on a separate

workplace.

REC-EEE DEPT180

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 181: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 181/201

Strategic Benefits:

Improved quality of service

Improvedreliability

Maintenance/expansion of customer base

High value service provider   Added value services

Improved customer access to information

Enterprise information accessibility

Flexible billing options

REC-EEE DEPT181

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 182: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 182/201

Tangible Benefits: Reduced manpower requirements

Reduced system implementation costs

Reduced operating costs

Reduced maintenance costs  Ability to defer capacity addition projects

Improved information for engineering decisions

Improved information for planning decisions

Reduced customer outage minutes

REC-EEE DEPT182

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 183: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 183/201

REC-EEE DEPT183

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 184: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 184/201

REC-EEE DEPT184

www.VIdyarthiplus.com

P t ti f ti

www.Vidyarthiplus.com

Page 185: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 185/201

Protective functions:

Under frequency protection Earth fault protection Condition Fail protection feeder protection & auto reelecting Breather failure protection Busbar protection Back up protection

Benefits of distribution automation:

Improved reliability Economic benefits Early warning feature

REC-EEE DEPT185

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 186: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 186/201

REC-EEE DEPT186

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 187: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 187/201

REC-EEE DEPT187

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 188: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 188/201

REC-EEE DEPT188

www.VIdyarthiplus.com

S f

www.Vidyarthiplus.com

Page 189: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 189/201

Soft sensor:

It allows for proper closure of the control loop on product

quality, leading to superior performance in quality

control, while also meeting production targets on

throughput and energy consumption.

SCADA system allows optimal use of the plant and

generates sustainable improvements in product quality

and consistency.

REC-EEE DEPT189

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 190: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 190/201

REC-EEE DEPT190

STATION CHECK TRIP-CLOSE

LOWER-RAISE CLOSE-OPENSTOP-START

 ANALOG DATA COUNTED

DATA BINARY DATA

 ALARMS & STATUS

INDICATION

 ALARM ANNUNCITOR

 A/D

CONVERTER

DATA

DISPLAYS

CONTROL

CONTORL &

INDICATION

 ANALOG

DATA

MASTER

STATION

M

O

D

E

M

M

O

D

E

M

REMOTE

STATION

INDICATION

BINARY

DATA

PULSE

COUNTER

INDICATION

SPECIAL FUNCTIONS

www.VIdyarthiplus.com

P Li C i

www.Vidyarthiplus.com

Page 191: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 191/201

Power Line Carrier: Power line carrier communication (PLCC) was quite popular in the

past, mainly for signaling.

Power line carrier systems use electric transmission and distribution

lines to carry digital data and voice.

Wire lines: Many SCADA systems employ wireline links (private networks) to

communicate between the SCADA Master Control Center (MCC)and substation RTUs.

The commonly used wireline and telephone networks allow veryreliable point-to-point or point-to-multi-point (multi-drop)communication.

REC-EEE DEPT191

www.VIdyarthiplus.com

www.Vidyarthiplus.com

Page 192: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 192/201

192

NATIONAL CONTROL CENTRE

REGION COMPUTER

SYSTEM

REGION COMPUTER

SYSTEM

REGION COMPUTER

SYSTEM

BOARD COMPUTERSYSTEM

BOARD COMPUTERSYSTEM

BOARD COMPUTERSYSTEM

Ist LEVEL

IInd LEVEL

IIIrd LEVEL

www.VIdyarthiplus.com

Regional load control centre:

www.Vidyarthiplus.com

Page 193: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 193/201

Regional load control centre:

It decides generation allocation to various generating stations withinthe region on the basics of equal incremental operating cost

considering line losses are equal and Frequency control in the

region.

Plant load control room

It decides the allocation of generation of various units in the plant onthe basis of:

1. Equal incremented operating cost of various units

2. Minimize the reactive power flow through line so as to minimize

line loss and maintain voltage levels and Frequency control in the

plant.

REC-EEE DEPT193

www.VIdyarthiplus.com

It minimizes

www.Vidyarthiplus.com

Page 194: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 194/201

REC-EEE DEPT194

It minimizes

1. Reactive power flow through the transmission lines bycompensation.

2. Maintain voltage levels by minimize the line

3. The Synchronizing and system restoration are also done by the

Sub-station control room.

The primary objectives of the various levels are:•load frequency control

•voltage control

•economic load dispatch

www.VIdyarthiplus.com

1 Electrical and mechanical variables on/off states

www.Vidyarthiplus.com

Page 195: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 195/201

1.Electrical and mechanical variables on/off states

2. Analogue quantities

3. Digital quantities

4. Change of state sequence of event

5. Time of occurrence and several other data which the

control room operator would like to know.

Data transmission:

Data is transmitted from the process location to thecontrol room and the control room to the control center.

REC-EEE DEPT195

www.VIdyarthiplus.com

The large number of electrical/ mechanical/other data

www.Vidyarthiplus.com

Page 196: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 196/201

The large number of electrical/ mechanical/other data

are scanned at required interval, recorded and displayedas per the requirements. Some of the data is converted

from analogue to digital form by A/D converters. The

data loggers perform the following function:◦

Input scanning◦  A/D conversion

◦ Display

◦ Signal amplification

◦ Recording

◦ Programming

REC-EEE DEPT196

www.VIdyarthiplus.com

1 The data is acquired by means of a CTs VTs

www.Vidyarthiplus.com

Page 197: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 197/201

1. The data is acquired by means of a CTs VTs,

transducers and other forms of collecting informations.

2. The transducers convert very large number of electrical,mechanical and other datas (informations) into electricalform to enable easy measurement and transmission.

3. Data may be collected at low level (5 mA) or high level(5 v). The data amplified in signal amplifier andconditioned in data signal conditioner.

REC-EEE DEPT197

www.VIdyarthiplus.com

Page 198: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 198/201

◦ Acquisition of information (measured values signals alarms

www.Vidyarthiplus.com

Page 199: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 199/201

◦  Acquisition of information (measured values, signals, alarms,

meter readings), including features such as plausibility checksand filtering.

◦ Output of commands / instructions (binary pulse type or 

continuous commands, set points, control variables) . Including

their monitoring ( as a function of time, lout of n)

◦ Recognition of changes in signal input states, pulse time dataallocation for sequential recording of events by the master control

stations.

◦ Processing of information transmitted to and from the

telecommunication equipment ( Data compression, Coding and

protection)◦ Communication with master control stations.

REC-EEE DEPT199

www.VIdyarthiplus.com

Transmission Substation RTUs:

www.Vidyarthiplus.com

Page 200: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 200/201

Transmission Substation RTUs:

Main substation RTU can connect to many other RTUs

in the substation, each with a specific function or 

functions, including closed loop control and

computation.

Many RTUs have the ability to interface with other 

substation devices generally referred to as IEDs

(Intelligent Electronic Devices)

REC-EEE DEPT200

www.VIdyarthiplus.com

Distribution Automation RTUs:

www.Vidyarthiplus.com

Page 201: Power - System - Einstein Notes

7/27/2019 Power - System - Einstein Notes

http://slidepdf.com/reader/full/power-system-einstein-notes 201/201

Distribution Automation RTUs:

“DA” RTUs are having all inputs, outputs and the RTUmicroprocessor on just one printed circuit board.

If the RTU is expandable, additional input and output

cards are connected by flat ribbon cables rather than

plug-in cards, making the system more rugged andcompact.

These RTUs usually contain an integral lead acid gel

cell battery backup system and integral