Potable water tank calculation

download Potable water tank calculation

of 37

Transcript of Potable water tank calculation

  • 8/12/2019 Potable water tank calculation

    1/37

    Ivar Aasen Field Development Project pdQ

    01 21/05/2014 Issued for Review YEL RAJ LUM

    Rev. Date Reason for IssuePrepared

    byReviewed

    byApproved

    by

    PORTABLE WATER TANK CALUCLATION(53TB001 A/B/C)

    Package Title:

    Area

    Code:

    M320

    System

    Code:

    42

    Project Tag Numbers:

    53TB001A/B/C

    No. of

    Pages:

    37

    Project No.:

    xxxxxxx

    Supplier Document Number:

    XXXXXXXXXXX

    Rev.

    01

    Purchase Order No:

    C-00011

    Project Document Number: Proj Rev.

    XXXXXXXXXXXXXXXXXXX XX

  • 8/12/2019 Potable water tank calculation

    2/37

    CONTENT PAGE

    1 DESIGN DATA 1

    3 WALL DESIGN 2

    5 STIFFENER PROPERTIES 7

    7 NOZZLES & OPENING 12

    9 WIND LOADING 14

    11 WEIGHT SUMMARY 15

    13 TRANSPORTATION LOAD 16

    15 SESMIC LOAD 17

    17 BLAST LOAD 18

    19 LOAD AT BASE 19

    21 LEG DESIGN 20

    23 LEG BASE PLATE DESIGN 21

    25 LIFTING LUG DESIGN CALCULATION 22

  • 8/12/2019 Potable water tank calculation

    3/37

  • 8/12/2019 Potable water tank calculation

    4/37

    ROARK'S FORMULA

    SIDE WALL DESIGN

    ITEM NAME : 42TB00L7

    Tank Height, H = 118.11 in 3000 mm

    Tank Width, W = 35.43 in 900 mmTank Length, L = 55.12 in 1400 mm

    Design Pressure = FULL WATER + 0.07 bar g

    Design Temp. = 50oC

    Material = TITANIUM GRADE 2

    As per Table 26 Case No.1a Chapter 10 of Roark's

    Rectangular plate, all edges simply supported, with uniform loads over entire plate

    For Section , A (Worst Case)

    g = 9.81 m/s2

    water = 1000 kg/m

    a = 18.39 in 467.0 mmb = 39.37 in 1000.0 mm

    a/b = 0.4670

    = 0.0947 Loading q= water gH + water gh Pa

    = 0.0052 = 29430 + 7000 N/m2

    = 0.3707 = 4.2674 + 1.0150 psi

    = psi = 5.2824 psi

    t = 0.3150 in 8.0 mm

    c.a = 0.0000 in 0 mm

    t (corr) = 0.3150 in 8.0 mm

    At Center,

    1.52E+07

    S

    a

    S

    S

    S

    b

    Maximum Deflection, = -(qb4)/Et

    3

    = -3.50= 3.50 mm < t/2 then O.K

    Maximum Bending stress, = (qb2)/ t

    2

    = 7819 psi < allowable 31302 psi. then OK

    Material TITANIUM GRADE 2

    Yield Stress, y = 47427 psi

    Stress Ratio, /y = 0.165

    At center of long side,

    Maximum reaction force per unit length normal to the plate surface,

    R = qb

    = 77.09 lb/in

    = 8710.72 N/mm

  • 8/12/2019 Potable water tank calculation

    5/37

    ROARK'S FORMULA

    SIDE WALL DESIGN

    ITEM NAME : 42TB00L7

    Tank Height, H = 118.11 in 3000 mm

    Tank Width, W = 35.43 in 900 mmTank Length, L = 55.12 in 1400 mm

    Design Pressure = FULL WATER + 0.07 bar g

    Design Temp. = 50oC

    Material = TITANIUM GRADE 2

    As per Table 26 Case No.1a Chapter 10 of Roark's

    Rectangular plate, all edges simply supported, with uniform loads over entire plate

    For Section , B (Worst Case)

    g = 9.81 m/s2

    water = 1000 kg/m

    a = 17.72 in 450.0 mmb = 39.37 in 1000.0 mm

    a/b = 0.4500

    = 0.0882 Loading q= water gH + water gh Pa

    = 0.0039 = 29430 + 7000 N/m2

    = 0.3688 = 4.2674 + 1.0150 psi

    = psi = 5.2824 psi

    t = 0.3150 in 8.0 mm

    c.a = 0.0000 in 0 mm

    t (corr) = 0.3150 in 8.0 mm

    At Center,

    1.52E+07

    S

    a

    S

    S

    S

    b

    Maximum Deflection, = -(qb4)/Et

    3

    = -2.61= 2.61 mm < t/2 then O.K

    Maximum Bending stress, = (qb2)/ t

    2

    = 7280 psi < allowable 31302 psi. then OK

    Material TITANINUM GRADE 2

    Yield Stress, y = 47427 psi

    Stress Ratio, /y = 0.153

    At center of long side,

    Maximum reaction force per unit length normal to the plate surface,

    R = qb

    = 76.69 lb/in

    = 8664.79 N/mm

  • 8/12/2019 Potable water tank calculation

    6/37

    STIFFENER CALCULATION

    For Horizontal

    Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero,

    that is, at the middle of the beam.

    Stiffener No. 1 (typical)

    L = 467 mm = 18.39 in

    207.97 lb/in = 1000 mm = 39.4 inLoad q = 5.2824 psi

    unit load W = q x psi

    = 207.97 lb/in

    FB 50 x 6

    X

    I = 0.5848 in4

    18.39 in

    Bending Moment

    As per Table 8.1 Case 2e of Roark's (Uniform load on entire span

    At x = L/2 = 9.19 inMaximum moment, Mmax = WL /8

    = 8788 lb-in

    M/I = /y

    (I/y)required = M/

    = 0.533 in3

    Use FB 50 x 6

    I/y = 1.516 in > (I/y)required then O.K

    Therefore, = 5795 psi < allowable 16500 psi. then O.K

    WbWa

    Deflection

    As per Table 8.1 Case 2e of Roark's (Uniform load on entire span

    At x =L/2= 9.19 in

    max (5WL )

    384EI

    = 0.035 < L/360 0.0511 in. then O.K

    Therefore the size used is adequate.

