Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite...

23
Drought Monitoring using Satellite Remote Sensing Data in Java Island, Indonesia Parwati, Orbita Roswintiarti, and Nanin Anggraini Indonesian National Institute of Aeronautics and Space (LAPAN) Presented at The Fourth GEOSS AsiaPacific Symposium “Towards a Global Earth Observation System of Systems that supports the Societal Benefit Areas of Climate and Biodiversity” Bali, 1012 March 2010

Transcript of Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite...

Page 1: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

Drought Monitoringusing Satellite Remote

Sensing Datain Java Island, Indonesia 

Parwati, Orbita Roswintiarti, and Nanin Anggraini

Indonesian National Institute of Aeronautics and Space (LAPAN)

Presented at  The Fourth GEOSS Asia‐Pacific Symposium “Towards a Global Earth Observation System of Systems that supports the Societal Benefit Areas of Climate and Biodiversity”

Bali, 10‐12 March 2010 

Page 2: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

Contents

Background and Objective1

Data2

Methods3

Results and Discussion4

Conclusions5

Page 3: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

BackgroundDrought is a serious natural hazard characterized by lower than normal precipitation that when extended over a longer period of time is insufficient to meet the demands of human activities and the environment. 

Types of drought:Meteorological drought: Precipitation deficitAgricultural drought: Soil water storage deficit Hydrological drought: Reduction of streamflow or subsurface water supplies

Page 4: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

Background (Cont.)Timely information about the onset of drought, its extent, intensity, duration, and impacts could limitdrought‐related losses of life, minimize human suffering, and reduce damage to the economy and environment.Satellite remote sensing data with their:

consistencymulti‐temporal coverage of large areas in real‐time and at frequent intervalsmapping at a regular spatial resolution

could provide drought‐related information with cost‐effective. 

Page 5: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

ObjectiveObjective: To conduct detailed analysis of drought dynamics in Java islandto identify the spatio‐temporal drought patterns in meteorological and vegetation aspects during the 2009 ENSO.

In Indonesia, drought and severe vegetation stress were closely related with El Niño/Southern Oscillation (ENSO) events. 

Page 6: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

DataData:

Tropical Rainfall Measuring Mission (TRMM)• Period for calculating long‐term mean rainfall: Jan 1998 to Dec 2008

Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)• Period for calculating Min/Max: Jan 2007 to Dec 2008 

TRMM

MODIS

Page 7: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

Example of accumulated rainfall from TRMM 

Spatial resolution: 27 km

Page 8: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

How MODIS detects vegetative chlorophyll 

Enhanced Vegetation Index (EVI):

C1=6.0, C2=7.5, L=1.0, G=2.5

Healthy vegetation (more chlorophyll): absorbs most of the visible light that hits itreflects a large portion of the near‐infrared light. 

Unhealthy or sparse vegetation (less chlorophyll): 

reflects more visible lightreflects less near‐infrared light. 

xGLrCrCr

rrEVI

BluedNIR

dNIR

+−+−

=2Re1

Re

Page 9: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

Example of EVI distribution

Enhanced Vegetation Index (13-20 August 2009)

Spatial resolution: 250 meter

For the area without vegetation, the index characterizes surface conditions.

Page 10: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

How MODIS detects Land Surface Temperature

Land Surface Temperature (LST) is derived from the split‐window LST algorithm:

Δε=(ε31‐ε32) and ε=0.5(ε31+ε32) are the difference and mean of surface emissivities in MODIS band 31 and 32. 

T31 and T32 are the brightness temperatures in these two split‐window bands.

The coefficients A1, A2, A3, B1, B2, B3, C are given by interpolation on asset of multi‐dimensional look‐up tables (LUT).

CTTBBBTTAAALST +−Δ

+−

+++Δ

+−

+=2

)1(2

)1( 32312321

32312321 ε

εεε

εε

εε

Page 11: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

Example of LST distribution

Land Surface Temperature (13-20 August 2009)

Spatial resolution: 1000 meter

Page 12: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

Methods

Meteorological drought

Agricultural drought

Page 13: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

Meteorological DroughtStandardized Precipitation Index (SPI): 

Xij: rainfall at the ith location and jth time, Xim: climatologicalrainfall at the ith location, and σ: its standard deviation.

σimij XX

SPI−

=

Page 14: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

Agricultural DroughtVegetation Condition Index (VCI) associates with moisture condition of vegetation:

Temperature Condition Index (TCI) associates with thermal condition of vegetation:

Vegetation Health Index (VHI) represents overall vegetation health:

minmax

min100EVIEVI

EVIEVIxVCI

−−

=

minmax

max100LSTLSTLSTLSTxTCI

−−

=

)(5.0 TCIVCIVHI +=

Page 15: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

Classes of Agricultural drought‐based VHI 

Page 16: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

SPI (June – November 2009)

Calculated based on TRMM Data 1998 - 2008

Page 17: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

VCI (June – November 2009)

For the area without vegetation, the index characterizes surface conditions. Calculated based on MODIS Data 2007 - 2008

Page 18: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

TCI (June – November 2009)

For the area without vegetation, the index characterizes surface conditions. Calculated based on MODIS Data 2007 - 2008

Page 19: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

VHI (June – November 2009)

For the area without vegetation, the index characterizes surface conditions. Calculated based on MODIS Data 2007 - 2008

Page 20: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

SPI and VHI Results in ENSO Condition

El Nino

La Nina

Page 21: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

Field checking on paddy condition areas (3‐5 Nov 2009)

Jatibarang, Indramayu  Tukdana, Indramayu 

Pagaden, Subang Ciwaringin, Cirebon

Page 22: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable

ConclusionsSatellite remote sensing data and information have been used to monitor drought‐vulnerable areas over Java island during June‐November 2009 of ENSO based on SPI and VHI indices.

The consistency and timely information of drought‐based remote sensing should be complemented with some verification and validation in the fields. In addition, attemps should be done to increase the long‐term mean and downscale the results for the local purposes. 

Page 23: Potential Drought Monitoring - University of Tokyo Subang Ciwaringin, Cirebon Conclusions Satellite remote sensing data and information have been used to monitor drought‐vulnerable