  • 8/12/2019 Potable water tank calculation

    7/37

    STIFFENER CALCULATION

    For Vertical

    Stiffener No. 1 (typical)

    L = 1000 mm = 39.37 in

    97.12 lb/in = 467 mm = 18.4 in

    Load q = 5.2824 psi

    unit load W = q x psi= 97.12 lb/in

    FB 50 x 6

    X

    I = 0.5848 in4

    39.37 in

    Bending Moment

    As per Table 8.1 Case 2d of Roark's (Uniformly increasing load

    At x = 0.548L = 21.57 in

    Maximum moment, Mmax = 0.0215WL

    = 3237 lb-in

    M/I = /y

    (I/y)required = M/

    = 0.196 in3

    Use FB 50 x 6

    I/y = 1.516 in > (I/y)required then O.K

    Therefore, = 2134 psi < allowable 16500 psi. then O.K

    WbWa

    Deflection

    As per Table 8.1 Case 2d of Roark's (Uniformly increasing load

    At x = 0.525L = 20.67 in

    max =

    = 0.0344 < L/360 = 0.1094 in. then O.K

    Therefore the size used is adequate.

    0.001309WL4

    EI

  • 8/12/2019 Potable water tank calculation

    8/37

    STIFFENER CALCULATION

    For Horizontal

    Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero,

    that is, at the middle of the beam.

    Stiffener No. 1 (typical)

    L = 450 mm = 17.72 in

    207.97 lb/in = 1000 mm = 39.4 inLoad q = 5.2824 psi

    unit load W = q x psi

    = 207.97 lb/in

    FB 50 x 6

    X

    I = 0.5848 in4

    17.72 in

    Bending Moment

    As per Table 8.1 Case 2e of Roark's (Uniform load on entire span

    At x = L/2 = 8.86 inMaximum moment, Mmax = WL /8

    = 8159 lb-in

    M/I = /y

    (I/y)required = M/

    = 0.495 in3

    Use FB 50 x 6

    I/y = 1.516 in > (I/y)required then O.K

    Therefore, = 5381 psi < allowable 16500 psi. then O.K

    WbWa

    Deflection

    As per Table 8.1 Case 2e of Roark's (Uniform load on entire span

    At x =L/2= 8.86 in

    max (5WL )

    384EI

    = 0.030 < L/360 0.0492 in. then O.K

    Therefore the size used is adequate.

  • 8/12/2019 Potable water tank calculation

    9/37

    STIFFENER CALCULATION

    For Vertical

    Stiffener No. 1 (typical)

    L = 1000 mm = 39.37 in

    93.58 lb/in = 450 mm = 17.7 in

    Load q = 5.2824 psi

    unit load W = q x psi= 93.58 lb/in

    FB 50 x 6

    X

    I = 0.5848 in4

    39.37 in

    Bending Moment

    As per Table 8.1 Case 2d of Roark's (Uniformly increasing load

    At x = 0.548L = 21.57 in

    Maximum moment, Mmax = 0.0215WL

    = 3119 lb-in

    M/I = /y

    (I/y)required = M/

    = 0.189 in3

    Use FB 50 x 6

    I/y = 1.516 in > (I/y)required then O.K

    Therefore, = 2057 psi < allowable 16500 psi. then O.K

    WbWa

    Deflection

    As per Table 8.1 Case 2d of Roark's (Uniformly increasing load

    At x = 0.525L = 20.67 in

    max =

    = 0.0331 < L/360 = 0.1094 in. then O.K

    Therefore the size used is adequate.

    0.001309WL4

    EI

  • 8/12/2019 Potable water tank calculation

    10/37

    ROARK'S FORMULA

    BOTTOM PLATE DESIGN

    ITEM NAME : 53TB001A/B/C

    Tank Height, H 133.9 in 3400 mm

    Tank Width, W 98.43 in 2500 mmTank Length, L 137.80 in 3500 mm

    Design Pressure = FULL WATER + 0.07 BARG

    Design Temp. = 50oC

    Material = SS316L

    As per Table 26 Case No.1a Chapter 10 of Roark's

    Assume rectangular plate, all edges simply supported, with uniform loads over entire plat

    For Section , Each Section (Largest area)

    g = 9.81 m/s2

    water = 1000 kg/m

    a = 27.56 in 700 mmb = 23.62 in 600 mm

    a/b = 1.1667

    = 0.3614 Loading q= water gh + 0.07 BARG

    = 0.0587 = 33354 + 7000 N/m2

    = 0.4492 = 4.8363 + 1.0150 psi

    = = 5.8513 psi

    t = 0.3150 in 8.0 mm

    c.a = 0.0000 in 0 `

    t (corr) = 0.3150 in 8.0 mm

    At Center,

    2.90E+07

    S

    a

    S

    S

    S

    b

    Maximum Deflection, = -(qb4)/Et

    3

    = -3.00= 3.00 mm < t/2 then O.K

    Maximum Bending stress, = (qb2)/ t

    2

    = 11895 psi < allowable 13926 psi. then OK

    Material SS316L

    Yield Stress, y = 21100 psi

    Stress Ratio, /y = 0.564

    At center of long side,

    Maximum reaction force per unit length normal to the plate surface,

    R = qb

    = 62.08 lb/in

  • 8/12/2019 Potable water tank calculation

    11/37

  • 8/12/2019 Potable water tank calculation

    12/37

    ROARK'S FORMULA

    ROOF CALCULATION

    ITEM NAME : 53TB001A/B/C

    Assume rectangular plate, all edges simply supported, with uniform loads over entire plat

    Live load, LL = 0.2846 psi

    Roof weight = 1203.724 lb

    Structure weight = 0 lb

    Concentrated weight = 661 lb

    Total dead load,TDL = 0.0927 psi

    Total conc. load, CL = 0.0488 psi

    Tank Width, W 98.43 in 2500 mm

    Tank Length, L 137.80 in 3500 mm

    g = 9.81 m/s

    2

    water = 1000 kg/m

    a = 68.90 in 1750.0 mm

    b = 49.21 in 1250.0 mm

    a/b = 1.4000

    = 0.2874

    = 0.0444 Loading q = LL + CL + TDL

    = 0.4200 = 0.426 psi

    =

    t = 0.314961 in 8.0 mm

    c.a = 0 mm

    t (corr) = 0.314961 in 8.0 mm

    2.90E+07

    1.52E+07

    S

    a

    S

    S

    Sb

    At Center,Maximum Deflection, = -(qb

    4)/Et

    3All. Deflection =3500/300= 11.67 (max) mm

    = -3.11 mm

    = 3.11 mm < All. Deflection. O.K = 11.67

    Maximum Bending stress, = (qb2)/ t

    2

    = 2989 psi < allowable 13926 psi then OK

    Material SS316L

    Yield Stress, y = 21100 psi

    Stress Ratio, /y = 0.142

    At center of long side,Maximum reaction force per unit length normal to the plate surface,

    R = qb

    = 8.81 lb/in

  • 8/12/2019 Potable water tank calculation

    13/37

  • 8/12/2019 Potable water tank calculation

    14/37

    STIFFENER PROPERTIES

    Size FB 50 x 6

    Material, 25% CrSDSS

    Yield Stress, y 79800 psi

    Allowable Stress, allowable 52668 psi

    Where :

    d1 = 6 mm

    d2 = 50 mm

    b1 = 166 mm *

    b2 = 6 mmh1

    b2

    h2

    y2 C

    d22

    Stiffener

    h1

    b1

    y2 C

    d1y1 1

    Plate

    PART area (a) y a x y h h2

    a x h2

    bd3/12

    mm2

    mm mm3

    mm mm2

    mm4

    mm4

    1 993.3137 3 2979.941 6.49 42.1843 41902.24 2979.941

    2 300 31 9300 21.51 462.4674 138740.2 62500

    TOTAL 1293.314 12279.94 180642.5 65479.94

    Therefore,

    C = 9.49 mm

    I = 246122.4 mm4

    = 0.5913 in4

    Z (I/C) = 25921.42 mm3

    = 1.5818 in3

    "*"

    b1 =

    b1 = 166 mm take min. L = 3400 mm, so R:

    R = 1700 mm

  • 8/12/2019 Potable water tank calculation

    15/37

    Opening Calculation Per API 650

    Without Repad

    P Design 0.07 Barg

    R Tank volume 29750000000 mm3

    t Vessel wall thickness 6 mm

    Rn Nozzle inside radius 80 mm

    tn Nozzle wall thickness 4.78 mm

    Rm Mean radius of vessel 29750000003 mm

    Rnm Mean radius of nozzle 82.39 mm

    As Shaded(cross-hatched) area 2535079.16 mm

    S Maximum allowable stress 21100 psi 1455.172 bar

    Sm= Px ((Rx (Rn+ tn+ (Rmx t)^0.5)+ (Rnx (t+ (Rnmx tn)^0.5)))/ As)

    = 347136064 bar < 1455.172414 bar

    Sm < S OK.

    Therefore Reinforcement Pad not required

  • 8/12/2019 Potable water tank calculation

    16/37

    Opening Calculation Per API 650

    Without Repad

    P Design 0.07 Barg

    R Tank volume 29750000000 mm3

    t Vessel wall thickness 6 mm

    Rn Nozzle inside radius 50 mm

    tn Nozzle wall thickness 3.91 mm

    Rm Mean radius of vessel 29750000003 mm

    Rnm Mean radius of nozzle 51.955 mm

    As Shaded(cross-hatched) area 2535034.81 mm

    S Maximum allowable stress 21100 psi 1455.172 bar

    Sm= Px ((Rx (Rn+ tn+ (Rmx t)^0.5)+ (Rnx (t+ (Rnmx tn)^0.5)))/ As)

    = 347116778 bar < 1455.172414 bar

    Sm < S OK.

    Therefore Reinforcement Pad not required

  • 8/12/2019 Potable water tank calculation

    17/37

    Opening Calculation Per API 650

    Without Repad

    P Design 0.07 Barg

    R Tank volume 29750000000 mm3

    t Vessel wall thickness 6 mm

    Rn Nozzle inside radius 50 mm

    tn Nozzle wall thickness 7.11 mm

    Rm Mean radius of vessel 29750000003 mm

    Rnm Mean radius of nozzle 53.555 mm

    As Shaded(cross-hatched) area 2535137.022 mm

    S Maximum allowable stress 21100 psi 1455.172 bar

    Sm= Px ((Rx (Rn+ tn+ (Rmx t)^0.5)+ (Rnx (t+ (Rnmx tn)^0.5)))/ As)

    = 347105411 bar < 1455.172414 bar

    Sm < S OK.

    Therefore Reinforcement Pad not required

  • 8/12/2019 Potable water tank calculation

    18/37

    Opening Calculation Per API 650

    Without Repad

    P Design 0.07 Barg

    R Tank volume 29750000000 mm3

    t Vessel wall thickness 6 mm

    Rn Nozzle inside radius 200 mm

    tn Nozzle wall thickness 8.18 mm

    Rm Mean radius of vessel 29750000003 mm

    Rnm Mean radius of nozzle 204.09 mm

    As Shaded(cross-hatched) area 2535338.927 mm

    S Maximum allowable stress 21100 psi 1455.172 bar

    Sm= Px ((Rx (Rn+ tn+ (Rmx t)^0.5)+ (Rnx (t+ (Rnmx tn)^0.5)))/ As)

    = 347201856 bar < 1455.172414 bar

    Sm < S OK.

    Therefore Reinforcement Pad not required

  • 8/12/2019 Potable water tank calculation

    19/37

    Opening Calculation Per API 650

    Without Repad

    P Design 0.07 Barg

    R Tank volume 29750000000 mm3

    t Vessel wall thickness 6 mm

    Rn Nozzle inside radius 100 mm

    tn Nozzle wall thickness 6.02 mm

    Rm Mean radius of vessel 29750000003 mm

    Rnm Mean radius of nozzle 103.01 mm

    As Shaded(cross-hatched) area 2535141.652 mm

    S Maximum allowable stress 21100 psi 1455.172 bar

    Sm= Px ((Rx (Rn+ tn+ (Rmx t)^0.5)+ (Rnx (t+ (Rnmx tn)^0.5)))/ As)

    = 347144954 bar < 1455.172414 bar

    Sm < S OK.

    Therefore Reinforcement Pad not required

  • 8/12/2019 Potable water tank calculation

    20/37

    Opening Calculation Per API 650

    Without Repad

    P Design 0.07 Barg

    R Tank volume 29750000000 mm3

    t Vessel wall thickness 6 mm

    Rn Nozzle inside radius 250 mm

    tn Nozzle wall thickness 9.27 mm

    Rm Mean radius of vessel 29750000003 mm

    Rnm Mean radius of nozzle 254.635 mm

    As Shaded(cross-hatched) area 2535461.621 mm

    S Maximum allowable stress 21100 psi 1455.172 bar

    Sm= Px ((Rx (Rn+ tn+ (Rmx t)^0.5)+ (Rnx (t+ (Rnmx tn)^0.5)))/ As)

    = 347227018 bar < 1455.172414 bar

    Sm < S OK.

    Therefore Reinforcement Pad not required

  • 8/12/2019 Potable water tank calculation

    21/37

    IND LOADING - BS 6399 - PART 2 -1997

    Terrain Category = 1

    Region = D

    Basic Wind Speed Vb = 53.80 m/s

    Shielding Factor Ms = 1

    Topographic Factor Sa = 1

    Direction Factor Sd = 1

    Probability Factor Sp = 1

    Seasonal Factor Ss = 1

    Terrain and Building Factor Sb = 1

    Design Wind Speed Vz = 53.80 m/s ( Vb x Sa x Sd x Sp x Ss )

    Effective (Design) Wind speed Ve = 53.80 m/s ( Vz x Sb )

    Dynamic Pressure qz = 1.7743 kPa ( 0.613 x Ve2

    x 10-3

    )

    Drag Coefficient Cd = 1

    H = 3400.000 mm

    L = 2500.000 mm

    Az = 8500000.000 mm2

    3400

    H /L = 1.36

    Kar = 1

    Cd' = 1 ( Cd x Kar )

    Wind Force Fw = 15081.5 N ( Cd' x qz x Az ) / 103

    Height to COA h = 1700.000 mm ( H / 2 )

    Overturning Moment Mw = 25638515 Nmm ( Fw x h )

    Moment at the joint of the leg to the tank

    hT= 550 mm Mw1 = 26309411 Nmm Mw - hT ( Fw - 0.5*qz*D*hT)

    2500.000

  • 8/12/2019 Potable water tank calculation

    22/37

    Sesmic LoadL: lenth of the tank 3500 mm

    H: Height of the tank 3400 mm

    V: Wind speed 53.8 m/s

    a1: Horizontal acceleration 0.8 m/s2

    a2: Vertical acceleration 2 m/s2

    M: Empty Weight 4167 kg

    S1y: Yield Stress of bottom plate 262 N/mm2

    Sa: Allowable Stress of the plate 137 N/mm2

    S2y: Yield Stress of beam 355 N/mm2

    f: Fillet weld size between bottom plate and skid 6 mm

    Lf: Weld leg between the beam and bottom plate 300 mm

    Wind Force Calculation

    A=LxH= 11.9 m2

    Fw=0.5 x A x V2= 17221.92 N

    P=F/A= 1447.22 N/m2

    Force Calculation

    Fh=(a1+1) x M x 10= 75006 N

    Fv=(a2+1) x M x 10= 125010 N

    Horizontal Shear Stress Check

    Fhc=Fw+Fh= 92227.92 N

    Maximum Shear Stress

    Ss=0.4 x S2y= 142 N/mm2

    Fhc=Ss x (Lf x f)

    so Lf=Fc / (Ss x f)= 108.2487 mm

    As the welding seam length along the skid to bottom is more than required, so it's OK!

    Vertical Shear Stress Check

    Fv= 125010 NFv=Ss x (Lf x f)

    so Lf=Fv / (Ss x f)= 146.7254 mm

    As the welding seam length along the skit to bottom is more than required, so it's OK!

    Over Turning Force Check

    Fv x L/2 + Fhc x H/2 = M x L/2 + Ss x (Lf x f) x L/2

    so Lf=2(Fv x L/2 + Fhc x H/2 - M x L/2) / (Ss x f x L) = 246.9904 mm

    As the welding seam length along the skid to bottom is more than required, so it's OK!

  • 8/12/2019 Potable water tank calculation

    23/37

    Blast LoadL: Length of the tank 3500 mm

    H: Height of the tank 3400 mm

    P: Blast load 20000 N/m2

    a1: Horizontal acceleration 0.3 m/s2

    a2: Vertical acceleration 1.4 m/s2

    M: Empty Weight 4167 kg

    S1y: Yield Stress of bottom plate 262 N/mm2

    S2y: Yield Stress of beam 355 N/mm2

    f: Fillet weld size between bottom plate and skid 6 mm

    Lf: Weld leg between the beam and bottom plate 300 mm

    Blast Force Calculation

    A=LxH= 11.9 mm2

    Fw=P x A = 238000 N

    Transportation Force Calculation

    Fh=(a1+1) x M x 10 = 54171 N

    Fv=(a2+1) x M x 10 = 100008 N

    Horizontal Shear Stress Check

    Ss=0.4 x S2y= 142 N/mm2

    Fhc=S2y x (Lf x f)

    so Lf=Fc / (S2y x f)= 137.1695 mm

    As the welding seam length along the skid to bottom is more than required, so it's OK!

    As the welding seam length along the skid to bottom is more than required, so it's OK!

    Vertical Shear Stress Check

    Fv= 100008 N

    Fv=S2y x (Lf x f)

    so Lf=Fv / (S2y x f)= 46.95211 mm

    As the welding seam length along the skid to bottom is more than required, so it's OK!

    Over Turning Force Check

    Fv xL/2 + Fhc x H/2 = M x L/2 + S2y x (Lf x f) x L/2

    so Lf=2(Fv x L/2 + Fhc x H/2 - M x L/2) / (S2y x f x L) = 178.2461 mm

    As the welding seam length along the skit to bottom is more than required, so it's OK!

    As the welding seam length along the skid to bottom is more than required, so it's OK!

  • 8/12/2019 Potable water tank calculation

    24/37

    WEIGHT SUMMARY

    ITEM : 53TB001A/B/C

    JOB NO. JN05-320

    QTY or

    ITEM DESCRIPTION UNIT WT. WEIGHT

    SIDE PLATE 3.500 m x 3.400 m x 6 thk 2 1116.7 kg

    SIDE PLATE 2.500 m x 3.400 m x 6 thk 2 797.6 kg

    BASE PLATE 3.500 m x 2.500 m x 6 thk 1 410.6 kg

    ROOF PLATE 3.500 m x 2.500 m x 6 thk 1 420.0 kg

    STIFFENER

    SIDE WALL FB 50 x 6 x 28 m 1 65.7 kg

    ROOF PLATE FB 50 x 6 x 8 m 1 19.2 kg

    BOTTOM PLATE FB 50 x 6 x 8 m 4 307.2 kg

    CHANNEL 150 x 75 x 6.5t x 0.6 m 1 29.9 kg

    NOZZLE / OPENINGS 1000.0 kg

    AND OTHERS

    TOTAL WEIGHT 4167 kg

    Liquid Weight 38675 kg

    Water Weight 29750 kg

    EMPTY WEIGHT 4167 kg

    OPERATING WEIGHT 42842 kg

    FULL WATER WEIGHT 33917 kg

  • 8/12/2019 Potable water tank calculation

    25/37

    TRANSPORTATION LOADS

    TRANSPORTATION ACCELERATIONS

    WEIGHTS

    ERECTED .. We = 4167 kg -> 40877 N

    OPERATING . Wo = 42842 kg -> 420279 N

    FLOODED . Wf = 33917 kg -> 332724 N

    VERTICAL AtV = 3.92 m/s ( 1.4 x g )

    LONGITUDINAL AtH = 3.92 m/s ( 0.5 x g )

    TRANSVERSE AtT = 7.85 m/s ( 0.5 x g )

    TRANSPORTATION FORCES

    VERTICAL FtV = 16350.7 N ( We x AtV)

    HORIZONTAL FtH = 16350.7 N ( We x AtH)

    TRANSVERSE FtT = 32701.5 N ( We x AtT)

  • 8/12/2019 Potable water tank calculation

    26/37

    LOADS AT BASE

    EIGHTS

    Erected e = 4167 kg ------> 40877 N

    Operating o = 42842 kg ------> 420279 N

    Flooded f = 33917 kg ------> 332724 N

    EXTERNAL LOADS

    ind Force Fw = 15081 N

    Earthquake Force Feq = 31860 N

    Blasting Force Fb = 23080 N

    FD = 26642 N [( 0.5 x We )2

    + ( 1.4 x We )2

    ]0.5

    ind Moment Mw = 25638515 Nmm

    Earthquake Moment Meq = 142 Nmm

    Blastin Moment Mb = 142 Nmm

    Client Specified Dynamic Force

    ( during tow-out and installation )

    Client Specified Moment Mc = 0 Nmm ( FDx COGerected ) COGerected = 1325 mm

    (from base)

    Maximun Shear Force F = 31860 N >>> P = F/n = 7965.0 N

    Maximun O/T Moment M = 25638515 Nmm n = 4

    where, n= no of leg.

    HOLD DOWN BOLTS

    ( during tow-out and installation )

    Bolt Material.. = SA 193M GR B7

    Bolt Yield Stress Sy = 207 MPa

    Bolt UTS... Su = 507 MPa

    Allowable Tensile Ft = 124.2 MPa

    Allowable Shear Fs = 69 MPa

    Bolt Size = M16

    Bolt Number N=

    4

    Tensile Area. AT = 245 mm

    Shear Area AS = 400 mm

    o = mm

    AXIAL STRESS IN BOLT SHEAR STRESS IN BOLT

    4Mw - e Shear / Bolt, S = F

    PCD.N N N x As

    Load / Bolt = 171614 N 19.91 MPa OK

    ** Since the value is -ve, therefore no axial stress 69 MPa

    fs =

    Fs =

    Load / Bolt, P =

    since fs < Fs the shear stress is OK

  • 8/12/2019 Potable water tank calculation

    27/37

    LEG DESIGN

    LEG DATA

    Material.....= SA 36M

    Yield Stress, Sy...= 248.2 N/mm

    Allowable Axial Stress, fall....= 148.9 N/mm

    ( 0.6 x Sy )Allowable Bending Stress, fball.......= 165.5 N/mm

    2( 2/3 x Sy )

    LEG GEOMETRY :- CHANNEL150 x 75 x6.5t

    A = 2370 mm2

    Ixx = 8640000 mm

    d = 51.9 mm

    e = 23.1 mm

    L = 450 mm

    r = 10 mm

    AXIAL STRESS

    Axial Stress, fa = F / A = 35.10 N/mm2

    BENDING STRESS

    Bending Stress, fb = P x L x e = 18.14 N/mm

    Ixx

    COMBINED STRESS

    e

    d

    X X

    Combined Stress, f = (fa/fall + fb/fball) = 0.35

    Since Combined Stress is < 1.00 The Leg Design is OK!

  • 8/12/2019 Potable water tank calculation

    28/37

    LEG BASE PLATE DESIGN

    Refer Dennis R Moss Procedure 3-10

    tb =

    Q = Maximum Load / Support = 42842 N

    F = Baseplate Width = 200 mm

    A = Baseplate Length = 200 mm

    Fb = Allowable Bending Stress = 163.68 MPa ( 0.66 Fy )

    tb = 14.0 mm

    Use Tb = 15 mm OK

    BASE PLATE WELD CHECKING

    Maximum stress due to Q & F = max(Q, F)/Aw = 6.69 N/mm

    2

    < 86.9 N/mm2

    OK

    Weld leg size, g = 8.0 mm

    Length of weld, l = 2*( 2*F + 2*A ) = 1600 mm

    Area of weld, Aw = 0.5*g*l = 6400 mm2

    Joint efficiency for fillet weld, E = 0.6 -

    Welding stress for steel, fw = 144.8 N/mm2

    Allowable stress for weld, fw = E*fw = 86.9 N/mm2

    Maximum vertical force, Q = 42841.9 N

    Maximum horizontal force, F = 31860.0 N

    3 x Q x F

    4 x A x Fb

  • 8/12/2019 Potable water tank calculation

    29/37

  • 8/12/2019 Potable water tank calculation

    30/37

    4.0 LIFTING LUG DESIGN - VERTICAL LIFTING4.1 DESIGN LOAD

    Design load , Wt ( = p.We ) = 122631 NDesign load per lug, W ( = Wt / N ) = 30658 NVertical component force, Fy = 30658 N

    4.2 STRESS CHECK AT PIN HOLE(a) Tensile Stress

    Vertical component force, Fy = 30658 N

    Cross sectional area of lug eye, Ae ( = 2*[ rL - d/2 ] x tL ) = 900 mmTensile stress, St ( = Fy / Ae ) = 34.06 N/mm

    Since St < St.all, therefore the lifting lug size is satisfactory.

    (b) Bearing StressVertical component force, Fy = 30658 NCross sectional area of lug eye, Ae ( = Dp x tL ) = 333 mmBearing stress, Sbr ( = Fy / Ae ) = 91.96 N/mmSince Sbr < Sbr.all,therefore the lifting lug size is satisfactory.

    (c) Shear StressVertical component force, Fy = 30658 NCross sectional area of lug eye, Ae ( = 2.(rL-d/2).tL ) = 900 mmShear stress, Ss ( = Fy / Ae ) = 34.06 N/mm

    Since Ss < Ss.all,therefore the lifting lug size is satisfactory.

    5.0 STRESS CHECK AT SECTION A-(a) Bending Stress

    Bending stress due to Pa ( = Fy x tan U ) = 8215 NBending moment, Mb ( = Pa x J ) = 394305 NmmSection modulus, Z ( = 2rL*tL /6 = 3750 mm

    Bending stress, Sb ( = Mb/Z ) = 105.15 N/mmSince Sb < Sb.all, therefore the lifting lug size is satisfactory.

    (b) Tensile Stress due to FyCross section area, Ae (=2rL x tL) = 1500 mmTensile Stress, St (=Fy/Ae) = 20.44 N/mmSince St < St.all, therefore the lifting lug size is satisfactory.

    Combine Stress Ratio, CS (= St/St.all + Sb/Sbn.all) = 0.78Since CS

  • 8/12/2019 Potable water tank calculation

    31/37

    7.0 DESIGN OF WELD SIZE AT PAD TO TANK JOINT7.1 GENERAL

    Weld leg , w = 6 mmWeld throat thickness, tr = 4.2 mmFillet weld joint efficiency, E = 0.6

    Allowable welding stress for steel grade 43 ( E-43 ) = 125 N/mm

    7.2 CRITICAL WELD CROSS-SECTIONAL PROPERTIES

    Area of weld, Aw ( = 2 tr ( Wp + Lp ) ) = 2121 mm

    7.3 STRESS DUE TO FORCE FyComponent force, Fy = 30658 NShear stress, Ssx ( = Fy / Aw ) = 14.45 N/mmAllowable welding stress, Sa ( = E.Sa ) = 75.00 N/mmSince Ssx < Sa, therefore the selected weld size is satisfactory .

  • 8/12/2019 Potable water tank calculation

    32/37

    Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    1

    22-May-14

    22-May-2014 04:13Porable Water Tank Skid

    Print Time/Date: 22/05/2014 04:15 Print Run 1 of 6STAAD.Pro V8i (SELECTseries 2) 20.07.07.19

    Job InformationEngineer Checked Approved

    Name:

    Date: 22-May-14

    Structure Type SPACE FRAME

    Number of Nodes 25 Highest Node 25

    Number of Elements 36 Highest Beam 36

    Number of Basic Load Cases 2Number of Combination Load Cases 1

    Included in this printout are data for:

    All The Whole Structure

    Included in this printout are results for load cases:

    Type L/C Name

    Primary 1 SELF WEIGHT

    Primary 2 LIVE LOADS

    Combination 3 COMBINATION LOAD CASE 3

    NodesNode X

    (mm)

    Y

    (mm)

    Z

    (mm)

    1 0.000 0.000 0.000

    2 3.5E+3 0.000 0.000

    3 7E+3 0.000 0.000

    4 10.5E+3 0.000 0.000

    5 0.000 0.000 -2.6E+3

    6 3.5E+3 0.000 -2.6E+3

    7 7E+3 0.000 -2.6E+3

    8 10.5E+3 0.000 -2.6E+3

    9 5.25E+3 0.000 0.00010 5.25E+3 0.000 -2.6E+3

    11 8.75E+3 0.000 0.000

    12 8.75E+3 0.000 -2.6E+3

    13 1.75E+3 0.000 0.000

    14 1.75E+3 0.000 -2.6E+3

    15 0.000 0.000 -1.3E+3

    16 1.75E+3 0.000 -1.3E+3

    17 3.5E+3 0.000 -1.3E+3

    18 5.25E+3 0.000 -1.3E+3

    19 7E+3 0.000 -1.3E+3

    20 8.75E+3 0.000 -1.3E+3

    21 10.5E+3 0.000 -1.3E+322 875.000 0.000 0.000

    23 875.000 0.000 -2.6E+3

    24 9.63E+3 0.000 0.000

  • 8/12/2019 Potable water tank calculation

    33/37

    Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    2

    22-May-14

    22-May-2014 04:13Porable Water Tank Skid

    Print Time/Date: 22/05/2014 04:15 Print Run 2 of 6STAAD.Pro V8i (SELECTseries 2) 20.07.07.19

    Nodes Cont...Node X

    (mm)

    Y

    (mm)

    Z

    (mm)

    25 9.63E+3 0.000 -2.6E+3

    BeamsBeam Node A Node B Length

    (mm)

    Property

    (degrees)

    1 1 22 875.000 2 0

    2 2 9 1.75E+3 2 0

    3 3 11 1.75E+3 2 0

    4 5 23 875.000 2 0

    5 6 10 1.75E+3 2 0

    6 7 12 1.75E+3 2 0

    7 5 15 1.3E+3 2 0

    8 6 17 1.3E+3 2 0

    9 7 19 1.3E+3 2 0

    10 8 21 1.3E+3 2 0

    11 9 3 1.75E+3 2 0

    12 10 7 1.75E+3 2 0

    13 11 24 875.000 2 0

    14 12 25 875.000 2 0

    15 11 20 1.3E+3 2 016 9 18 1.3E+3 2 0

    17 13 2 1.75E+3 2 0

    18 14 6 1.75E+3 2 0

    19 13 16 1.3E+3 2 0

    20 15 1 1.3E+3 2 0

    21 16 14 1.3E+3 2 0

    22 17 2 1.3E+3 2 0

    23 18 10 1.3E+3 2 0

    24 19 3 1.3E+3 2 0

    25 20 12 1.3E+3 2 0

    26 21 4 1.3E+3 2 0

    27 15 16 1.75E+3 2 0

    28 16 17 1.75E+3 2 0

    29 17 18 1.75E+3 2 0

    30 18 19 1.75E+3 2 0

    31 19 20 1.75E+3 2 0

    32 20 21 1.75E+3 2 0

    33 22 13 875.000 2 0

    34 23 14 875.000 2 0

    35 24 4 875.000 2 0

    36 25 8 875.000 2 0

    Section PropertiesProp Section Area

    (cm2)

    Iyy

    (cm4)

    Izz

    (cm4)

    J

    (cm4)

    Material

    2 UB200X18.2 23.200 114.000 1.58E+3 2.823 STEEL

  • 8/12/2019 Potable water tank calculation

    34/37

    Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    3

    22-May-14

    22-May-2014 04:13Porable Water Tank Skid

    Print Time/Date: 22/05/2014 04:15 Print Run 3 of 6STAAD.Pro V8i (SELECTseries 2) 20.07.07.19

    MaterialsMat Name E

    (kN/mm2)

    Density

    (kg/m3)

    (/C)

    1 STEEL 205.000 0.300 7.83E+3 12E -6

    2 STAINLESSSTEEL 197.930 0.300 7.83E+3 18E -6

    3 ALUMINUM 68.948 0.330 2.71E+3 23E -6

    4 CONCRETE 21.718 0.170 2.4E+3 10E -6

    SupportsNode X

    (kN/mm)

    Y

    (kN/mm)

    Z

    (kN/mm)

    rX

    (kN-m/deg)

    rY

    (kN-m/deg)

    rZ

    (kN-m/deg)

    1 Fixed Fixed Fixed Fixed Fixed Fixed

    2 Fixed Fixed Fixed Fixed Fixed Fixed

    3 Fixed Fixed Fixed Fixed Fixed Fixed

    4 Fixed Fixed Fixed Fixed Fixed Fixed

    5 Fixed Fixed Fixed Fixed Fixed Fixed

    6 Fixed Fixed Fixed Fixed Fixed Fixed

    7 Fixed Fixed Fixed Fixed Fixed Fixed

    8 Fixed Fixed Fixed Fixed Fixed Fixed

    Basic Load CasesNumber Name

    1 SELF WEIGHT

    2 LIVE LOADS

    Combination Load CasesComb. Combination L/C Name Primary Primary L/C Name Factor

    3 COMBINATION LOAD CASE 3 1 SELF WEIGHT 1.00

    2 LIVE LOADS 1.00

  • 8/12/2019 Potable water tank calculation

    35/37

    Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    4

    22-May-14

    22-May-2014 04:13Porable Water Tank Skid

    Print Time/Date: 22/05/2014 04:15 Print Run 4 of 6STAAD.Pro V8i (SELECTseries 2) 20.07.07.19

    Utilization RatioBeam Analysis

    Property

    Design

    Property

    Actual

    Ratio

    Allowable

    Ratio

    Ratio

    (Act./Allow.)

    Clause L/C Ax

    (cm2)

    Iz

    (cm4)

    Iy

    (cm4)

    Ix

    (cm4)

    1 UB200X18.2 UB200X18.2 0.293 1.000 0.293 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    2 UB200X18.2 UB200X18.2 0.290 1.000 0.290 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    3 UB200X18.2 UB200X18.2 0.322 1.000 0.322 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    4 UB200X18.2 UB200X18.2 0.293 1.000 0.293 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    5 UB200X18.2 UB200X18.2 0.290 1.000 0.290 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    6 UB200X18.2 UB200X18.2 0.322 1.000 0.322 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    7 UB200X18.2 UB200X18.2 0.190 1.000 0.190 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    8 UB200X18.2 UB200X18.2 0.497 1.000 0.497 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    9 UB200X18.2 UB200X18.2 0.497 1.000 0.497 AISC- H1-3 3 23.200 1.58E+3 114.000 3.86010 UB200X18.2 UB200X18.2 0.190 1.000 0.190 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    11 UB200X18.2 UB200X18.2 0.290 1.000 0.290 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    12 UB200X18.2 UB200X18.2 0.290 1.000 0.290 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    13 UB200X18.2 UB200X18.2 0.207 1.000 0.207 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    14 UB200X18.2 UB200X18.2 0.207 1.000 0.207 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    15 UB200X18.2 UB200X18.2 0.274 1.000 0.274 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    16 UB200X18.2 UB200X18.2 0.181 1.000 0.181 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    17 UB200X18.2 UB200X18.2 0.322 1.000 0.322 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    18 UB200X18.2 UB200X18.2 0.322 1.000 0.322 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    19 UB200X18.2 UB200X18.2 0.274 1.000 0.274 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    20 UB200X18.2 UB200X18.2 0.190 1.000 0.190 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    21 UB200X18.2 UB200X18.2 0.274 1.000 0.274 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    22 UB200X18.2 UB200X18.2 0.497 1.000 0.497 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    23 UB200X18.2 UB200X18.2 0.181 1.000 0.181 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    24 UB200X18.2 UB200X18.2 0.497 1.000 0.497 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    25 UB200X18.2 UB200X18.2 0.274 1.000 0.274 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    26 UB200X18.2 UB200X18.2 0.190 1.000 0.190 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    27 UB200X18.2 UB200X18.2 0.245 1.000 0.245 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    28 UB200X18.2 UB200X18.2 0.349 1.000 0.349 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    29 UB200X18.2 UB200X18.2 0.349 1.000 0.349 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    30 UB200X18.2 UB200X18.2 0.349 1.000 0.349 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    31 UB200X18.2 UB200X18.2 0.349 1.000 0.349 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    32 UB200X18.2 UB200X18.2 0.245 1.000 0.245 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    33 UB200X18.2 UB200X18.2 0.207 1.000 0.207 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    34 UB200X18.2 UB200X18.2 0.207 1.000 0.207 AISC- H1-3 3 23.200 1.58E+3 114.000 3.86035 UB200X18.2 UB200X18.2 0.293 1.000 0.293 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

    36 UB200X18.2 UB200X18.2 0.293 1.000 0.293 AISC- H1-3 3 23.200 1.58E+3 114.000 3.860

  • 8/12/2019 Potable water tank calculation

    36/37

    Software licensed to Emerson Process Management Asia Pacific Pte Ltd

    Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    5

    22-May-14

    22-May-2014 04:13Porable Water Tank Skid

    Print Time/Date: 22/05/2014 04:15 Print Run 5 of 6STAAD.Pro V8i (SELECTseries 2) 20.07.07.19

    Reaction Summary

    Horizontal Vertical Horizontal Moment

    Node L/C FX

    (N)

    FY

    (N)

    FZ

    (N)

    MX

    (kNm)

    MY

    (kNm)

    MZ

    (kNm)

    Max FX 1 1:SELF WEIG 0.000 1.41E+3 0.000 0.331 0.000 0.545

    Min FX 1 1:SELF WEIG 0.000 1.41E+3 0.000 0.331 0.000 0.545

    Max FY 2 3:COMBINATI 0.000 45.1E+3 0.000 13.096 0.000 -0.842

    Min FY 1 1:SELF WEIG 0.000 1.41E+3 0.000 0.331 0.000 0.545

    Max FZ 1 1:SELF WEIG 0.000 1.41E+3 0.000 0.331 0.000 0.545

    Min FZ 1 1:SELF WEIG 0.000 1.41E+3 0.000 0.331 0.000 0.545

    Max MX 2 3:COMBINATI 0.000 45.1E+3 0.000 13.096 0.000 -0.842

    Min MX 6 3:COMBINATI 0.000 45.1E+3 0.000 -13.096 0.000 -0.842Max MY 1 1:SELF WEIG 0.000 1.41E+3 0.000 0.331 0.000 0.545

    Min MY 1 1:SELF WEIG 0.000 1.41E+3 0.000 0.331 0.000 0.545

    Max MZ 1 3:COMBINATI 0.000 20.7E+3 0.000 5.005 0.000 8.500

    Min MZ 4 3:COMBINATI 0.000 20.7E+3 0.000 5.005 0.000 -8.500

    3D Rendered View

  • 8/12/2019 Potable water tank calculation

    37/37

    Software licensed to Emerson Process Management Asia Pacific Pte Ltd

    Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    6

    22-May-14

    22-May-2014 04:13Porable Water Tank Skid

    8

    X = 0.000 NY = 1410.513 NZ = 0.000 NMX = -0.331 kNmMY = 0.000 kNmMZ = -0.545 kNm

    1221

    7

    X = 0.000 NY = 2810.436 NZ = 0.000 NMX = -0.741 kNmMY = 0.000 kNmMZ = 0.048 kNm

    204

    X = 0.000 NY = 1410.513 NZ = 0.000 NMX = 0.331 kNmMY = 0.000 kNmMZ = -0.545 kNm

    1019

    11

    6

    X = 0.000 NY = 2810.436 NZ = 0.000 NMX = -0.741 kNmMY = 0.000 kNmMZ = -0.048 kNm

    183

    X = 0.000 NY = 2810.436 NZ = 0.000 NMX = 0.741 kNmMY = 0.000 kNmMZ = 0.048 kNm

    1417

    9

    5

    X = 0.000 NY = 1410.513 NZ = 0.000 NMX = -0.331 kNmMY = 0.000 kNmMZ = 0.545 kNm

    162

    X = 0.000 NY = 2810.436 NZ = 0.000 NMX = 0.741 kNmMY = 0.000 kNmMZ = -0.048 kNm

    15 13

    1X = 0.000 NY = 1410.513 NZ = 0.000 NMX = 0.331 kNmMY = 0.000 kNmMZ = 0.545 kNm

    22

    23

    24

    25

    Load 1

    XY

    Z

    Whole Structure